summaryrefslogtreecommitdiff
path: root/driver/accel_kxcj9.c
blob: a95d2c46b70a8a96fd54b26224c35365eec8062e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* KXCJ9 gsensor module for Chrome EC */

#include "accelerometer.h"
#include "common.h"
#include "console.h"
#include "driver/accel_kxcj9.h"
#include "gpio.h"
#include "i2c.h"
#include "timer.h"
#include "util.h"

#define CPUTS(outstr) cputs(CC_ACCEL, outstr)
#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)

/* Range of the accelerometers: 2G, 4G, or 8G. */
static int sensor_range[ACCEL_COUNT] = {KXCJ9_GSEL_2G, KXCJ9_GSEL_2G};

/* Resolution: KXCJ9_RES_12BIT or KXCJ9_RES_12BIT. */
static int sensor_resolution[ACCEL_COUNT] = {KXCJ9_RES_12BIT, KXCJ9_RES_12BIT};

/* Output data rate: KXCJ9_OSA_* ranges from 0.781Hz to 1600Hz. */
static int sensor_datarate[ACCEL_COUNT] = {KXCJ9_OSA_100_0HZ,
						KXCJ9_OSA_100_0HZ};

/**
 * Read register from accelerometer.
 */
static int raw_read8(const int addr, const int reg, int *data_ptr)
{
	return i2c_read8(I2C_PORT_ACCEL, addr, reg, data_ptr);
}

/**
 * Write register from accelerometer.
 */
static int raw_write8(const int addr, const int reg, int data)
{
	return i2c_write8(I2C_PORT_ACCEL, addr, reg, data);
}


int accel_write_range(const enum accel_id id, const int range)
{
	int ret;

	/* Check for valid id. */
	if (id < 0 || id >= ACCEL_COUNT)
		return EC_ERROR_INVAL;

	/*
	 * Verify that the input range is valid. Note that we currently
	 * don't support the 8G with 14-bit resolution mode.
	 */
	if (range != KXCJ9_GSEL_2G && range != KXCJ9_GSEL_4G &&
		range != KXCJ9_GSEL_8G)
		return EC_ERROR_INVAL;

	ret = raw_write8(accel_addr[id],  KXCJ9_CTRL1,
			KXCJ9_CTRL1_PC1 | sensor_resolution[id] | range);

	/* If successfully written, then save the range. */
	if (ret == EC_SUCCESS)
		sensor_range[id] = range;

	return ret;
}

int accel_write_resolution(const enum accel_id id, const int res)
{
	int ret;

	/* Check for valid id. */
	if (id < 0 || id >= ACCEL_COUNT)
		return EC_ERROR_INVAL;

	/* Check that resolution input is valid. */
	if (res != KXCJ9_RES_12BIT && res != KXCJ9_RES_8BIT)
		return EC_ERROR_INVAL;

	ret = raw_write8(accel_addr[id],  KXCJ9_CTRL1,
			KXCJ9_CTRL1_PC1 | res | sensor_range[id]);

	/* If successfully written, then save the range. */
	if (ret == EC_SUCCESS)
		sensor_resolution[id] = res;

	return ret;
}

int accel_write_datarate(const enum accel_id id, const int rate)
{
	int ret;

	/* Check for valid id. */
	if (id < 0 || id >= ACCEL_COUNT)
		return EC_ERROR_INVAL;

	/* Check that rate input is valid. */
	if (rate < KXCJ9_OSA_12_50HZ || rate > KXCJ9_OSA_6_250HZ)
		return EC_ERROR_INVAL;

	/* Set output data rate. */
	ret = raw_write8(accel_addr[id],  KXCJ9_DATA_CTRL, rate);

	/* If successfully written, then save the range. */
	if (ret == EC_SUCCESS)
		sensor_datarate[id] = rate;

	return ret;
}

#ifdef CONFIG_ACCEL_INTERRUPTS
int accel_set_interrupt(const enum accel_id id, unsigned int threshold)
{
	int ctrl1, tmp, ret;

	/*
	 * TODO(crosbug.com/p/26884): This driver currently assumes only one
	 * task can call this function. If this isn't true anymore, need to
	 * protect with a mutex.
	 */

	/*
	 * Read the current status of the control register and disable the
	 * sensor to allow for changing of critical parameters.
	 */
	ret = raw_read8(accel_addr[id], KXCJ9_CTRL1, &ctrl1);
	if (ret != EC_SUCCESS)
		return ret;
	ret = raw_write8(accel_addr[id], KXCJ9_CTRL1, ctrl1 & ~KXCJ9_CTRL1_PC1);
	if (ret != EC_SUCCESS)
		return ret;

	/* Set interrupt timer to 1 so it wakes up immediately. */
	ret = raw_write8(accel_addr[id], KXCJ9_WAKEUP_TIMER, 1);
	if (ret != EC_SUCCESS)
		goto error_enable_sensor;

	/*
	 * Set threshold, note threshold register is in units of 16 counts, so
	 * first we need to divide by 16 to get the value to send.
	 */
	threshold >>= 4;
	ret = raw_write8(accel_addr[id], KXCJ9_WAKEUP_THRESHOLD, threshold);
	if (ret != EC_SUCCESS)
		goto error_enable_sensor;

	/*
	 * Set interrupt enable register on sensor. Note that once this
	 * function is called once, the interrupt stays enabled and it is
	 * only necessary to clear KXCJ9_INT_REL to allow the next interrupt.
	 */
	ret = raw_read8(accel_addr[id], KXCJ9_INT_CTRL1, &tmp);
	if (ret != EC_SUCCESS)
		goto error_enable_sensor;
	if (!(tmp & KXCJ9_INT_CTRL1_IEN)) {
		ret = raw_write8(accel_addr[id], KXCJ9_INT_CTRL1,
				tmp | KXCJ9_INT_CTRL1_IEN);
		if (ret != EC_SUCCESS)
			goto error_enable_sensor;
	}

	/*
	 * Clear any pending interrupt on sensor by reading INT_REL register.
	 * Note: this register latches motion detected above threshold. Once
	 * latched, no interrupt can occur until this register is cleared.
	 */
	ret = raw_read8(accel_addr[id], KXCJ9_INT_REL, &tmp);

error_enable_sensor:
	/* Re-enable accelerometer. */
	if (raw_write8(accel_addr[id], KXCJ9_CTRL1, ctrl1 | KXCJ9_CTRL1_PC1) !=
			EC_SUCCESS) {
		/* Cannot re-enable accel, print warning and return an error. */
		CPRINTF("[%T Error trying to enable accelerometer %d]\n", id);
		return EC_ERROR_UNKNOWN;
	}

	return ret;
}
#endif

int accel_read(enum accel_id id, int *x_acc, int *y_acc, int *z_acc)
{
	uint8_t acc[6];
	uint8_t reg = KXCJ9_XOUT_L;
	int ret, multiplier;

	/* Check for valid id. */
	if (id < 0 || id >= ACCEL_COUNT)
		return EC_ERROR_INVAL;

	/* Read 6 bytes starting at KXCJ9_XOUT_L. */
	i2c_lock(I2C_PORT_ACCEL, 1);
	ret = i2c_xfer(I2C_PORT_ACCEL, accel_addr[id], &reg, 1, acc, 6,
			I2C_XFER_SINGLE);
	i2c_lock(I2C_PORT_ACCEL, 0);

	if (ret != EC_SUCCESS)
		return ret;

	/* Determine multiplier based on stored range. */
	switch (sensor_range[id]) {
	case KXCJ9_GSEL_2G:
		multiplier = 1;
		break;
	case KXCJ9_GSEL_4G:
		multiplier = 2;
		break;
	case KXCJ9_GSEL_8G:
		multiplier = 4;
		break;
	default:
		return EC_ERROR_UNKNOWN;
	}

	/*
	 * Convert acceleration to a signed 12-bit number. Note, based on
	 * the order of the registers:
	 *
	 * acc[0] = KXCJ9_XOUT_L
	 * acc[1] = KXCJ9_XOUT_H
	 * acc[2] = KXCJ9_YOUT_L
	 * acc[3] = KXCJ9_YOUT_H
	 * acc[4] = KXCJ9_ZOUT_L
	 * acc[5] = KXCJ9_ZOUT_H
	 */
	*x_acc = multiplier * (((int8_t)acc[1]) << 4) | (acc[0] >> 4);
	*y_acc = multiplier * (((int8_t)acc[3]) << 4) | (acc[2] >> 4);
	*z_acc = multiplier * (((int8_t)acc[5]) << 4) | (acc[4] >> 4);

	return EC_SUCCESS;
}

int accel_init(enum accel_id id)
{
	int ret = EC_SUCCESS;
	int cnt = 0, ctrl1, ctrl2;

	/* Check for valid id. */
	if (id < 0 || id >= ACCEL_COUNT)
		return EC_ERROR_INVAL;

	/*
	 * This sensor can be powered through an EC reboot, so the state of
	 * the sensor is unknown here. Initiate software reset to restore
	 * sensor to default.
	 */
	ret = raw_write8(accel_addr[id], KXCJ9_CTRL2, KXCJ9_CTRL2_SRST);
	if (ret != EC_SUCCESS)
		return ret;

	/* Wait until software reset is complete or timeout. */
	while (1) {
		ret = raw_read8(accel_addr[id], KXCJ9_CTRL2, &ctrl2);

		/* Reset complete. */
		if (ret == EC_SUCCESS && !(ctrl2 & KXCJ9_CTRL2_SRST))
			break;

		/* Check for timeout. */
		if (cnt++ > 5)
			return EC_ERROR_TIMEOUT;

		/* Give more time for reset action to complete. */
		msleep(10);
	}

#ifdef CONFIG_ACCEL_INTERRUPTS
	/* Set interrupt polarity to rising edge and keep interrupt disabled. */
	ret |= raw_write8(accel_addr[id], KXCJ9_INT_CTRL1, KXCJ9_INT_CTRL1_IEA);

	/* Set output data rate for wake-up interrupt function. */
	ret |= raw_write8(accel_addr[id], KXCJ9_CTRL2, KXCJ9_OWUF_100_0HZ);

	/* Set interrupt to trigger on motion on any axis. */
	ret |= raw_write8(accel_addr[id], KXCJ9_INT_CTRL2,
			KXCJ9_INT_SRC2_XNWU | KXCJ9_INT_SRC2_XPWU |
			KXCJ9_INT_SRC2_YNWU | KXCJ9_INT_SRC2_YPWU |
			KXCJ9_INT_SRC2_ZNWU | KXCJ9_INT_SRC2_ZPWU);

	/*
	 * Enable accel interrupts. Note: accels will not initiate an interrupt
	 * until interrupt enable bit in KXCJ9_INT_CTRL1 is set on the device.
	 */
	gpio_enable_interrupt(GPIO_ACCEL_INT_LID);
	gpio_enable_interrupt(GPIO_ACCEL_INT_BASE);
#endif

	/* Set output data rate. */
	ret |= raw_write8(accel_addr[id], KXCJ9_DATA_CTRL, sensor_datarate[id]);

	/* Set resolution and range and enable sensor. */
	ctrl1 = sensor_resolution[id] | sensor_range[id]  | KXCJ9_CTRL1_PC1;
#ifdef CONFIG_ACCEL_INTERRUPTS
	/* Enable wake up (motion detect) functionality. */
	ctrl1 |= KXCJ9_CTRL1_WUFE;
#endif
	ret = raw_write8(accel_addr[id], KXCJ9_CTRL1, ctrl1);

	return ret;
}



/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_ACCELS
static int command_read_accelerometer(int argc, char **argv)
{
	char *e;
	int addr, reg, data;

	if (argc != 3)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is address. */
	addr = strtoi(argv[1], &e, 0);
	if (*e)
		return EC_ERROR_PARAM1;

	/* Second argument is register offset. */
	reg = strtoi(argv[2], &e, 0);
	if (*e)
		return EC_ERROR_PARAM2;

	raw_read8(addr, reg, &data);

	ccprintf("0x%02x\n", data);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelread, command_read_accelerometer,
	"addr reg",
	"Read from accelerometer at slave address addr", NULL);

static int command_write_accelerometer(int argc, char **argv)
{
	char *e;
	int addr, reg, data;

	if (argc != 4)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is address. */
	addr = strtoi(argv[1], &e, 0);
	if (*e)
		return EC_ERROR_PARAM1;

	/* Second argument is register offset. */
	reg = strtoi(argv[2], &e, 0);
	if (*e)
		return EC_ERROR_PARAM2;

	/* Third argument is data. */
	data = strtoi(argv[3], &e, 0);
	if (*e)
		return EC_ERROR_PARAM3;

	raw_write8(addr, reg, data);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelwrite, command_write_accelerometer,
	"addr reg data",
	"Write to accelerometer at slave address addr", NULL);

#ifdef CONFIG_ACCEL_INTERRUPTS
static int command_accelerometer_interrupt(int argc, char **argv)
{
	char *e;
	int id, thresh;

	if (argc != 3)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is id. */
	id = strtoi(argv[1], &e, 0);
	if (*e || id < 0 || id >= ACCEL_COUNT)
		return EC_ERROR_PARAM1;

	/* Second argument is interrupt threshold. */
	thresh = strtoi(argv[2], &e, 0);
	if (*e)
		return EC_ERROR_PARAM2;

	accel_set_interrupt(id, thresh);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelint, command_accelerometer_interrupt,
	"id threshold",
	"Write interrupt threshold", NULL);
#endif /* CONFIG_ACCEL_INTERRUPTS */

#endif /* CONFIG_CMD_ACCELS */