summaryrefslogtreecommitdiff
path: root/core/cortex-m/task.c
blob: f42b4f9dc090ccebb23264c8295f01d895ce6a19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
/* Copyright 2012 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Task scheduling / events module for Chrome EC operating system */

#include "atomic.h"
#include "builtin/assert.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "debug.h"
#include "link_defs.h"
#include "panic.h"
#include "task.h"
#include "timer.h"
#include "util.h"

typedef union {
	struct {
		/*
		 * Note that sp must be the first element in the task struct
		 * for __switchto() to work.
		 */
		uint32_t sp; /* Saved stack pointer for context switch */
		atomic_t events; /* Bitmaps of received events */
		uint64_t runtime; /* Time spent in task */
		uint32_t *stack; /* Start of stack */
	};
} task_;

/* Value to store in unused stack */
#define STACK_UNUSED_VALUE 0xdeadd00d

/* declare task routine prototypes */
#define TASK(n, r, d, s) void r(void *);
void __idle(void);
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
CONFIG_CTS_TASK_LIST
#undef TASK

/* Task names for easier debugging */
#define TASK(n, r, d, s) #n,
static const char *const task_names[] = {
	"<< idle >>",
	CONFIG_TASK_LIST CONFIG_TEST_TASK_LIST CONFIG_CTS_TASK_LIST
};
#undef TASK

#ifdef CONFIG_TASK_PROFILING
static uint64_t task_start_time; /* Time task scheduling started */
/*
 * We only keep 32-bit values for exception start/end time, to avoid
 * accounting errors when we service interrupt when the timer wraps around.
 */
static uint32_t exc_start_time; /* Time of task->exception transition */
static uint32_t exc_end_time; /* Time of exception->task transition */
static uint64_t exc_total_time; /* Total time in exceptions */
static uint32_t svc_calls; /* Number of service calls */
static uint32_t task_switches; /* Number of times active task changed */
static uint32_t irq_dist[CONFIG_IRQ_COUNT]; /* Distribution of IRQ calls */
#endif

extern void __switchto(task_ *from, task_ *to);
extern int __task_start(int *task_stack_ready);

#ifndef CONFIG_LOW_POWER_IDLE
/* Idle task.  Executed when no tasks are ready to be scheduled. */
void __idle(void)
{
	while (1) {
#ifdef CHIP_NPCX

		/*
		 * Using host access to make sure M4 core clock will
		 * return when the eSPI accesses the Host modules if
		 * CSAE bit is set. Please notice this symptom only
		 * occurs at npcx5.
		 */
#if defined(CHIP_FAMILY_NPCX5) && defined(CONFIG_HOST_INTERFACE_ESPI)
		/* Enable Host access wakeup */
		SET_BIT(NPCX_WKEN(MIWU_TABLE_0, MIWU_GROUP_5), 6);
#endif

		/*
		 * TODO (ML): A interrupt that occurs shortly before entering
		 * idle mode starts getting services while the Core transitions
		 * into idle mode. The results in a hard fault when the Core,
		 * shortly therefore, resumes execution on exiting idle mode.
		 * Workaround: Replace the idle function with the followings
		 */
		asm("cpsid i\n" /* Disable interrupt */
		    "push {r0-r5}\n" /* Save needed registers */
		    "wfi\n" /* Wait for int to enter idle */
		    "ldm %0, {r0-r5}\n" /* Add a delay after WFI */
		    "pop {r0-r5}\n" /* Restore regs before enabling ints */
		    "isb\n" /* Flush the cpu pipeline */
		    "cpsie i\n" ::"r"(0x100A8000) /* Enable interrupts */
		);
#else
		/*
		 * Wait for the next irq event.  This stops the CPU clock
		 * (sleep / deep sleep, depending on chip config).
		 */
		cpu_enter_suspend_mode();
#endif
	}
}
#endif /* !CONFIG_LOW_POWER_IDLE */

static void task_exit_trap(void)
{
	int i = task_get_current();
	cprints(CC_TASK, "Task %d (%s) exited!", i, task_names[i]);
	/* Exited tasks simply sleep forever */
	while (1)
		task_wait_event(-1);
}

/* Startup parameters for all tasks. */
#define TASK(n, r, d, s)           \
	{                          \
		.r0 = (uint32_t)d, \
		.pc = (uint32_t)r, \
		.stack_size = s,   \
	},
static const struct {
	uint32_t r0;
	uint32_t pc;
	uint16_t stack_size;
} tasks_init[] = {
	TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE)
		CONFIG_TASK_LIST CONFIG_TEST_TASK_LIST CONFIG_CTS_TASK_LIST
};
#undef TASK

/* Contexts for all tasks */
static task_ tasks[TASK_ID_COUNT];

/* Reset constants and state for all tasks */
#define TASK_RESET_SUPPORTED BIT(31)
#define TASK_RESET_LOCK BIT(30)
#define TASK_RESET_STATE_MASK (TASK_RESET_SUPPORTED | TASK_RESET_LOCK)
#define TASK_RESET_WAITERS_MASK ~TASK_RESET_STATE_MASK
#define TASK_RESET_UNSUPPORTED 0
#define TASK_RESET_STATE_LOCKED (TASK_RESET_SUPPORTED | TASK_RESET_LOCK)
#define TASK_RESET_STATE_UNLOCKED TASK_RESET_SUPPORTED

#ifdef CONFIG_TASK_RESET_LIST
#define ENABLE_RESET(n) [TASK_ID_##n] = TASK_RESET_SUPPORTED,
static uint32_t task_reset_state[TASK_ID_COUNT] = {
#ifdef CONFIG_TASK_RESET_LIST
	CONFIG_TASK_RESET_LIST
#endif
};
#undef ENABLE_RESET
#endif /* CONFIG_TASK_RESET_LIST */

/* Validity checks about static task invariants */
BUILD_ASSERT(TASK_ID_COUNT <= sizeof(unsigned int) * 8);
BUILD_ASSERT(TASK_ID_COUNT < (1 << (sizeof(task_id_t) * 8)));
BUILD_ASSERT(BIT(TASK_ID_COUNT) < TASK_RESET_LOCK);

/* Stacks for all tasks */
#define TASK(n, r, d, s) +s
uint8_t task_stacks[0 TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE)
			    CONFIG_TASK_LIST CONFIG_TEST_TASK_LIST
				    CONFIG_CTS_TASK_LIST] __aligned(8);

#undef TASK

/* Reserve space to discard context on first context switch. */
uint32_t scratchpad[17];

static task_ *current_task = (task_ *)scratchpad;

/*
 * Should IRQs chain to svc_handler()?  This should be set if either of the
 * following is true:
 *
 * 1) Task scheduling has started, and task profiling is enabled.  Task
 * profiling does its tracking in svc_handler().
 *
 * 2) An event was set by an interrupt; this could result in a higher-priority
 * task unblocking.  After checking for a task switch, svc_handler() will clear
 * the flag (unless profiling is also enabled; then the flag remains set).
 */
static int need_resched_or_profiling;

/*
 * Bitmap of all tasks ready to be run.
 *
 * Start off with only the hooks task marked as ready such that all the modules
 * can do their init within a task switching context.  The hooks task will then
 * make a call to enable all tasks.
 */
static atomic_t tasks_ready = BIT(TASK_ID_HOOKS);
/*
 * Initially allow only the HOOKS and IDLE task to run, regardless of ready
 * status, in order for HOOK_INIT to complete before other tasks.
 * task_enable_all_tasks() will open the flood gates.
 */
static atomic_t tasks_enabled = BIT(TASK_ID_HOOKS) | BIT(TASK_ID_IDLE);

static int start_called; /* Has task swapping started */

static inline task_ *__task_id_to_ptr(task_id_t id)
{
	return tasks + id;
}

void interrupt_disable(void)
{
	asm("cpsid i");
}

void interrupt_enable(void)
{
	asm("cpsie i");
}

inline bool is_interrupt_enabled(void)
{
	int primask;

	/* Interrupts are enabled when PRIMASK bit is 0 */
	asm("mrs %0, primask" : "=r"(primask));

	return !(primask & 0x1);
}

inline bool in_interrupt_context(void)
{
	int ret;
	asm("mrs %0, ipsr \n" /* read exception number */
	    "lsl %0, #23  \n"
	    : "=r"(ret)); /* exception bits are the 9 LSB */
	return ret;
}

#ifdef CONFIG_TASK_PROFILING
static inline int get_interrupt_context(void)
{
	int ret;
	asm("mrs %0, ipsr \n" : "=r"(ret)); /* read exception number */
	return ret & 0x1ff; /* exception bits are the 9 LSB */
}
#endif

task_id_t task_get_current(void)
{
#ifdef CONFIG_DEBUG_BRINGUP
	/* If we haven't done a context switch then our task ID isn't valid */
	ASSERT(current_task != (task_ *)scratchpad);
#endif
	return current_task - tasks;
}

atomic_t *task_get_event_bitmap(task_id_t tskid)
{
	task_ *tsk = __task_id_to_ptr(tskid);
	return &tsk->events;
}

int task_start_called(void)
{
	return start_called;
}

/**
 * Scheduling system call
 */
void svc_handler(int desched, task_id_t resched)
{
	task_ *current, *next;
#ifdef CONFIG_TASK_PROFILING
	int exc = get_interrupt_context();
	uint32_t t;
#endif

	/*
	 * Push the priority to -1 until the return, to avoid being
	 * interrupted.
	 */
	asm volatile("cpsid f\n"
		     "isb\n");

#ifdef CONFIG_TASK_PROFILING
	/*
	 * SVCall isn't triggered via DECLARE_IRQ(), so it needs to track its
	 * start time explicitly.
	 */
	if (exc == 0xb) {
		exc_start_time = get_time().le.lo;
		svc_calls++;
	}
#endif

	current = current_task;

#ifdef CONFIG_DEBUG_STACK_OVERFLOW
	if (*current->stack != STACK_UNUSED_VALUE &&
	    task_enabled(current - tasks)) {
		panic_printf("\n\nStack overflow in %s task!\n",
			     task_names[current - tasks]);
		software_panic(PANIC_SW_STACK_OVERFLOW, current - tasks);
	}
#endif

	if (desched && !current->events) {
		/*
		 * Remove our own ready bit (current - tasks is same as
		 * task_get_current())
		 */
		tasks_ready &= ~(1 << (current - tasks));
	}
	ASSERT(resched <= TASK_ID_COUNT);
	tasks_ready |= 1 << resched;

	ASSERT(tasks_ready & tasks_enabled);
	next = __task_id_to_ptr(__fls(tasks_ready & tasks_enabled));

#ifdef CONFIG_TASK_PROFILING
	/* Track time in interrupts */
	t = get_time().le.lo;
	exc_total_time += (t - exc_start_time);

	/*
	 * Bill the current task for time between the end of the last interrupt
	 * and the start of this one.
	 */
	current->runtime += (exc_start_time - exc_end_time);
	exc_end_time = t;
#else
	/*
	 * Don't chain here from interrupts until the next time an interrupt
	 * sets an event.
	 */
	need_resched_or_profiling = 0;
#endif

	/* Nothing to do */
	if (next == current)
		return;

		/* Switch to new task */
#ifdef CONFIG_TASK_PROFILING
	task_switches++;
#endif
	current_task = next;
	__switchto(current, next);
}

void __schedule(int desched, int resched)
{
	register int p0 asm("r0") = desched;
	register int p1 asm("r1") = resched;

	asm("svc 0" ::"r"(p0), "r"(p1));
}

#ifdef CONFIG_TASK_PROFILING
void __keep task_start_irq_handler(void *excep_return)
{
	/*
	 * Get time before checking depth, in case this handler is
	 * pre-empted.
	 */
	uint32_t t = get_time().le.lo;
	int irq = get_interrupt_context() - 16;

	/*
	 * Track IRQ distribution.  No need for atomic add, because an IRQ
	 * can't pre-empt itself.
	 */
	if (irq < ARRAY_SIZE(irq_dist))
		irq_dist[irq]++;

	/*
	 * Continue iff a rescheduling event happened or profiling is active,
	 * and we are not called from another exception (this must match the
	 * logic for when we chain to svc_handler() below).
	 */
	if (!need_resched_or_profiling ||
	    (((uint32_t)excep_return & EXC_RETURN_MODE_MASK) ==
	     EXC_RETURN_MODE_HANDLER))
		return;

	exc_start_time = t;
}
#endif

void __keep task_resched_if_needed(void *excep_return)
{
	/*
	 * Continue iff a rescheduling event happened or profiling is active,
	 * and we are not called from another exception.
	 */
	if (!need_resched_or_profiling ||
	    (((uint32_t)excep_return & EXC_RETURN_MODE_MASK) ==
	     EXC_RETURN_MODE_HANDLER))
		return;

	svc_handler(0, 0);
}

static uint32_t __wait_evt(int timeout_us, task_id_t resched)
{
	task_ *tsk = current_task;
	task_id_t me = tsk - tasks;
	uint32_t evt;
	int ret __attribute__((unused));

	/*
	 * Scheduling task when interrupts are disabled will result in Forced
	 * Hard Fault because:
	 * - Disabling interrupt using 'cpsid i' also disables SVCall handler
	 *   (because it has configurable priority)
	 * - Escalation to Hard Fault (also known as 'priority escalation')
	 *   occurs when handler for that fault is not enabled
	 */
	ASSERT(is_interrupt_enabled());
	ASSERT(!in_interrupt_context());

	if (timeout_us > 0) {
		timestamp_t deadline = get_time();
		deadline.val += timeout_us;
		ret = timer_arm(deadline, me);
		ASSERT(ret == EC_SUCCESS);
	}
	while (!(evt = atomic_clear(&tsk->events))) {
		/* Remove ourself and get the next task in the scheduler */
		__schedule(1, resched);
		resched = TASK_ID_IDLE;
	}
	if (timeout_us > 0) {
		timer_cancel(me);
		/* Ensure timer event is clear, we no longer care about it */
		atomic_clear_bits(&tsk->events, TASK_EVENT_TIMER);
	}
	return evt;
}

void task_set_event(task_id_t tskid, uint32_t event)
{
	task_ *receiver = __task_id_to_ptr(tskid);
	ASSERT(receiver);

	/* Set the event bit in the receiver message bitmap */
	atomic_or(&receiver->events, event);

	/* Re-schedule if priorities have changed */
	if (in_interrupt_context() || !is_interrupt_enabled()) {
		/* The receiver might run again */
		atomic_or(&tasks_ready, 1 << tskid);
#ifndef CONFIG_TASK_PROFILING
		if (start_called)
			need_resched_or_profiling = 1;
#endif
	} else {
		__schedule(0, tskid);
	}
}

uint32_t task_wait_event(int timeout_us)
{
	return __wait_evt(timeout_us, TASK_ID_IDLE);
}

uint32_t task_wait_event_mask(uint32_t event_mask, int timeout_us)
{
	uint64_t deadline = get_time().val + timeout_us;
	uint32_t events = 0;
	int time_remaining_us = timeout_us;

	/* Add the timer event to the mask so we can indicate a timeout */
	event_mask |= TASK_EVENT_TIMER;

	while (!(events & event_mask)) {
		/* Collect events to re-post later */
		events |= __wait_evt(time_remaining_us, TASK_ID_IDLE);

		time_remaining_us = deadline - get_time().val;
		if (timeout_us > 0 && time_remaining_us <= 0) {
			/* Ensure we return a TIMER event if we timeout */
			events |= TASK_EVENT_TIMER;
			break;
		}
	}

	/* Re-post any other events collected */
	if (events & ~event_mask)
		atomic_or(&current_task->events, events & ~event_mask);

	return events & event_mask;
}

void task_enable_all_tasks(void)
{
	/* Mark all tasks as ready and able to run. */
	tasks_ready = tasks_enabled = BIT(TASK_ID_COUNT) - 1;
	/* Reschedule the highest priority task. */
	if (is_interrupt_enabled())
		__schedule(0, 0);
}

void task_enable_task(task_id_t tskid)
{
	atomic_or(&tasks_enabled, BIT(tskid));
}

bool task_enabled(task_id_t tskid)
{
	return tasks_enabled & BIT(tskid);
}

void task_disable_task(task_id_t tskid)
{
	atomic_clear_bits(&tasks_enabled, BIT(tskid));

	if (!in_interrupt_context() && is_interrupt_enabled() &&
	    tskid == task_get_current())
		__schedule(0, 0);
}

void task_enable_irq(int irq)
{
	CPU_NVIC_EN(irq / 32) = 1 << (irq % 32);
}

void __keep task_disable_irq(int irq)
{
	CPU_NVIC_DIS(irq / 32) = 1 << (irq % 32);
}

void task_clear_pending_irq(int irq)
{
	CPU_NVIC_UNPEND(irq / 32) = 1 << (irq % 32);
}

/*
 * Reading interrupt clear-pending register gives us information if interrupt
 * is pending.
 */
bool task_is_irq_pending(int irq)
{
	return CPU_NVIC_UNPEND(irq / 32) & (1 << (irq % 32));
}

void task_trigger_irq(int irq)
{
	CPU_NVIC_SWTRIG = irq;
}

static uint32_t init_task_context(task_id_t id)
{
	uint32_t *sp;
	/* Stack size in words */
	uint32_t ssize = tasks_init[id].stack_size / 4;

	/*
	 * Update stack used by first frame: 8 words for the normal
	 * stack, plus 8 for R4-R11. Even if using FPU, the first frame
	 * does not store FP regs.
	 */
	sp = tasks[id].stack + ssize - 16;
	tasks[id].sp = (uint32_t)sp;

	/* Initial context on stack (see __switchto()) */
	sp[8] = tasks_init[id].r0; /* r0 */
	sp[13] = (uint32_t)task_exit_trap; /* lr */
	sp[14] = tasks_init[id].pc; /* pc */
	sp[15] = 0x01000000; /* psr */

	/* Fill unused stack; also used to detect stack overflow. */
	for (sp = tasks[id].stack; sp < (uint32_t *)tasks[id].sp; sp++)
		*sp = STACK_UNUSED_VALUE;

	return ssize;
}

#ifdef CONFIG_TASK_RESET_LIST

/*
 * Re-initializes a task stack to its initial state, and marks it ready.
 * The task reset lock must be held prior to calling this function.
 */
static void do_task_reset(task_id_t id)
{
	interrupt_disable();
	init_task_context(id);
	tasks_ready |= 1 << id;
	/* TODO: Clear all pending events? */
	interrupt_enable();
}

/* We can't pass a parameter to a deferred call. Use this instead. */
/* Mask of task IDs waiting to be reset. */
static uint32_t deferred_reset_task_ids;

/* Tasks may call this function if they want to reset themselves. */
static void deferred_task_reset(void)
{
	while (deferred_reset_task_ids) {
		task_id_t reset_id = __fls(deferred_reset_task_ids);

		atomic_clear_bits(&deferred_reset_task_ids, 1 << reset_id);
		do_task_reset(reset_id);
	}
}
DECLARE_DEFERRED(deferred_task_reset);

/*
 * Helper for updating task_reset state atomically. Checks the current state,
 * and if it matches if_value, updates the state to new_value, and returns
 * TRUE.
 */
static int update_reset_state(uint32_t *state, uint32_t if_value,
			      uint32_t to_value)
{
	int update;

	interrupt_disable();
	update = *state == if_value;
	if (update)
		*state = to_value;
	interrupt_enable();

	return update;
}

/*
 * Helper that acquires the reset lock iff it is not currently held.
 * Returns TRUE if the lock was acquired.
 */
static inline int try_acquire_reset_lock(uint32_t *state)
{
	return update_reset_state(state,
				  /* if the lock is not held */
				  TASK_RESET_STATE_UNLOCKED,
				  /* acquire it */
				  TASK_RESET_STATE_LOCKED);
}

/*
 * Helper that releases the reset lock iff it is currently held, and there
 * are no pending resets. Returns TRUE if the lock was released.
 */
static inline int try_release_reset_lock(uint32_t *state)
{
	return update_reset_state(state,
				  /* if the lock is held, with no waiters */
				  TASK_RESET_STATE_LOCKED,
				  /* release it */
				  TASK_RESET_STATE_UNLOCKED);
}

/*
 * Helper to cause the current task to sleep indefinitely; useful if the
 * calling task just needs to block until it is reset.
 */
static inline void sleep_forever(void)
{
	while (1)
		usleep(-1);
}

void task_enable_resets(void)
{
	task_id_t id = task_get_current();
	uint32_t *state = &task_reset_state[id];

	if (*state == TASK_RESET_UNSUPPORTED) {
		cprints(CC_TASK, "%s called from non-resettable task, id: %d",
			__func__, id);
		return;
	}

	/*
	 * A correctly written resettable task will only call this function
	 * if resets are currently disabled; this implies that this task
	 * holds the reset lock.
	 */

	if (*state == TASK_RESET_STATE_UNLOCKED) {
		cprints(CC_TASK,
			"%s called, but resets already enabled, id: %d",
			__func__, id);
		return;
	}

	/*
	 * Attempt to release the lock. If we cannot, it means there are tasks
	 * waiting for a reset.
	 */
	if (try_release_reset_lock(state))
		return;

	/* People are waiting for us to reset; schedule a reset. */
	atomic_or(&deferred_reset_task_ids, 1 << id);
	/*
	 * This will always trigger a deferred call after our new ID was
	 * written. If the hook call is currently executing, it will run
	 * again.
	 */
	hook_call_deferred(&deferred_task_reset_data, 0);
	/* Wait to be reset. */
	sleep_forever();
}

void task_disable_resets(void)
{
	task_id_t id = task_get_current();
	uint32_t *state = &task_reset_state[id];

	if (*state == TASK_RESET_UNSUPPORTED) {
		cprints(CC_TASK, "%s called from non-resettable task, id %d",
			__func__, id);
		return;
	}

	/*
	 * A correctly written resettable task will only call this function
	 * if resets are currently enabled; this implies that this task does
	 * not hold the reset lock.
	 */

	if (try_acquire_reset_lock(state))
		return;

	/*
	 * If we can't acquire the lock, we are about to be reset by another
	 * task.
	 */
	sleep_forever();
}

int task_reset_cleanup(void)
{
	task_id_t id = task_get_current();
	uint32_t *state = &task_reset_state[id];

	/*
	 * If the task has never started before, state will be
	 * TASK_RESET_ENABLED.
	 *
	 * If the task was reset, the TASK_RESET_LOCK bit will be set, and
	 * there may additionally be bits representing tasks we must notify
	 * that we have reset.
	 */

	/*
	 * Only this task can unset the lock bit so we can read this safely,
	 * even though other tasks may be modifying the state to add themselves
	 * as waiters.
	 */
	int cleanup_req = *state & TASK_RESET_LOCK;

	/*
	 * Attempt to release the lock. We can only do this when there are no
	 * tasks waiting to be notified that we have been reset, so we loop
	 * until no tasks are waiting.
	 *
	 * Other tasks may still be trying to reset us at this point; if they
	 * do, they will add themselves to the list of tasks we must notify. We
	 * will simply notify them (multiple times if necessary) until we are
	 * free to unlock.
	 */
	if (cleanup_req) {
		while (!try_release_reset_lock(state)) {
			/* Find the first waiter to notify. */
			task_id_t notify_id =
				__fls(*state & TASK_RESET_WAITERS_MASK);
			/*
			 * Remove the task from waiters first, so that
			 * when it wakes after being notified, it is in
			 * a consistent state (it should not be waiting
			 * to be notified and running).
			 * After being notified, the task may try to
			 * reset us again; if it does, it will just add
			 * itself back to the list of tasks to notify,
			 * and we will notify it again.
			 */
			atomic_clear_bits(state, 1 << notify_id);
			/*
			 * Skip any invalid ids set by tasks that
			 * requested a non-blocking reset.
			 */
			if (notify_id < TASK_ID_COUNT)
				task_set_event(notify_id,
					       TASK_EVENT_RESET_DONE);
		}
	}

	return cleanup_req;
}

int task_reset(task_id_t id, int wait)
{
	task_id_t current = task_get_current();
	uint32_t *state = &task_reset_state[id];
	uint32_t waiter_id;
	int resets_disabled;

	if (id == current)
		return EC_ERROR_INVAL;

	/*
	 * This value is only set at compile time, and will never be modified.
	 */
	if (*state == TASK_RESET_UNSUPPORTED)
		return EC_ERROR_INVAL;

	/*
	 * If we are not blocking for reset, we use an invalid task id to notify
	 * the task that _someone_ wanted it to reset, but didn't want to be
	 * notified when the reset is complete.
	 */
	waiter_id = 1 << (wait ? current : TASK_ID_COUNT);

	/*
	 * Try and take the lock. If we can't have it, just notify the task we
	 * tried; it will reset itself when it next tries to release the lock.
	 */
	interrupt_disable();
	resets_disabled = *state & TASK_RESET_LOCK;
	if (resets_disabled)
		*state |= waiter_id;
	else
		*state |= TASK_RESET_LOCK;
	interrupt_enable();

	if (!resets_disabled) {
		/* We got the lock, do the reset immediately. */
		do_task_reset(id);
	} else if (wait) {
		/*
		 * We couldn't get the lock, and have been asked to block for
		 * reset. We have asked the task to reset itself; it will notify
		 * us when it has.
		 */
		task_wait_event_mask(TASK_EVENT_RESET_DONE, -1);
	}

	return EC_SUCCESS;
}

#endif /* CONFIG_TASK_RESET_LIST */

/*
 * Initialize IRQs in the NVIC and set their priorities as defined by the
 * DECLARE_IRQ statements.
 */
static void __nvic_init_irqs(void)
{
	/* Get the IRQ priorities section from the linker */
	int exc_calls = __irqprio_end - __irqprio;
	int i;

	/* Mask and clear all pending interrupts */
	for (i = 0; i < 5; i++) {
		CPU_NVIC_DIS(i) = 0xffffffff;
		CPU_NVIC_UNPEND(i) = 0xffffffff;
	}

	/*
	 * Re-enable global interrupts in case they're disabled.  On a reboot,
	 * they're already enabled; if we've jumped here from another image,
	 * they're not.
	 */
	interrupt_enable();

	/* Set priorities */
	for (i = 0; i < exc_calls; i++) {
		cpu_set_interrupt_priority(__irqprio[i].irq,
					   __irqprio[i].priority);
	}
}

void mutex_lock(struct mutex *mtx)
{
	uint32_t value;
	uint32_t id;

	/*
	 * mutex_lock() must not be used in interrupt context (because we wait
	 * if there is contention).
	 */
	ASSERT(!in_interrupt_context());

	/*
	 * Task ID is not valid before task_start() (since current_task is
	 * scratchpad), and no need for mutex locking before task switching has
	 * begun.
	 */
	if (!task_start_called())
		return;

	id = 1 << task_get_current();

	atomic_or(&mtx->waiters, id);

	do {
		/* Try to get the lock (set 1 into the lock field) */
		__asm__ __volatile__("   ldrex   %0, [%1]\n"
				     "   teq     %0, #0\n"
				     "   it eq\n"
				     "   strexeq %0, %2, [%1]\n"
				     : "=&r"(value)
				     : "r"(&mtx->lock), "r"(2)
				     : "cc");
		/*
		 * "value" is equals to 1 if the store conditional failed,
		 * 2 if somebody else owns the mutex, 0 else.
		 */
		if (value == 2)
			/* Contention on the mutex */
			task_wait_event_mask(TASK_EVENT_MUTEX, 0);
	} while (value);

	atomic_clear_bits(&mtx->waiters, id);
}

void mutex_unlock(struct mutex *mtx)
{
	uint32_t waiters;
	task_ *tsk = current_task;

	/*
	 * Add a critical section to keep the unlock and the snapshotting of
	 * waiters atomic in case a task switching occurs between them.
	 */
	interrupt_disable();
	waiters = mtx->waiters;
	mtx->lock = 0;
	interrupt_enable();

	while (waiters) {
		task_id_t id = __fls(waiters);
		waiters &= ~BIT(id);

		/* Somebody is waiting on the mutex */
		task_set_event(id, TASK_EVENT_MUTEX);
	}

	/* Ensure no event is remaining from mutex wake-up */
	atomic_clear_bits(&tsk->events, TASK_EVENT_MUTEX);
}

void task_print_list(void)
{
	int i;

	ccputs("Task Ready Name         Events      Time (s)  StkUsed\n");

	for (i = 0; i < TASK_ID_COUNT; i++) {
		char is_ready = ((uint32_t)tasks_ready & BIT(i)) ? 'R' : ' ';
		uint32_t *sp;

		int stackused = tasks_init[i].stack_size;

		for (sp = tasks[i].stack;
		     sp < (uint32_t *)tasks[i].sp && *sp == STACK_UNUSED_VALUE;
		     sp++)
			stackused -= sizeof(uint32_t);

		ccprintf("%4d %c %-16s %08x %11.6lld  %3d/%3d\n", i, is_ready,
			 task_names[i], (int)tasks[i].events, tasks[i].runtime,
			 stackused, tasks_init[i].stack_size);
		cflush();
	}
}

static int command_task_info(int argc, const char **argv)
{
#ifdef CONFIG_TASK_PROFILING
	int total = 0;
	int i;
#endif

	task_print_list();

#ifdef CONFIG_TASK_PROFILING
	ccputs("IRQ counts by type:\n");
	cflush();
	for (i = 0; i < ARRAY_SIZE(irq_dist); i++) {
		if (irq_dist[i]) {
			ccprintf("%4d %8d\n", i, irq_dist[i]);
			total += irq_dist[i];
		}
	}
	ccprintf("Service calls:          %11d\n", svc_calls);
	ccprintf("Total exceptions:       %11d\n", total + svc_calls);
	ccprintf("Task switches:          %11d\n", task_switches);
	ccprintf("Task switching started: %11.6lld s\n", task_start_time);
	ccprintf("Time in tasks:          %11.6lld s\n",
		 get_time().val - task_start_time);
	ccprintf("Time in exceptions:     %11.6lld s\n", exc_total_time);
#endif

	return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(taskinfo, command_task_info, NULL,
			     "Print task info");

#ifdef CONFIG_CMD_TASKREADY
static int command_task_ready(int argc, const char **argv)
{
	if (argc < 2) {
		ccprintf("tasks_ready: 0x%08x\n", (int)tasks_ready);
	} else {
		tasks_ready = strtoi(argv[1], NULL, 16);
		ccprintf("Setting tasks_ready to 0x%08x\n", (int)tasks_ready);
		__schedule(0, 0);
	}

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(taskready, command_task_ready, "[setmask]",
			"Print/set ready tasks");
#endif

void task_pre_init(void)
{
	uint32_t *stack_next = (uint32_t *)task_stacks;
	int i;

	/* Fill the task memory with initial values */
	for (i = 0; i < TASK_ID_COUNT; i++) {
		tasks[i].stack = stack_next;
		stack_next += init_task_context(i);
	}

	/*
	 * Fill in guard value in scratchpad to prevent stack overflow
	 * detection failure on the first context switch.  This works because
	 * the first word in the scratchpad is where the switcher will store
	 * sp, so it's ok to blow away.
	 */
	((task_ *)scratchpad)->stack = (uint32_t *)scratchpad;
	*(uint32_t *)scratchpad = STACK_UNUSED_VALUE;

	/* Initialize IRQs */
	__nvic_init_irqs();
}

void task_clear_fp_used(void)
{
	int ctrl;

	/* Clear the CONTROL.FPCA bit, which represents FP context active. */
	asm volatile("mrs %0, control" : "=r"(ctrl));
	ctrl &= ~0x4;
	asm volatile("msr control, %0" : : "r"(ctrl));

	/* Flush pipeline before returning. */
	asm volatile("isb");
}

int task_start(void)
{
#ifdef CONFIG_TASK_PROFILING
	timestamp_t t = get_time();

	task_start_time = t.val;
	exc_end_time = t.le.lo;
#endif
	start_called = 1;

	return __task_start(&need_resched_or_profiling);
}

#ifdef CONFIG_CMD_TASK_RESET
static int command_task_reset(int argc, const char **argv)
{
	task_id_t id;
	char *e;

	if (argc == 2) {
		id = strtoi(argv[1], &e, 10);
		if (*e)
			return EC_ERROR_PARAM1;
		ccprintf("Resetting task %d\n", id);
		return task_reset(id, 1);
	}

	return EC_ERROR_PARAM_COUNT;
}
DECLARE_CONSOLE_COMMAND(taskreset, command_task_reset, "task_id",
			"Reset a task");
#endif /* CONFIG_CMD_TASK_RESET */