summaryrefslogtreecommitdiff
path: root/Lib/profile.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/profile.py')
-rwxr-xr-xLib/profile.py883
1 files changed, 553 insertions, 330 deletions
diff --git a/Lib/profile.py b/Lib/profile.py
index 502a4dbfa7..35ed63e518 100755
--- a/Lib/profile.py
+++ b/Lib/profile.py
@@ -1,201 +1,392 @@
#
-# Class for profiling python code.
-# Author: Sjoerd Mullender
-# Hacked somewhat by: Guido van Rossum
+# Class for profiling python code. rev 1.0 6/2/94
#
-# See the accompanying document profile.doc for more information.
+# Based on prior profile module by Sjoerd Mullender...
+# which was hacked somewhat by: Guido van Rossum
+#
+# See profile.doc for more information
+
+
+# Copyright 1994, by InfoSeek Corporation, all rights reserved.
+# Written by James Roskind
+#
+# Permission to use, copy, modify, and distribute this Python software
+# and its associated documentation for any purpose (subject to the
+# restriction in the following sentence) without fee is hereby granted,
+# provided that the above copyright notice appears in all copies, and
+# that both that copyright notice and this permission notice appear in
+# supporting documentation, and that the name of InfoSeek not be used in
+# advertising or publicity pertaining to distribution of the software
+# without specific, written prior permission. This permission is
+# explicitly restricted to the copying and modification of the software
+# to remain in Python, compiled Python, or other languages (such as C)
+# wherein the modified or derived code is exclusively imported into a
+# Python module.
+#
+# INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
+# SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+# FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
+# SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
+# RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
+# CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+
+
import sys
-import codehack
import os
+import time
import string
-import fpformat
import marshal
+
+# Global variables
+func_norm_dict = {}
+func_norm_counter = 0
+pid_string = `os.getpid()`
+
+
+# Optimized intermodule references
+ostimes = os.times
+
+
+# Sample timer for use with
+#i_count = 0
+#def integer_timer():
+# global i_count
+# i_count = i_count + 1
+# return i_count
+#itimes = integer_timer # replace with C coded timer returning integers
+
+#**************************************************************************
+# The following are the static member functions for the profiler class
+# Note that an instance of Profile() is *not* needed to call them.
+#**************************************************************************
+
+
+# simplified user interface
+def run(statement, *args):
+ prof = Profile()
+ try:
+ prof = prof.run(statement)
+ except SystemExit:
+ pass
+ if args:
+ prof.dump_stats(args[0])
+ else:
+ return prof.print_stats()
+
+# print help
+def help():
+ for dirname in sys.path:
+ fullname = os.path.join(dirname, 'profile.doc')
+ if os.path.exists(fullname):
+ sts = os.system('${PAGER-more} '+fullname)
+ if sts: print '*** Pager exit status:', sts
+ break
+ else:
+ print 'Sorry, can\'t find the help file "profile.doc"',
+ print 'along the Python search path'
+
+
+#**************************************************************************
+# class Profile documentation:
+#**************************************************************************
+# self.cur is always a tuple. Each such tuple corresponds to a stack
+# frame that is currently active (self.cur[-2]). The following are the
+# definitions of its members. We use this external "parallel stack" to
+# avoid contaminating the program that we are profiling. (old profiler
+# used to write into the frames local dictionary!!) Derived classes
+# can change the definition of some entries, as long as they leave
+# [-2:] intact.
+#
+# [ 0] = Time that needs to be charged to the parent frame's function. It is
+# used so that a function call will not have to access the timing data
+# for the parents frame.
+# [ 1] = Total time spent in this frame's function, excluding time in
+# subfunctions
+# [ 2] = Cumulative time spent in this frame's function, including time in
+# all subfunctions to this frame.
+# [-3] = Name of the function that corresonds to this frame.
+# [-2] = Actual frame that we correspond to (used to sync exception handling)
+# [-1] = Our parent 6-tuple (corresonds to frame.f_back)
+#**************************************************************************
+# Timing data for each function is stored as a 5-tuple in the dictionary
+# self.timings[]. The index is always the name stored in self.cur[4].
+# The following are the definitions of the members:
+#
+# [0] = The number of times this function was called, not counting direct
+# or indirect recursion,
+# [1] = Number of times this function appears on the stack, minus one
+# [2] = Total time spent internal to this function
+# [3] = Cumulative time that this function was present on the stack. In
+# non-recursive functions, this is the total execution time from start
+# to finish of each invocation of a function, including time spent in
+# all subfunctions.
+# [5] = A dictionary indicating for each function name, the number of times
+# it was called by us.
+#**************************************************************************
+# We produce function names via a repr() call on the f_code object during
+# profiling. This save a *lot* of CPU time. This results in a string that
+# always looks like:
+# <code object main at 87090, file "/a/lib/python-local/myfib.py", line 76>
+# After we "normalize it, it is a tuple of filename, line, function-name.
+# We wait till we are done profiling to do the normalization.
+# *IF* this repr format changes, then only the normalization routine should
+# need to be fixed.
+#**************************************************************************
class Profile:
- def __init__(self):
+ def __init__(self, *arg):
self.timings = {}
- self.debug = None
- self.call_level = 0
- self.profile_func = None
- self.profiling = 0
+ self.cur = None
+ self.cmd = ""
- def profile(self, funcname):
- if not self.profile_func:
- self.profile_func = {}
- self.profile_func[funcname] = 1
+ self.dispatch = { \
+ 'call' : self.trace_dispatch_call, \
+ 'return' : self.trace_dispatch_return, \
+ 'exception': self.trace_dispatch_exception, \
+ }
- def trace_dispatch(self, frame, event, arg):
- if event == 'call':
- funcname = codehack.getcodename(frame.f_code)
- if self.profile_func and not self.profiling:
- if self.profile_func.has_key(funcname):
- return
- self.profiling = 1
- t = os.times()
- t = t[0] + t[1]
- if frame.f_locals.has_key('__key'):
- key = frame.f_locals['__key']
- else:
- lineno = codehack.getlineno(frame.f_code)
- filename = frame.f_code.co_filename
- key = filename + ':' + `lineno` + '(' + funcname + ')'
- frame.f_locals['__key'] = key
- self.call_level = depth(frame)
- self.cur_frame = frame
- pframe = frame.f_back
- if self.debug:
- s0 = 'call: ' + key + ' depth: ' + `self.call_level` + ' time: ' + `t`
- if pframe:
- if pframe.f_locals.has_key('__key'):
- pkey = pframe.f_locals['__key']
- else:
- pkey = pframe.f_code.co_filename + \
- ':' + \
- `codehack.getlineno(pframe.f_code)` \
- + '(' + \
- codehack.getcodename(pframe.f_code) \
- + ')'
- pframe.f_locals['__key'] = pkey
- if self.debug:
- s1 = 'parent: ' + pkey
- if pframe.f_locals.has_key('__start_time'):
- st = pframe.f_locals['__start_time']
- nc, tt, ct, callers, callees = \
- self.timings[pkey]
- if self.debug:
- s1 = s1+' before: st='+`st`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct`
- if callers.has_key(key):
- callers[key] = callers[key] + 1
- else:
- callers[key] = 1
- if self.debug:
- s1 = s1+' after: st='+`st`+' nc='+`nc`+' tt='+`tt+(t-st)`+' ct='+`ct`
- self.timings[pkey] = nc, tt + (t - st), ct, callers, callees
- if self.timings.has_key(key):
- nc, tt, ct, callers, callees = self.timings[key]
- else:
- nc, tt, ct, callers, callees = 0, 0, 0, {}, {}
- if self.debug:
- s0 = s0+' before: nc='+`nc`+' tt='+`tt`+' ct='+`ct`
- s0 = s0+' after: nc='+`nc+1`+' tt='+`tt`+' ct='+`ct`
- if pframe:
- if callees.has_key(pkey):
- callees[pkey] = callees[pkey] + 1
- else:
- callees[pkey] = 1
- self.timings[key] = nc + 1, tt, ct, callers, callees
- frame.f_locals['__start_time'] = t
- if self.debug:
- print s0
- print s1
- return
- if event == 'return':
- if self.profile_func:
- if not self.profiling:
- return
- if self.profile_func.has_key( \
- codehack.getcodename(frame.f_code)):
- self.profiling = 0
- self.call_level = depth(frame)
- self.cur_frame = frame
- pframe = frame.f_back
- if self.debug:
- s0 = 'return: '
- else:
- s0 = None
- self.handle_return(pframe, frame, s0)
- return
- if event == 'exception':
- if self.profile_func and not self.profiling:
- return
- call_level = depth(frame)
- if call_level < self.call_level:
- if call_level <> self.call_level - 1:
- print 'heh!',call_level,self.call_level
- if self.debug:
- s0 = 'exception: '
+ if not arg:
+ self.timer = os.times
+ self.dispatcher = self.trace_dispatch
+ else:
+ self.timer = arg[0]
+ t = self.timer() # test out timer function
+ try:
+ if len(t) == 2:
+ self.dispatcher = self.trace_dispatch
else:
- s0 = None
- self.handle_return(self.cur_frame, frame, s0)
- self.call_level = call_level
- self.cur_frame = frame
- return
- print 'profile.Profile.dispatch: unknown debugging event:',
- print `event`
+ self.dispatcher = self.trace_dispatch_r
+ except:
+ self.dispatcher = self.trace_dispatch_i
+ self.t = self.get_time()
+ self.simulate_call('profiler')
+
+
+ def get_time(self): # slow simulation of method to acquire time
+ t = self.timer()
+ if type(t) == type(()) or type(t) == type([]):
+ t = reduce(lambda x,y: x+y, t, 0)
+ return t
+
+
+ # Heavily optimized dispatch routine for os.times() timer
+
+ def trace_dispatch(self, frame, event, arg):
+ t = self.timer()
+ t = t[0] + t[1] - self.t # No Calibration constant
+ # t = t[0] + t[1] - self.t - .00053 # Calibration constant
+
+ if self.dispatch[event](frame,t):
+ t = self.timer()
+ self.t = t[0] + t[1]
+ else:
+ r = self.timer()
+ self.t = r[0] + r[1] - t # put back unrecorded delta
return
- def handle_return(self, pframe, frame, s0):
- t = os.times()
- t = t[0] + t[1]
- if frame.f_locals.has_key('__key'):
- key = frame.f_locals['__key']
+
+
+ # Dispatch routine for best timer program (return = scalar integer)
+
+ def trace_dispatch_i(self, frame, event, arg):
+ t = self.timer() - self.t # - 1 # Integer calibration constant
+ if self.dispatch[event](frame,t):
+ self.t = self.timer()
+ else:
+ self.t = self.timer() - t # put back unrecorded delta
+ return
+
+
+ # SLOW generic dispatch rountine for timer returning lists of numbers
+
+ def trace_dispatch_l(self, frame, event, arg):
+ t = self.get_time() - self.t
+
+ if self.dispatch[event](frame,t):
+ self.t = self.get_time()
+ else:
+ self.t = self.get_time()-t # put back unrecorded delta
+ return
+
+
+ def trace_dispatch_exception(self, frame, t):
+ rt, rtt, rct, rfn, rframe, rcur = self.cur
+ if (not rframe is frame) and rcur:
+ return self.trace_dispatch_return(rframe, t)
+ return 0
+
+
+ def trace_dispatch_call(self, frame, t):
+ fn = `frame.f_code`
+
+ # The following should be about the best approach, but
+ # we would need a function that maps from id() back to
+ # the actual code object.
+ # fn = id(frame.f_code)
+ # Note we would really use our own function, which would
+ # return the code address, *and* bump the ref count. We
+ # would then fix up the normalize function to do the
+ # actualy repr(fn) call.
+
+ # The following is an interesting alternative
+ # It doesn't do as good a job, and it doesn't run as
+ # fast 'cause repr() is written in C, and this is Python.
+ #fcode = frame.f_code
+ #code = fcode.co_code
+ #if ord(code[0]) == 127: # == SET_LINENO
+ # # see "opcode.h" in the Python source
+ # fn = (fcode.co_filename, ord(code[1]) | \
+ # ord(code[2]) << 8, fcode.co_name)
+ #else:
+ # fn = (fcode.co_filename, 0, fcode.co_name)
+
+ self.cur = (t, 0, 0, fn, frame, self.cur)
+ if self.timings.has_key(fn):
+ cc, ns, tt, ct, callers = self.timings[fn]
+ self.timings[fn] = cc, ns + 1, tt, ct, callers
else:
- funcname = codehack.getcodename(frame.f_code)
- lineno = codehack.getlineno(frame.f_code)
- filename = frame.f_code.co_filename
- key = filename + ':' + `lineno` + '(' + funcname + ')'
- frame.f_locals['__key'] = key
- if self.debug:
- s0 = s0 + key + ' depth: ' + `self.call_level` + ' time: ' + `t`
- if pframe:
- if pframe.f_locals.has_key('__key'):
- pkey = pframe.f_locals['__key']
- else:
- funcname = codehack.getcodename(frame.f_code)
- lineno = codehack.getlineno(frame.f_code)
- filename = frame.f_code.co_filename
- pkey = filename + ':' + `lineno` + '(' + funcname + ')'
- pframe.f_locals['__key'] = pkey
- if self.debug:
- s1 = 'parent: '+pkey
- if pframe.f_locals.has_key('__start_time') and \
- self.timings.has_key(pkey):
- st = pframe.f_locals['__start_time']
- nc, tt, ct, callers, callees = \
- self.timings[pkey]
- if self.debug:
- s1 = s1+' before: st='+`st`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct`
- s1 = s1+' after: st='+`t`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct+(t-st)`
- self.timings[pkey] = \
- nc, tt, ct + (t - st), callers, callees
- pframe.f_locals['__start_time'] = t
- if self.timings.has_key(key):
- nc, tt, ct, callers, callees = self.timings[key]
+ self.timings[fn] = 0, 0, 0, 0, {}
+ return 1
+
+ def trace_dispatch_return(self, frame, t):
+ # if not frame is self.cur[-2]: raise "Bad return", self.cur[3]
+
+ # Prefix "r" means part of the Returning or exiting frame
+ # Prefix "p" means part of the Previous or older frame
+
+ rt, rtt, rct, rfn, frame, rcur = self.cur
+ rtt = rtt + t
+ sft = rtt + rct
+
+ pt, ptt, pct, pfn, pframe, pcur = rcur
+ self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
+
+ cc, ns, tt, ct, callers = self.timings[rfn]
+ if not ns:
+ ct = ct + sft
+ cc = cc + 1
+ if callers.has_key(pfn):
+ callers[pfn] = callers[pfn] + 1 # hack: gather more
+ # stats such as the amount of time added to ct courtesy
+ # of this specific call, and the contribution to cc
+ # courtesy of this call.
else:
- nc, tt, ct, callers, callees = 0, 0, 0, {}, {}
- if frame.f_locals.has_key('__start_time'):
- st = frame.f_locals['__start_time']
+ callers[pfn] = 1
+ self.timings[rfn] = cc, ns - 1, tt+rtt, ct, callers
+
+ return 1
+
+ # The next few function play with self.cmd. By carefully preloading
+ # our paralell stack, we can force the profiled result to include
+ # an arbitrary string as the name of the calling function.
+ # We use self.cmd as that string, and the resulting stats look
+ # very nice :-).
+
+ def set_cmd(self, cmd):
+ if self.cur[-1]: return # already set
+ self.cmd = cmd
+ self.simulate_call(cmd)
+
+ class fake_code:
+ def __init__(self, filename, line, name):
+ self.co_filename = filename
+ self.co_line = line
+ self.co_name = name
+ self.co_code = '\0' # anything but 127
+
+ def __repr__(self):
+ return (self.co_filename, self.co_line, self.co_name)
+
+ class fake_frame:
+ def __init__(self, code, prior):
+ self.f_code = code
+ self.f_back = prior
+
+ def simulate_call(self, name):
+ code = self.fake_code('profile', 0, name)
+ if self.cur:
+ pframe = self.cur[-2]
else:
- st = t
- if self.debug:
- s0 = s0+' before: st='+`st`+' nc='+`nc`+' tt='+`tt`+' ct='+`ct`
- s0 = s0+' after: nc='+`nc`+' tt='+`tt+(t-st)`+' ct='+`ct+(t-st)`
- print s0
- print s1
- self.timings[key] = \
- nc, tt + (t - st), ct + (t - st), callers, callees
+ pframe = None
+ frame = self.fake_frame(code, pframe)
+ a = self.dispatch['call'](frame, 0)
+ return
+
+ # collect stats from pending stack, including getting final
+ # timings for self.cmd frame.
+
+ def simulate_cmd_complete(self):
+ t = self.get_time() - self.t
+ while self.cur[-1]:
+ # We *can* cause assertion errors here if
+ # dispatch_trace_return checks for a frame match!
+ a = self.dispatch['return'](self.cur[-2], t)
+ t = 0
+ self.t = self.get_time() - t
+
def print_stats(self):
- # Print in reverse order by ct
- print_title()
- list = []
- for key in self.timings.keys():
- nc, tt, ct, callers, callees = self.timings[key]
- if nc == 0:
- continue
- list.append(ct, tt, nc, key)
- list.sort()
- list.reverse()
- for ct, tt, nc, key in list:
- print_line(nc, tt, ct, os.path.basename(key))
+ import pstats
+ pstats.Stats(self).strip_dirs().sort_stats(-1). \
+ print_stats()
def dump_stats(self, file):
f = open(file, 'w')
- marshal.dump(self.timings, f)
+ self.create_stats()
+ marshal.dump(self.stats, f)
f.close()
+ def create_stats(self):
+ self.simulate_cmd_complete()
+ self.snapshot_stats()
+
+ def snapshot_stats(self):
+ self.stats = {}
+ for func in self.timings.keys():
+ cc, ns, tt, ct, callers = self.timings[func]
+ nor_func = self.func_normalize(func)
+ nor_callers = {}
+ nc = 0
+ for func_caller in callers.keys():
+ nor_callers[self.func_normalize(func_caller)]=\
+ callers[func_caller]
+ nc = nc + callers[func_caller]
+ self.stats[nor_func] = cc, nc, tt, ct, nor_callers
+
+
+ # Override the following function if you can figure out
+ # a better name for the binary f_code entries. I just normalize
+ # them sequentially in a dictionary. It would be nice if we could
+ # *really* see the name of the underlying C code :-). Sometimes
+ # you can figure out what-is-what by looking at caller and callee
+ # lists (and knowing what your python code does).
+
+ def func_normalize(self, func_name):
+ global func_norm_dict
+ global func_norm_counter
+ global func_sequence_num
+
+ if func_norm_dict.has_key(func_name):
+ return func_norm_dict[func_name]
+ if type(func_name) == type(""):
+ long_name = string.split(func_name)
+ file_name = long_name[6][1:-2]
+ func = long_name[2]
+ lineno = long_name[8][:-1]
+ if '?' == func: # Until I find out how to may 'em...
+ file_name = 'python'
+ func_norm_counter = func_norm_counter + 1
+ func = pid_string + ".C." + `func_norm_counter`
+ result = file_name , string.atoi(lineno) , func
+ else:
+ result = func_name
+ func_norm_dict[func_name] = result
+ return result
+
+
# The following two methods can be called by clients to use
# a profiler to profile a statement, given as a string.
@@ -203,187 +394,219 @@ class Profile:
import __main__
dict = __main__.__dict__
self.runctx(cmd, dict, dict)
+ return self
def runctx(self, cmd, globals, locals):
+ self.set_cmd(cmd)
sys.setprofile(self.trace_dispatch)
try:
- exec(cmd + '\n', globals, locals)
+ exec(cmd, globals, locals)
finally:
sys.setprofile(None)
# This method is more useful to profile a single function call.
-
def runcall(self, func, *args):
+ self.set_cmd(func.__name__)
sys.setprofile(self.trace_dispatch)
try:
apply(func, args)
finally:
sys.setprofile(None)
+ return self
-def depth(frame):
- d = 0
- while frame:
- d = d + 1
- frame = frame.f_back
- return d
+ #******************************************************************
+ # The following calculates the overhead for using a profiler. The
+ # problem is that it takes a fair amount of time for the profiler
+ # to stop the stopwatch (from the time it recieves an event).
+ # Similarly, there is a delay from the time that the profiler
+ # re-starts the stopwatch before the user's code really gets to
+ # continue. The following code tries to measure the difference on
+ # a per-event basis. The result can the be placed in the
+ # Profile.dispatch_event() routine for the given platform. Note
+ # that this difference is only significant if there are a lot of
+ # events, and relatively little user code per event. For example,
+ # code with small functions will typically benefit from having the
+ # profiler calibrated for the current platform. This *could* be
+ # done on the fly during init() time, but it is not worth the
+ # effort. Also note that if too large a value specified, then
+ # execution time on some functions will actually appear as a
+ # negative number. It is *normal* for some functions (with very
+ # low call counts) to have such negative stats, even if the
+ # calibration figure is "correct."
+ #
+ # One alternative to profile-time calibration adjustments (i.e.,
+ # adding in the magic little delta during each event) is to track
+ # more carefully the number of events (and cumulatively, the number
+ # of events during sub functions) that are seen. If this were
+ # done, then the arithmetic could be done after the fact (i.e., at
+ # display time). Currintly, we track only call/return events.
+ # These values can be deduced by examining the callees and callers
+ # vectors for each functions. Hence we *can* almost correct the
+ # internal time figure at print time (note that we currently don't
+ # track exception event processing counts). Unfortunately, there
+ # is currently no similar information for cumulative sub-function
+ # time. It would not be hard to "get all this info" at profiler
+ # time. Specifically, we would have to extend the tuples to keep
+ # counts of this in each frame, and then extend the defs of timing
+ # tuples to include the significant two figures. I'm a bit fearful
+ # that this additional feature will slow the heavily optimized
+ # event/time ratio (i.e., the profiler would run slower, fur a very
+ # low "value added" feature.)
+ #
+ # Plugging in the calibration constant doesn't slow down the
+ # profiler very much, and the accuracy goes way up.
+ #**************************************************************
+
+ def calibrate(self, m):
+ n = m
+ s = self.timer()
+ while n:
+ self.simple()
+ n = n - 1
+ f = self.timer()
+ my_simple = f[0]+f[1]-s[0]-s[1]
+ #print "Simple =", my_simple,
-class Stats:
- def __init__(self, file):
- f = open(file, 'r')
- self.stats = marshal.load(f)
- f.close()
- self.stats_list = None
+ n = m
+ s = self.timer()
+ while n:
+ self.instrumented()
+ n = n - 1
+ f = self.timer()
+ my_inst = f[0]+f[1]-s[0]-s[1]
+ # print "Instrumented =", my_inst
+ avg_cost = (my_inst - my_simple)/m
+ #print "Delta/call =", avg_cost, "(profiler fixup constant)"
+ return avg_cost
- def print_stats(self):
- print_title()
- if self.stats_list:
- for i in range(len(self.stats_list)):
- nc, tt, ct, callers, callees, key = \
- self.stats_list[i]
- print_line(nc, tt, ct, key)
+ # simulate a program with no profiler activity
+ def simple(self):
+ a = 1
+ pass
+
+ # simulate a program with call/return event processing
+ def instrumented(self):
+ a = 1
+ self.profiler_simulation(a, a, a)
+
+ # simulate an event processing activity (from user's perspective)
+ def profiler_simulation(self, x, y, z):
+ t = self.timer()
+ t = t[0] + t[1]
+ self.ut = t
+
+
+
+#****************************************************************************
+# OldProfile class documentation
+#****************************************************************************
+#
+# The following derived profiler simulates the old style profile, providing
+# errant results on recursive functions. The reason for the usefulnes of this
+# profiler is that it runs faster (i.e., less overhead). It still creates
+# all the caller stats, and is quite useful when there is *no* recursion
+# in the user's code.
+#
+# This code also shows how easy it is to create a modified profiler.
+#****************************************************************************
+class OldProfile(Profile):
+ def trace_dispatch_exception(self, frame, t):
+ rt, rtt, rct, rfn, rframe, rcur = self.cur
+ if rcur and not rframe is frame:
+ return self.trace_dispatch_return(rframe, t)
+ return 0
+
+ def trace_dispatch_call(self, frame, t):
+ fn = `frame.f_code`
+
+ self.cur = (t, 0, 0, fn, frame, self.cur)
+ if self.timings.has_key(fn):
+ tt, ct, callers = self.timings[fn]
+ self.timings[fn] = tt, ct, callers
else:
- for key in self.stats.keys():
- nc, tt, ct, callers, callees = self.stats[key]
- print_line(nc, tt, ct, key)
-
- def print_callers(self):
- if self.stats_list:
- for i in range(len(self.stats_list)):
- nc, tt, ct, callers, callees, key = \
- self.stats_list[i]
- print key,
- for func in callers.keys():
- print func+'('+`callers[func]`+')',
- print
+ self.timings[fn] = 0, 0, {}
+ return 1
+
+ def trace_dispatch_return(self, frame, t):
+ rt, rtt, rct, rfn, frame, rcur = self.cur
+ rtt = rtt + t
+ sft = rtt + rct
+
+ pt, ptt, pct, pfn, pframe, pcur = rcur
+ self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
+
+ tt, ct, callers = self.timings[rfn]
+ if callers.has_key(pfn):
+ callers[pfn] = callers[pfn] + 1
else:
- for key in self.stats.keys():
- nc, tt, ct, callers, callees = self.stats[key]
- print key,
- for func in callers.keys():
- print func+'('+`callers[func]`+')',
- print
-
- def print_callees(self):
- if self.stats_list:
- for i in range(len(self.stats_list)):
- nc, tt, ct, callers, callees, key = \
- self.stats_list[i]
- print key,
- for func in callees.keys():
- print func+'('+`callees[func]`+')',
- print
+ callers[pfn] = 1
+ self.timings[rfn] = tt+rtt, ct + sft, callers
+
+ return 1
+
+
+ def snapshot_stats(self):
+ self.stats = {}
+ for func in self.timings.keys():
+ tt, ct, callers = self.timings[func]
+ nor_func = self.func_normalize(func)
+ nor_callers = {}
+ nc = 0
+ for func_caller in callers.keys():
+ nor_callers[self.func_normalize(func_caller)]=\
+ callers[func_caller]
+ nc = nc + callers[func_caller]
+ self.stats[nor_func] = nc, nc, tt, ct, nor_callers
+
+
+
+#****************************************************************************
+# HotProfile class documentation
+#****************************************************************************
+#
+# This profiler is the fastest derived profile example. It does not
+# calculate caller-callee relationships, and does not calculate cumulative
+# time under a function. It only calculates time spent in a function, so
+# it runs very quickly (re: very low overhead)
+#****************************************************************************
+class HotProfile(Profile):
+ def trace_dispatch_exception(self, frame, t):
+ rt, rtt, rfn, rframe, rcur = self.cur
+ if rcur and not rframe is frame:
+ return self.trace_dispatch_return(rframe, t)
+ return 0
+
+ def trace_dispatch_call(self, frame, t):
+ self.cur = (t, 0, frame, self.cur)
+ return 1
+
+ def trace_dispatch_return(self, frame, t):
+ rt, rtt, frame, rcur = self.cur
+
+ rfn = `frame.f_code`
+
+ pt, ptt, pframe, pcur = rcur
+ self.cur = pt, ptt+rt, pframe, pcur
+
+ if self.timings.has_key(rfn):
+ nc, tt = self.timings[rfn]
+ self.timings[rfn] = nc + 1, rt + rtt + tt
else:
- for key in self.stats.keys():
- nc, tt, ct, callers, callees = self.stats[key]
- print key,
- for func in callees.keys():
- print func+'('+`callees[func]`+')',
- print
-
- def sort_stats(self, field):
- stats_list = []
- for key in self.stats.keys():
- t = self.stats[key]
- nt = ()
- for i in range(len(t)):
- if i == field:
- nt = (t[i],) + nt[:]
- else:
- nt = nt[:] + (t[i],)
- if field == -1:
- nt = (key,) + nt
- else:
- nt = nt + (key,)
- stats_list.append(nt)
- stats_list.sort()
- self.stats_list = []
- for i in range(len(stats_list)):
- t = stats_list[i]
- if field == -1:
- nt = t[1:] + t[0:1]
- else:
- nt = t[1:]
- nt = nt[:field] + t[0:1] + nt[field:]
- self.stats_list.append(nt)
-
- def reverse_order(self):
- self.stats_list.reverse()
-
- def strip_dirs(self):
- newstats = {}
- for key in self.stats.keys():
- nc, tt, ct, callers, callees = self.stats[key]
- newkey = os.path.basename(key)
- newcallers = {}
- for c in callers.keys():
- newcallers[os.path.basename(c)] = callers[c]
- newcallees = {}
- for c in callees.keys():
- newcallees[os.path.basename(c)] = callees[c]
- newstats[newkey] = nc, tt, ct, newcallers, newcallees
- self.stats = newstats
- self.stats_list = None
-
-def print_title():
- print string.rjust('ncalls', 8),
- print string.rjust('tottime', 8),
- print string.rjust('percall', 8),
- print string.rjust('cumtime', 8),
- print string.rjust('percall', 8),
- print 'filename:lineno(function)'
-
-def print_line(nc, tt, ct, key):
- print string.rjust(`nc`, 8),
- print f8(tt),
- if nc == 0:
- print ' '*8,
- else:
- print f8(tt/nc),
- print f8(ct),
- if nc == 0:
- print ' '*8,
- else:
- print f8(ct/nc),
- print key
+ self.timings[rfn] = 1, rt + rtt
-def f8(x):
- return string.rjust(fpformat.fix(x, 3), 8)
+ return 1
-# simplified user interface
-def run(statement, *args):
- prof = Profile()
- try:
- prof.run(statement)
- except SystemExit:
- pass
- if len(args) == 0:
- prof.print_stats()
- else:
- prof.dump_stats(args[0])
-# test command with debugging
-def debug():
- prof = Profile()
- prof.debug = 1
- try:
- prof.run('import x; x.main()')
- except SystemExit:
- pass
- prof.print_stats()
+ def snapshot_stats(self):
+ self.stats = {}
+ for func in self.timings.keys():
+ nc, tt = self.timings[func]
+ nor_func = self.func_normalize(func)
+ self.stats[nor_func] = nc, nc, tt, 0, {}
-# test command
-def test():
- run('import x; x.main()')
+
-# print help
-def help():
- for dirname in sys.path:
- fullname = os.path.join(dirname, 'profile.doc')
- if os.path.exists(fullname):
- sts = os.system('${PAGER-more} '+fullname)
- if sts: print '*** Pager exit status:', sts
- break
- else:
- print 'Sorry, can\'t find the help file "profile.doc"',
- print 'along the Python search path'
+#****************************************************************************
+def Stats(*args):
+ print 'Report generating functions are in the "pstats" module\a'