summaryrefslogtreecommitdiff
path: root/Modules/_decimal/libmpdec/literature/mulmod-64.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/_decimal/libmpdec/literature/mulmod-64.txt')
-rw-r--r--Modules/_decimal/libmpdec/literature/mulmod-64.txt127
1 files changed, 127 insertions, 0 deletions
diff --git a/Modules/_decimal/libmpdec/literature/mulmod-64.txt b/Modules/_decimal/libmpdec/literature/mulmod-64.txt
new file mode 100644
index 0000000000..029b8de3d7
--- /dev/null
+++ b/Modules/_decimal/libmpdec/literature/mulmod-64.txt
@@ -0,0 +1,127 @@
+
+
+(* Copyright (c) 2011 Stefan Krah. All rights reserved. *)
+
+
+==========================================================================
+ Calculate (a * b) % p using special primes
+==========================================================================
+
+A description of the algorithm can be found in the apfloat manual by
+Tommila [1].
+
+
+Definitions:
+------------
+
+In the whole document, "==" stands for "is congruent with".
+
+Result of a * b in terms of high/low words:
+
+ (1) hi * 2**64 + lo = a * b
+
+Special primes:
+
+ (2) p = 2**64 - z + 1, where z = 2**n
+
+Single step modular reduction:
+
+ (3) R(hi, lo) = hi * z - hi + lo
+
+
+Strategy:
+---------
+
+ a) Set (hi, lo) to the result of a * b.
+
+ b) Set (hi', lo') to the result of R(hi, lo).
+
+ c) Repeat step b) until 0 <= hi' * 2**64 + lo' < 2*p.
+
+ d) If the result is less than p, return lo'. Otherwise return lo' - p.
+
+
+The reduction step b) preserves congruence:
+-------------------------------------------
+
+ hi * 2**64 + lo == hi * z - hi + lo (mod p)
+
+ Proof:
+ ~~~~~~
+
+ hi * 2**64 + lo = (2**64 - z + 1) * hi + z * hi - hi + lo
+
+ = p * hi + z * hi - hi + lo
+
+ == z * hi - hi + lo (mod p)
+
+
+Maximum numbers of step b):
+---------------------------
+
+# To avoid unnecessary formalism, define:
+
+def R(hi, lo, z):
+ return divmod(hi * z - hi + lo, 2**64)
+
+# For simplicity, assume hi=2**64-1, lo=2**64-1 after the
+# initial multiplication a * b. This is of course impossible
+# but certainly covers all cases.
+
+# Then, for p1:
+hi=2**64-1; lo=2**64-1; z=2**32
+p1 = 2**64 - z + 1
+
+hi, lo = R(hi, lo, z) # First reduction
+hi, lo = R(hi, lo, z) # Second reduction
+hi * 2**64 + lo < 2 * p1 # True
+
+# For p2:
+hi=2**64-1; lo=2**64-1; z=2**34
+p2 = 2**64 - z + 1
+
+hi, lo = R(hi, lo, z) # First reduction
+hi, lo = R(hi, lo, z) # Second reduction
+hi, lo = R(hi, lo, z) # Third reduction
+hi * 2**64 + lo < 2 * p2 # True
+
+# For p3:
+hi=2**64-1; lo=2**64-1; z=2**40
+p3 = 2**64 - z + 1
+
+hi, lo = R(hi, lo, z) # First reduction
+hi, lo = R(hi, lo, z) # Second reduction
+hi, lo = R(hi, lo, z) # Third reduction
+hi * 2**64 + lo < 2 * p3 # True
+
+
+Step d) preserves congruence and yields a result < p:
+-----------------------------------------------------
+
+ Case hi = 0:
+
+ Case lo < p: trivial.
+
+ Case lo >= p:
+
+ lo == lo - p (mod p) # result is congruent
+
+ p <= lo < 2*p -> 0 <= lo - p < p # result is in the correct range
+
+ Case hi = 1:
+
+ p < 2**64 /\ 2**64 + lo < 2*p -> lo < p # lo is always less than p
+
+ 2**64 + lo == 2**64 + (lo - p) (mod p) # result is congruent
+
+ = lo - p # exactly the same value as the previous RHS
+ # in uint64_t arithmetic.
+
+ p < 2**64 + lo < 2*p -> 0 < 2**64 + (lo - p) < p # correct range
+
+
+
+[1] http://www.apfloat.org/apfloat/2.40/apfloat.pdf
+
+
+