diff options
Diffstat (limited to 'Lib/profile.py')
-rwxr-xr-x | Lib/profile.py | 883 |
1 files changed, 553 insertions, 330 deletions
diff --git a/Lib/profile.py b/Lib/profile.py index 502a4dbfa7..35ed63e518 100755 --- a/Lib/profile.py +++ b/Lib/profile.py @@ -1,201 +1,392 @@ # -# Class for profiling python code. -# Author: Sjoerd Mullender -# Hacked somewhat by: Guido van Rossum +# Class for profiling python code. rev 1.0 6/2/94 # -# See the accompanying document profile.doc for more information. +# Based on prior profile module by Sjoerd Mullender... +# which was hacked somewhat by: Guido van Rossum +# +# See profile.doc for more information + + +# Copyright 1994, by InfoSeek Corporation, all rights reserved. +# Written by James Roskind +# +# Permission to use, copy, modify, and distribute this Python software +# and its associated documentation for any purpose (subject to the +# restriction in the following sentence) without fee is hereby granted, +# provided that the above copyright notice appears in all copies, and +# that both that copyright notice and this permission notice appear in +# supporting documentation, and that the name of InfoSeek not be used in +# advertising or publicity pertaining to distribution of the software +# without specific, written prior permission. This permission is +# explicitly restricted to the copying and modification of the software +# to remain in Python, compiled Python, or other languages (such as C) +# wherein the modified or derived code is exclusively imported into a +# Python module. +# +# INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS +# SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +# FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY +# SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER +# RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF +# CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN +# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + + import sys -import codehack import os +import time import string -import fpformat import marshal + +# Global variables +func_norm_dict = {} +func_norm_counter = 0 +pid_string = `os.getpid()` + + +# Optimized intermodule references +ostimes = os.times + + +# Sample timer for use with +#i_count = 0 +#def integer_timer(): +# global i_count +# i_count = i_count + 1 +# return i_count +#itimes = integer_timer # replace with C coded timer returning integers + +#************************************************************************** +# The following are the static member functions for the profiler class +# Note that an instance of Profile() is *not* needed to call them. +#************************************************************************** + + +# simplified user interface +def run(statement, *args): + prof = Profile() + try: + prof = prof.run(statement) + except SystemExit: + pass + if args: + prof.dump_stats(args[0]) + else: + return prof.print_stats() + +# print help +def help(): + for dirname in sys.path: + fullname = os.path.join(dirname, 'profile.doc') + if os.path.exists(fullname): + sts = os.system('${PAGER-more} '+fullname) + if sts: print '*** Pager exit status:', sts + break + else: + print 'Sorry, can\'t find the help file "profile.doc"', + print 'along the Python search path' + + +#************************************************************************** +# class Profile documentation: +#************************************************************************** +# self.cur is always a tuple. Each such tuple corresponds to a stack +# frame that is currently active (self.cur[-2]). The following are the +# definitions of its members. We use this external "parallel stack" to +# avoid contaminating the program that we are profiling. (old profiler +# used to write into the frames local dictionary!!) Derived classes +# can change the definition of some entries, as long as they leave +# [-2:] intact. +# +# [ 0] = Time that needs to be charged to the parent frame's function. It is +# used so that a function call will not have to access the timing data +# for the parents frame. +# [ 1] = Total time spent in this frame's function, excluding time in +# subfunctions +# [ 2] = Cumulative time spent in this frame's function, including time in +# all subfunctions to this frame. +# [-3] = Name of the function that corresonds to this frame. +# [-2] = Actual frame that we correspond to (used to sync exception handling) +# [-1] = Our parent 6-tuple (corresonds to frame.f_back) +#************************************************************************** +# Timing data for each function is stored as a 5-tuple in the dictionary +# self.timings[]. The index is always the name stored in self.cur[4]. +# The following are the definitions of the members: +# +# [0] = The number of times this function was called, not counting direct +# or indirect recursion, +# [1] = Number of times this function appears on the stack, minus one +# [2] = Total time spent internal to this function +# [3] = Cumulative time that this function was present on the stack. In +# non-recursive functions, this is the total execution time from start +# to finish of each invocation of a function, including time spent in +# all subfunctions. +# [5] = A dictionary indicating for each function name, the number of times +# it was called by us. +#************************************************************************** +# We produce function names via a repr() call on the f_code object during +# profiling. This save a *lot* of CPU time. This results in a string that +# always looks like: +# <code object main at 87090, file "/a/lib/python-local/myfib.py", line 76> +# After we "normalize it, it is a tuple of filename, line, function-name. +# We wait till we are done profiling to do the normalization. +# *IF* this repr format changes, then only the normalization routine should +# need to be fixed. +#************************************************************************** class Profile: - def __init__(self): + def __init__(self, *arg): self.timings = {} - self.debug = None - self.call_level = 0 - self.profile_func = None - self.profiling = 0 + self.cur = None + self.cmd = "" - def profile(self, funcname): - if not self.profile_func: - self.profile_func = {} - self.profile_func[funcname] = 1 + self.dispatch = { \ + 'call' : self.trace_dispatch_call, \ + 'return' : self.trace_dispatch_return, \ + 'exception': self.trace_dispatch_exception, \ + } - def trace_dispatch(self, frame, event, arg): - if event == 'call': - funcname = codehack.getcodename(frame.f_code) - if self.profile_func and not self.profiling: - if self.profile_func.has_key(funcname): - return - self.profiling = 1 - t = os.times() - t = t[0] + t[1] - if frame.f_locals.has_key('__key'): - key = frame.f_locals['__key'] - else: - lineno = codehack.getlineno(frame.f_code) - filename = frame.f_code.co_filename - key = filename + ':' + `lineno` + '(' + funcname + ')' - frame.f_locals['__key'] = key - self.call_level = depth(frame) - self.cur_frame = frame - pframe = frame.f_back - if self.debug: - s0 = 'call: ' + key + ' depth: ' + `self.call_level` + ' time: ' + `t` - if pframe: - if pframe.f_locals.has_key('__key'): - pkey = pframe.f_locals['__key'] - else: - pkey = pframe.f_code.co_filename + \ - ':' + \ - `codehack.getlineno(pframe.f_code)` \ - + '(' + \ - codehack.getcodename(pframe.f_code) \ - + ')' - pframe.f_locals['__key'] = pkey - if self.debug: - s1 = 'parent: ' + pkey - if pframe.f_locals.has_key('__start_time'): - st = pframe.f_locals['__start_time'] - nc, tt, ct, callers, callees = \ - self.timings[pkey] - if self.debug: - s1 = s1+' before: st='+`st`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct` - if callers.has_key(key): - callers[key] = callers[key] + 1 - else: - callers[key] = 1 - if self.debug: - s1 = s1+' after: st='+`st`+' nc='+`nc`+' tt='+`tt+(t-st)`+' ct='+`ct` - self.timings[pkey] = nc, tt + (t - st), ct, callers, callees - if self.timings.has_key(key): - nc, tt, ct, callers, callees = self.timings[key] - else: - nc, tt, ct, callers, callees = 0, 0, 0, {}, {} - if self.debug: - s0 = s0+' before: nc='+`nc`+' tt='+`tt`+' ct='+`ct` - s0 = s0+' after: nc='+`nc+1`+' tt='+`tt`+' ct='+`ct` - if pframe: - if callees.has_key(pkey): - callees[pkey] = callees[pkey] + 1 - else: - callees[pkey] = 1 - self.timings[key] = nc + 1, tt, ct, callers, callees - frame.f_locals['__start_time'] = t - if self.debug: - print s0 - print s1 - return - if event == 'return': - if self.profile_func: - if not self.profiling: - return - if self.profile_func.has_key( \ - codehack.getcodename(frame.f_code)): - self.profiling = 0 - self.call_level = depth(frame) - self.cur_frame = frame - pframe = frame.f_back - if self.debug: - s0 = 'return: ' - else: - s0 = None - self.handle_return(pframe, frame, s0) - return - if event == 'exception': - if self.profile_func and not self.profiling: - return - call_level = depth(frame) - if call_level < self.call_level: - if call_level <> self.call_level - 1: - print 'heh!',call_level,self.call_level - if self.debug: - s0 = 'exception: ' + if not arg: + self.timer = os.times + self.dispatcher = self.trace_dispatch + else: + self.timer = arg[0] + t = self.timer() # test out timer function + try: + if len(t) == 2: + self.dispatcher = self.trace_dispatch else: - s0 = None - self.handle_return(self.cur_frame, frame, s0) - self.call_level = call_level - self.cur_frame = frame - return - print 'profile.Profile.dispatch: unknown debugging event:', - print `event` + self.dispatcher = self.trace_dispatch_r + except: + self.dispatcher = self.trace_dispatch_i + self.t = self.get_time() + self.simulate_call('profiler') + + + def get_time(self): # slow simulation of method to acquire time + t = self.timer() + if type(t) == type(()) or type(t) == type([]): + t = reduce(lambda x,y: x+y, t, 0) + return t + + + # Heavily optimized dispatch routine for os.times() timer + + def trace_dispatch(self, frame, event, arg): + t = self.timer() + t = t[0] + t[1] - self.t # No Calibration constant + # t = t[0] + t[1] - self.t - .00053 # Calibration constant + + if self.dispatch[event](frame,t): + t = self.timer() + self.t = t[0] + t[1] + else: + r = self.timer() + self.t = r[0] + r[1] - t # put back unrecorded delta return - def handle_return(self, pframe, frame, s0): - t = os.times() - t = t[0] + t[1] - if frame.f_locals.has_key('__key'): - key = frame.f_locals['__key'] + + + # Dispatch routine for best timer program (return = scalar integer) + + def trace_dispatch_i(self, frame, event, arg): + t = self.timer() - self.t # - 1 # Integer calibration constant + if self.dispatch[event](frame,t): + self.t = self.timer() + else: + self.t = self.timer() - t # put back unrecorded delta + return + + + # SLOW generic dispatch rountine for timer returning lists of numbers + + def trace_dispatch_l(self, frame, event, arg): + t = self.get_time() - self.t + + if self.dispatch[event](frame,t): + self.t = self.get_time() + else: + self.t = self.get_time()-t # put back unrecorded delta + return + + + def trace_dispatch_exception(self, frame, t): + rt, rtt, rct, rfn, rframe, rcur = self.cur + if (not rframe is frame) and rcur: + return self.trace_dispatch_return(rframe, t) + return 0 + + + def trace_dispatch_call(self, frame, t): + fn = `frame.f_code` + + # The following should be about the best approach, but + # we would need a function that maps from id() back to + # the actual code object. + # fn = id(frame.f_code) + # Note we would really use our own function, which would + # return the code address, *and* bump the ref count. We + # would then fix up the normalize function to do the + # actualy repr(fn) call. + + # The following is an interesting alternative + # It doesn't do as good a job, and it doesn't run as + # fast 'cause repr() is written in C, and this is Python. + #fcode = frame.f_code + #code = fcode.co_code + #if ord(code[0]) == 127: # == SET_LINENO + # # see "opcode.h" in the Python source + # fn = (fcode.co_filename, ord(code[1]) | \ + # ord(code[2]) << 8, fcode.co_name) + #else: + # fn = (fcode.co_filename, 0, fcode.co_name) + + self.cur = (t, 0, 0, fn, frame, self.cur) + if self.timings.has_key(fn): + cc, ns, tt, ct, callers = self.timings[fn] + self.timings[fn] = cc, ns + 1, tt, ct, callers else: - funcname = codehack.getcodename(frame.f_code) - lineno = codehack.getlineno(frame.f_code) - filename = frame.f_code.co_filename - key = filename + ':' + `lineno` + '(' + funcname + ')' - frame.f_locals['__key'] = key - if self.debug: - s0 = s0 + key + ' depth: ' + `self.call_level` + ' time: ' + `t` - if pframe: - if pframe.f_locals.has_key('__key'): - pkey = pframe.f_locals['__key'] - else: - funcname = codehack.getcodename(frame.f_code) - lineno = codehack.getlineno(frame.f_code) - filename = frame.f_code.co_filename - pkey = filename + ':' + `lineno` + '(' + funcname + ')' - pframe.f_locals['__key'] = pkey - if self.debug: - s1 = 'parent: '+pkey - if pframe.f_locals.has_key('__start_time') and \ - self.timings.has_key(pkey): - st = pframe.f_locals['__start_time'] - nc, tt, ct, callers, callees = \ - self.timings[pkey] - if self.debug: - s1 = s1+' before: st='+`st`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct` - s1 = s1+' after: st='+`t`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct+(t-st)` - self.timings[pkey] = \ - nc, tt, ct + (t - st), callers, callees - pframe.f_locals['__start_time'] = t - if self.timings.has_key(key): - nc, tt, ct, callers, callees = self.timings[key] + self.timings[fn] = 0, 0, 0, 0, {} + return 1 + + def trace_dispatch_return(self, frame, t): + # if not frame is self.cur[-2]: raise "Bad return", self.cur[3] + + # Prefix "r" means part of the Returning or exiting frame + # Prefix "p" means part of the Previous or older frame + + rt, rtt, rct, rfn, frame, rcur = self.cur + rtt = rtt + t + sft = rtt + rct + + pt, ptt, pct, pfn, pframe, pcur = rcur + self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur + + cc, ns, tt, ct, callers = self.timings[rfn] + if not ns: + ct = ct + sft + cc = cc + 1 + if callers.has_key(pfn): + callers[pfn] = callers[pfn] + 1 # hack: gather more + # stats such as the amount of time added to ct courtesy + # of this specific call, and the contribution to cc + # courtesy of this call. else: - nc, tt, ct, callers, callees = 0, 0, 0, {}, {} - if frame.f_locals.has_key('__start_time'): - st = frame.f_locals['__start_time'] + callers[pfn] = 1 + self.timings[rfn] = cc, ns - 1, tt+rtt, ct, callers + + return 1 + + # The next few function play with self.cmd. By carefully preloading + # our paralell stack, we can force the profiled result to include + # an arbitrary string as the name of the calling function. + # We use self.cmd as that string, and the resulting stats look + # very nice :-). + + def set_cmd(self, cmd): + if self.cur[-1]: return # already set + self.cmd = cmd + self.simulate_call(cmd) + + class fake_code: + def __init__(self, filename, line, name): + self.co_filename = filename + self.co_line = line + self.co_name = name + self.co_code = '\0' # anything but 127 + + def __repr__(self): + return (self.co_filename, self.co_line, self.co_name) + + class fake_frame: + def __init__(self, code, prior): + self.f_code = code + self.f_back = prior + + def simulate_call(self, name): + code = self.fake_code('profile', 0, name) + if self.cur: + pframe = self.cur[-2] else: - st = t - if self.debug: - s0 = s0+' before: st='+`st`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct` - s0 = s0+' after: nc='+`nc`+' tt='+`tt+(t-st)`+' ct='+`ct+(t-st)` - print s0 - print s1 - self.timings[key] = \ - nc, tt + (t - st), ct + (t - st), callers, callees + pframe = None + frame = self.fake_frame(code, pframe) + a = self.dispatch['call'](frame, 0) + return + + # collect stats from pending stack, including getting final + # timings for self.cmd frame. + + def simulate_cmd_complete(self): + t = self.get_time() - self.t + while self.cur[-1]: + # We *can* cause assertion errors here if + # dispatch_trace_return checks for a frame match! + a = self.dispatch['return'](self.cur[-2], t) + t = 0 + self.t = self.get_time() - t + def print_stats(self): - # Print in reverse order by ct - print_title() - list = [] - for key in self.timings.keys(): - nc, tt, ct, callers, callees = self.timings[key] - if nc == 0: - continue - list.append(ct, tt, nc, key) - list.sort() - list.reverse() - for ct, tt, nc, key in list: - print_line(nc, tt, ct, os.path.basename(key)) + import pstats + pstats.Stats(self).strip_dirs().sort_stats(-1). \ + print_stats() def dump_stats(self, file): f = open(file, 'w') - marshal.dump(self.timings, f) + self.create_stats() + marshal.dump(self.stats, f) f.close() + def create_stats(self): + self.simulate_cmd_complete() + self.snapshot_stats() + + def snapshot_stats(self): + self.stats = {} + for func in self.timings.keys(): + cc, ns, tt, ct, callers = self.timings[func] + nor_func = self.func_normalize(func) + nor_callers = {} + nc = 0 + for func_caller in callers.keys(): + nor_callers[self.func_normalize(func_caller)]=\ + callers[func_caller] + nc = nc + callers[func_caller] + self.stats[nor_func] = cc, nc, tt, ct, nor_callers + + + # Override the following function if you can figure out + # a better name for the binary f_code entries. I just normalize + # them sequentially in a dictionary. It would be nice if we could + # *really* see the name of the underlying C code :-). Sometimes + # you can figure out what-is-what by looking at caller and callee + # lists (and knowing what your python code does). + + def func_normalize(self, func_name): + global func_norm_dict + global func_norm_counter + global func_sequence_num + + if func_norm_dict.has_key(func_name): + return func_norm_dict[func_name] + if type(func_name) == type(""): + long_name = string.split(func_name) + file_name = long_name[6][1:-2] + func = long_name[2] + lineno = long_name[8][:-1] + if '?' == func: # Until I find out how to may 'em... + file_name = 'python' + func_norm_counter = func_norm_counter + 1 + func = pid_string + ".C." + `func_norm_counter` + result = file_name , string.atoi(lineno) , func + else: + result = func_name + func_norm_dict[func_name] = result + return result + + # The following two methods can be called by clients to use # a profiler to profile a statement, given as a string. @@ -203,187 +394,219 @@ class Profile: import __main__ dict = __main__.__dict__ self.runctx(cmd, dict, dict) + return self def runctx(self, cmd, globals, locals): + self.set_cmd(cmd) sys.setprofile(self.trace_dispatch) try: - exec(cmd + '\n', globals, locals) + exec(cmd, globals, locals) finally: sys.setprofile(None) # This method is more useful to profile a single function call. - def runcall(self, func, *args): + self.set_cmd(func.__name__) sys.setprofile(self.trace_dispatch) try: apply(func, args) finally: sys.setprofile(None) + return self -def depth(frame): - d = 0 - while frame: - d = d + 1 - frame = frame.f_back - return d + #****************************************************************** + # The following calculates the overhead for using a profiler. The + # problem is that it takes a fair amount of time for the profiler + # to stop the stopwatch (from the time it recieves an event). + # Similarly, there is a delay from the time that the profiler + # re-starts the stopwatch before the user's code really gets to + # continue. The following code tries to measure the difference on + # a per-event basis. The result can the be placed in the + # Profile.dispatch_event() routine for the given platform. Note + # that this difference is only significant if there are a lot of + # events, and relatively little user code per event. For example, + # code with small functions will typically benefit from having the + # profiler calibrated for the current platform. This *could* be + # done on the fly during init() time, but it is not worth the + # effort. Also note that if too large a value specified, then + # execution time on some functions will actually appear as a + # negative number. It is *normal* for some functions (with very + # low call counts) to have such negative stats, even if the + # calibration figure is "correct." + # + # One alternative to profile-time calibration adjustments (i.e., + # adding in the magic little delta during each event) is to track + # more carefully the number of events (and cumulatively, the number + # of events during sub functions) that are seen. If this were + # done, then the arithmetic could be done after the fact (i.e., at + # display time). Currintly, we track only call/return events. + # These values can be deduced by examining the callees and callers + # vectors for each functions. Hence we *can* almost correct the + # internal time figure at print time (note that we currently don't + # track exception event processing counts). Unfortunately, there + # is currently no similar information for cumulative sub-function + # time. It would not be hard to "get all this info" at profiler + # time. Specifically, we would have to extend the tuples to keep + # counts of this in each frame, and then extend the defs of timing + # tuples to include the significant two figures. I'm a bit fearful + # that this additional feature will slow the heavily optimized + # event/time ratio (i.e., the profiler would run slower, fur a very + # low "value added" feature.) + # + # Plugging in the calibration constant doesn't slow down the + # profiler very much, and the accuracy goes way up. + #************************************************************** + + def calibrate(self, m): + n = m + s = self.timer() + while n: + self.simple() + n = n - 1 + f = self.timer() + my_simple = f[0]+f[1]-s[0]-s[1] + #print "Simple =", my_simple, -class Stats: - def __init__(self, file): - f = open(file, 'r') - self.stats = marshal.load(f) - f.close() - self.stats_list = None + n = m + s = self.timer() + while n: + self.instrumented() + n = n - 1 + f = self.timer() + my_inst = f[0]+f[1]-s[0]-s[1] + # print "Instrumented =", my_inst + avg_cost = (my_inst - my_simple)/m + #print "Delta/call =", avg_cost, "(profiler fixup constant)" + return avg_cost - def print_stats(self): - print_title() - if self.stats_list: - for i in range(len(self.stats_list)): - nc, tt, ct, callers, callees, key = \ - self.stats_list[i] - print_line(nc, tt, ct, key) + # simulate a program with no profiler activity + def simple(self): + a = 1 + pass + + # simulate a program with call/return event processing + def instrumented(self): + a = 1 + self.profiler_simulation(a, a, a) + + # simulate an event processing activity (from user's perspective) + def profiler_simulation(self, x, y, z): + t = self.timer() + t = t[0] + t[1] + self.ut = t + + + +#**************************************************************************** +# OldProfile class documentation +#**************************************************************************** +# +# The following derived profiler simulates the old style profile, providing +# errant results on recursive functions. The reason for the usefulnes of this +# profiler is that it runs faster (i.e., less overhead). It still creates +# all the caller stats, and is quite useful when there is *no* recursion +# in the user's code. +# +# This code also shows how easy it is to create a modified profiler. +#**************************************************************************** +class OldProfile(Profile): + def trace_dispatch_exception(self, frame, t): + rt, rtt, rct, rfn, rframe, rcur = self.cur + if rcur and not rframe is frame: + return self.trace_dispatch_return(rframe, t) + return 0 + + def trace_dispatch_call(self, frame, t): + fn = `frame.f_code` + + self.cur = (t, 0, 0, fn, frame, self.cur) + if self.timings.has_key(fn): + tt, ct, callers = self.timings[fn] + self.timings[fn] = tt, ct, callers else: - for key in self.stats.keys(): - nc, tt, ct, callers, callees = self.stats[key] - print_line(nc, tt, ct, key) - - def print_callers(self): - if self.stats_list: - for i in range(len(self.stats_list)): - nc, tt, ct, callers, callees, key = \ - self.stats_list[i] - print key, - for func in callers.keys(): - print func+'('+`callers[func]`+')', - print + self.timings[fn] = 0, 0, {} + return 1 + + def trace_dispatch_return(self, frame, t): + rt, rtt, rct, rfn, frame, rcur = self.cur + rtt = rtt + t + sft = rtt + rct + + pt, ptt, pct, pfn, pframe, pcur = rcur + self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur + + tt, ct, callers = self.timings[rfn] + if callers.has_key(pfn): + callers[pfn] = callers[pfn] + 1 else: - for key in self.stats.keys(): - nc, tt, ct, callers, callees = self.stats[key] - print key, - for func in callers.keys(): - print func+'('+`callers[func]`+')', - print - - def print_callees(self): - if self.stats_list: - for i in range(len(self.stats_list)): - nc, tt, ct, callers, callees, key = \ - self.stats_list[i] - print key, - for func in callees.keys(): - print func+'('+`callees[func]`+')', - print + callers[pfn] = 1 + self.timings[rfn] = tt+rtt, ct + sft, callers + + return 1 + + + def snapshot_stats(self): + self.stats = {} + for func in self.timings.keys(): + tt, ct, callers = self.timings[func] + nor_func = self.func_normalize(func) + nor_callers = {} + nc = 0 + for func_caller in callers.keys(): + nor_callers[self.func_normalize(func_caller)]=\ + callers[func_caller] + nc = nc + callers[func_caller] + self.stats[nor_func] = nc, nc, tt, ct, nor_callers + + + +#**************************************************************************** +# HotProfile class documentation +#**************************************************************************** +# +# This profiler is the fastest derived profile example. It does not +# calculate caller-callee relationships, and does not calculate cumulative +# time under a function. It only calculates time spent in a function, so +# it runs very quickly (re: very low overhead) +#**************************************************************************** +class HotProfile(Profile): + def trace_dispatch_exception(self, frame, t): + rt, rtt, rfn, rframe, rcur = self.cur + if rcur and not rframe is frame: + return self.trace_dispatch_return(rframe, t) + return 0 + + def trace_dispatch_call(self, frame, t): + self.cur = (t, 0, frame, self.cur) + return 1 + + def trace_dispatch_return(self, frame, t): + rt, rtt, frame, rcur = self.cur + + rfn = `frame.f_code` + + pt, ptt, pframe, pcur = rcur + self.cur = pt, ptt+rt, pframe, pcur + + if self.timings.has_key(rfn): + nc, tt = self.timings[rfn] + self.timings[rfn] = nc + 1, rt + rtt + tt else: - for key in self.stats.keys(): - nc, tt, ct, callers, callees = self.stats[key] - print key, - for func in callees.keys(): - print func+'('+`callees[func]`+')', - print - - def sort_stats(self, field): - stats_list = [] - for key in self.stats.keys(): - t = self.stats[key] - nt = () - for i in range(len(t)): - if i == field: - nt = (t[i],) + nt[:] - else: - nt = nt[:] + (t[i],) - if field == -1: - nt = (key,) + nt - else: - nt = nt + (key,) - stats_list.append(nt) - stats_list.sort() - self.stats_list = [] - for i in range(len(stats_list)): - t = stats_list[i] - if field == -1: - nt = t[1:] + t[0:1] - else: - nt = t[1:] - nt = nt[:field] + t[0:1] + nt[field:] - self.stats_list.append(nt) - - def reverse_order(self): - self.stats_list.reverse() - - def strip_dirs(self): - newstats = {} - for key in self.stats.keys(): - nc, tt, ct, callers, callees = self.stats[key] - newkey = os.path.basename(key) - newcallers = {} - for c in callers.keys(): - newcallers[os.path.basename(c)] = callers[c] - newcallees = {} - for c in callees.keys(): - newcallees[os.path.basename(c)] = callees[c] - newstats[newkey] = nc, tt, ct, newcallers, newcallees - self.stats = newstats - self.stats_list = None - -def print_title(): - print string.rjust('ncalls', 8), - print string.rjust('tottime', 8), - print string.rjust('percall', 8), - print string.rjust('cumtime', 8), - print string.rjust('percall', 8), - print 'filename:lineno(function)' - -def print_line(nc, tt, ct, key): - print string.rjust(`nc`, 8), - print f8(tt), - if nc == 0: - print ' '*8, - else: - print f8(tt/nc), - print f8(ct), - if nc == 0: - print ' '*8, - else: - print f8(ct/nc), - print key + self.timings[rfn] = 1, rt + rtt -def f8(x): - return string.rjust(fpformat.fix(x, 3), 8) + return 1 -# simplified user interface -def run(statement, *args): - prof = Profile() - try: - prof.run(statement) - except SystemExit: - pass - if len(args) == 0: - prof.print_stats() - else: - prof.dump_stats(args[0]) -# test command with debugging -def debug(): - prof = Profile() - prof.debug = 1 - try: - prof.run('import x; x.main()') - except SystemExit: - pass - prof.print_stats() + def snapshot_stats(self): + self.stats = {} + for func in self.timings.keys(): + nc, tt = self.timings[func] + nor_func = self.func_normalize(func) + self.stats[nor_func] = nc, nc, tt, 0, {} -# test command -def test(): - run('import x; x.main()') + -# print help -def help(): - for dirname in sys.path: - fullname = os.path.join(dirname, 'profile.doc') - if os.path.exists(fullname): - sts = os.system('${PAGER-more} '+fullname) - if sts: print '*** Pager exit status:', sts - break - else: - print 'Sorry, can\'t find the help file "profile.doc"', - print 'along the Python search path' +#**************************************************************************** +def Stats(*args): + print 'Report generating functions are in the "pstats" module\a' |