summaryrefslogtreecommitdiff
path: root/test/fp.c
blob: 0324da6c8df33f2e558d044f4e0a90d4774cee81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/*
 * Explicitly include common.h to populate predefined macros in test_config.h
 * early. e.g. CONFIG_FPU, which is needed in math_util.h
 */
#include "common.h"

#include "mat33.h"
#include "mat44.h"
#include "math_util.h"
#include "test_util.h"
#include "vec3.h"

#if defined(TEST_FP) && !defined(CONFIG_FPU)
#define NORM_TOLERANCE FLOAT_TO_FP(0.01f)
#define NORM_SQUARED_TOLERANCE FLOAT_TO_FP(0.0f)
#define DOT_TOLERANCE FLOAT_TO_FP(0.001f)
#define SCALAR_MUL_TOLERANCE FLOAT_TO_FP(0.005f)
#define EIGENBASIS_TOLERANCE FLOAT_TO_FP(0.03f)
#define LUP_TOLERANCE FLOAT_TO_FP(0.0005f)
#define SOLVE_TOLERANCE FLOAT_TO_FP(0.0005f)
#elif defined(TEST_FLOAT) && defined(CONFIG_FPU)
#define NORM_TOLERANCE FLOAT_TO_FP(0.00001f)
#define NORM_SQUARED_TOLERANCE FLOAT_TO_FP(0.0f)
#define DOT_TOLERANCE FLOAT_TO_FP(0.0f)
#define SCALAR_MUL_TOLERANCE FLOAT_TO_FP(0.005f)
#define EIGENBASIS_TOLERANCE FLOAT_TO_FP(0.02f)
#define LUP_TOLERANCE FLOAT_TO_FP(0.00001f)
#define SOLVE_TOLERANCE FLOAT_TO_FP(0.00001f)
#else
#error "No such test configuration."
#endif

#define IS_FPV3_VECTOR_EQUAL(a, b, diff)                                       \
	(IS_FP_EQUAL((a)[0], (b)[0], (diff)) &&                                \
	 IS_FP_EQUAL((a)[1], (b)[1], (diff)) &&                                \
	 IS_FP_EQUAL((a)[2], (b)[2], (diff)))
#define IS_FP_EQUAL(a, b, diff) ((a) >= ((b)-diff) && (a) <= ((b) + diff))
#define IS_FLOAT_EQUAL(a, b, diff) IS_FP_EQUAL(a, b, diff)

static int test_fpv3_scalar_mul(void)
{
	const int N = 3;
	const float s = 2.0f;
	floatv3_t r = {1.0f, 2.0f, 4.0f};
	/* Golden result g = s * r; */
	const floatv3_t g = {2.0f, 4.0f, 8.0f};
	int i;
	fpv3_t a;

	for (i = 0; i < N; ++i)
		a[i] = FLOAT_TO_FP(r[i]);

	fpv3_scalar_mul(a, FLOAT_TO_FP(s));

	for (i = 0; i < N; ++i)
		TEST_ASSERT(IS_FP_EQUAL(a[i], FLOAT_TO_FP(g[i]), 0));

	return EC_SUCCESS;
}

static int test_fpv3_dot(void)
{
	const int N = 3;
	int i;
	floatv3_t a = {1.8f, 2.12f, 4.12f};
	floatv3_t b = {3.1f, 4.3f, 5.8f};
	/* Golden result g = dot(a, b) */
	float g = 38.592f;
	fpv3_t fpa, fpb;
	volatile fp_t result;

	for (i = 0; i < N; ++i) {
		fpa[i] = FLOAT_TO_FP(a[i]);
		fpb[i] = FLOAT_TO_FP(b[i]);
	}

	result = fpv3_dot(fpa, fpb);
	TEST_ASSERT(IS_FP_EQUAL(result, FLOAT_TO_FP(g),
				DOT_TOLERANCE));

	return EC_SUCCESS;
}

static int test_fpv3_norm_squared(void)
{
	const int N = 3;
	int i;
	floatv3_t a = {3.0f, 4.0f, 5.0f};
	/* Golden result g = norm_squared(a) */
	float g = 50.0f;
	fpv3_t fpa;

	for (i = 0; i < N; ++i)
		fpa[i] = FLOAT_TO_FP(a[i]);

	TEST_ASSERT(IS_FP_EQUAL(fpv3_norm_squared(fpa), FLOAT_TO_FP(g),
				NORM_SQUARED_TOLERANCE));

	return EC_SUCCESS;
}

static int test_fpv3_norm(void)
{
	const int N = 3;
	floatv3_t a = {3.1f, 4.2f, 5.3f};
	/* Golden result g = norm(a) */
	float g = 7.439086f;
	int i;
	fpv3_t fpa;
	volatile fp_t result;

	for (i = 0; i < N; ++i)
		fpa[i] = FLOAT_TO_FP(a[i]);

	result = fpv3_norm(fpa);
	TEST_ASSERT(IS_FP_EQUAL(result, FLOAT_TO_FP(g), NORM_TOLERANCE));
	return EC_SUCCESS;
}

static int test_int_sqrtf(void)
{
#ifndef CONFIG_FPU
	TEST_ASSERT(int_sqrtf(0) == 0);
	TEST_ASSERT(int_sqrtf(15) == 3);
	TEST_ASSERT(int_sqrtf(25) == 5);
	TEST_ASSERT(int_sqrtf(1111088889) == 33333);
	TEST_ASSERT(int_sqrtf(123456789) == 11111);
	TEST_ASSERT(int_sqrtf(1000000000000000005) == 1000000000);
	/* Return zero for imaginary numbers */
	TEST_ASSERT(int_sqrtf(-100) == 0);
	/* Return INT32_MAX for input greater than INT32_MAX ^ 2 */
	TEST_ASSERT(int_sqrtf(INT64_MAX) == INT32_MAX);
#endif

	return EC_SUCCESS;
}

static int test_mat33_fp_init_zero(void)
{
	const int N = 3;
	int i, j;
	mat33_fp_t a;

	for (i = 0; i < N; ++i)
		for (j = 0; j < N; ++j)
			a[i][j] = FLOAT_TO_FP(55.66f);

	mat33_fp_init_zero(a);

	for (i = 0; i < N; ++i)
		for (j = 0; j < N; ++j)
			TEST_ASSERT(a[i][j] == FLOAT_TO_FP(0.0f));

	return EC_SUCCESS;
}

static int test_mat33_fp_init_diagonal(void)
{
	const int N = 3;
	int i, j;
	mat33_fp_t a;
	fp_t v = FLOAT_TO_FP(-3.45f);

	for (i = 0; i < N; ++i)
		for (j = 0; j < N; ++j)
			a[i][j] = FLOAT_TO_FP(55.66f);

	mat33_fp_init_diagonal(a, v);

	for (i = 0; i < N; ++i)
		for (j = 0; j < N; ++j) {
			if (i == j)
				TEST_ASSERT(a[i][j] == v);
			else
				TEST_ASSERT(a[i][j] == FLOAT_TO_FP(0.0f));
		}

	return EC_SUCCESS;
}

static int test_mat33_fp_scalar_mul(void)
{
	const int N = 3;
	float scale = 3.11f;
	mat33_float_t a = {
		{1.0f, 2.0f, 3.0f},
		{1.1f, 2.2f, 3.3f},
		{0.38f, 13.2f, 88.3f}
	};
	/* Golden result g = scalar_mul(a, scale) */
	mat33_float_t g = {{3.11f, 6.22f, 9.33f},
			   {3.421f, 6.842f, 10.263f},
			   {1.18179988861083984375f, 41.051998138427734375f,
			    274.613006591796875f}
	};
	int i, j;
	mat33_fp_t fpa;

	for (i = 0; i < N; ++i)
		for (j = 0; j < N; ++j)
			fpa[i][j] = FLOAT_TO_FP(a[i][j]);

	mat33_fp_scalar_mul(fpa, FLOAT_TO_FP(scale));

	for (i = 0; i < N; ++i)
		for (j = 0; j < N; ++j)
			TEST_ASSERT(IS_FP_EQUAL(fpa[i][j], FLOAT_TO_FP(g[i][j]),
						SCALAR_MUL_TOLERANCE));

	return EC_SUCCESS;
}

static int test_mat33_fp_get_eigenbasis(void)
{
	mat33_fp_t s = {
		{FLOAT_TO_FP(4.0f), FLOAT_TO_FP(2.0f), FLOAT_TO_FP(2.0f)},
		{FLOAT_TO_FP(2.0f), FLOAT_TO_FP(4.0f), FLOAT_TO_FP(2.0f)},
		{FLOAT_TO_FP(2.0f), FLOAT_TO_FP(2.0f), FLOAT_TO_FP(4.0f)}
	};
	fpv3_t e_vals;
	mat33_fp_t e_vecs;
	int i, j;

	/* Golden result from float version. */
	mat33_fp_t gold_vecs = {
		{FLOAT_TO_FP(0.55735206f), FLOAT_TO_FP(0.55735206f),
		 FLOAT_TO_FP(0.55735206f)},
		{FLOAT_TO_FP(0.70710677f), FLOAT_TO_FP(-0.70710677f),
		 FLOAT_TO_FP(0.0f)},
		{FLOAT_TO_FP(-0.40824828f), FLOAT_TO_FP(-0.40824828f),
		 FLOAT_TO_FP(0.81649655f)}
	};
	fpv3_t gold_vals = {FLOAT_TO_FP(8.0f), FLOAT_TO_FP(2.0f),
			    FLOAT_TO_FP(2.0f)};

	mat33_fp_get_eigenbasis(s, e_vals, e_vecs);

	for (i = 0; i < 3; ++i) {
		TEST_ASSERT(IS_FP_EQUAL(gold_vals[i], e_vals[i],
					EIGENBASIS_TOLERANCE));
		for (j = 0; j < 3; ++j) {
			TEST_ASSERT(IS_FP_EQUAL(gold_vecs[i][j], e_vecs[i][j],
						EIGENBASIS_TOLERANCE));
		}
	}

	return EC_SUCCESS;
}

static int test_mat44_fp_decompose_lup(void)
{
	int i, j;
	sizev4_t pivot;
	mat44_fp_t fpa = {
		{FLOAT_TO_FP(11.0f), FLOAT_TO_FP(9.0f),
		 FLOAT_TO_FP(24.0f), FLOAT_TO_FP(2.0f)},
		{FLOAT_TO_FP(1.0f), FLOAT_TO_FP(5.0f),
		 FLOAT_TO_FP(2.0f), FLOAT_TO_FP(6.0f)},
		{FLOAT_TO_FP(3.0f), FLOAT_TO_FP(17.0f),
		 FLOAT_TO_FP(18.0f), FLOAT_TO_FP(1.0f)},
		{FLOAT_TO_FP(2.0f), FLOAT_TO_FP(5.0f),
		 FLOAT_TO_FP(7.0f), FLOAT_TO_FP(1.0f)}
	};
	/* Golden result from float version. */
	mat44_fp_t gold_lu = {
		{FLOAT_TO_FP(11.0f), FLOAT_TO_FP(0.8181818f),
		 FLOAT_TO_FP(2.1818182f), FLOAT_TO_FP(0.18181819f)},
		{FLOAT_TO_FP(3.0f), FLOAT_TO_FP(14.545455f),
		 FLOAT_TO_FP(0.78749999f), FLOAT_TO_FP(0.031249999f)},
		{FLOAT_TO_FP(1.0f), FLOAT_TO_FP(4.181818f),
		 FLOAT_TO_FP(-3.4749996f), FLOAT_TO_FP(-1.6366909f)},
		{FLOAT_TO_FP(2.0f), FLOAT_TO_FP(3.3636365f),
		 FLOAT_TO_FP(-0.012500112f), FLOAT_TO_FP(0.5107912f)}
	};
	sizev4_t gold_pivot = {0, 2, 2, 3};

	mat44_fp_decompose_lup(fpa, pivot);

	for (i = 0; i < 4; ++i) {
		TEST_ASSERT(gold_pivot[i] == pivot[i]);
		for (j = 0; j < 4; ++j)
			TEST_ASSERT(IS_FP_EQUAL(gold_lu[i][j], fpa[i][j],
						LUP_TOLERANCE));
	}

	return EC_SUCCESS;
}

static int test_mat44_fp_solve(void)
{
	int i;
	fpv4_t x;
	mat44_fp_t A = {
		{FLOAT_TO_FP(11.0f), FLOAT_TO_FP(0.8181818f),
		 FLOAT_TO_FP(2.1818182f), FLOAT_TO_FP(0.18181819f)},
		{FLOAT_TO_FP(3.0f), FLOAT_TO_FP(14.545454),
		 FLOAT_TO_FP(0.7875f), FLOAT_TO_FP(0.03125f)},
		{FLOAT_TO_FP(1.0f), FLOAT_TO_FP(4.181818f),
		 FLOAT_TO_FP(-3.4750001f), FLOAT_TO_FP(-1.6366906f)},
		{FLOAT_TO_FP(2.0f), FLOAT_TO_FP(3.3636365f),
		 FLOAT_TO_FP(-0.012500286f), FLOAT_TO_FP(0.5107909f)}
	};
	sizev4_t pivot = {0, 2, 2, 3};
	fpv4_t b = {FLOAT_TO_FP(1.0f), FLOAT_TO_FP(3.3f), FLOAT_TO_FP(0.8f),
		    FLOAT_TO_FP(8.9f)};
	/* Golden result from float version. */
	fpv4_t gold_x = {FLOAT_TO_FP(-43.507435f), FLOAT_TO_FP(-21.459525f),
			 FLOAT_TO_FP(26.629248f), FLOAT_TO_FP(16.80776f)};

	mat44_fp_solve(A, x, b, pivot);

	for (i = 0; i < 4; ++i)
		TEST_ASSERT(IS_FP_EQUAL(gold_x[i], x[i], SOLVE_TOLERANCE));

	return EC_SUCCESS;
}

void run_test(int argc, char **argv)
{
	test_reset();

	RUN_TEST(test_fpv3_scalar_mul);
	RUN_TEST(test_fpv3_dot);
	RUN_TEST(test_fpv3_norm_squared);
	RUN_TEST(test_fpv3_norm);
	RUN_TEST(test_int_sqrtf);
	RUN_TEST(test_mat33_fp_init_zero);
	RUN_TEST(test_mat33_fp_init_diagonal);
	RUN_TEST(test_mat33_fp_scalar_mul);
	RUN_TEST(test_mat33_fp_get_eigenbasis);
	RUN_TEST(test_mat44_fp_decompose_lup);
	RUN_TEST(test_mat44_fp_solve);

	test_print_result();
}