from test import support import decimal import enum import locale import math import platform import sys import sysconfig import time import unittest try: import threading except ImportError: threading = None try: import _testcapi except ImportError: _testcapi = None # Max year is only limited by the size of C int. SIZEOF_INT = sysconfig.get_config_var('SIZEOF_INT') or 4 TIME_MAXYEAR = (1 << 8 * SIZEOF_INT - 1) - 1 TIME_MINYEAR = -TIME_MAXYEAR - 1 SEC_TO_US = 10 ** 6 US_TO_NS = 10 ** 3 MS_TO_NS = 10 ** 6 SEC_TO_NS = 10 ** 9 NS_TO_SEC = 10 ** 9 class _PyTime(enum.IntEnum): # Round towards minus infinity (-inf) ROUND_FLOOR = 0 # Round towards infinity (+inf) ROUND_CEILING = 1 # Round to nearest with ties going to nearest even integer ROUND_HALF_EVEN = 2 # Rounding modes supported by PyTime ROUNDING_MODES = ( # (PyTime rounding method, decimal rounding method) (_PyTime.ROUND_FLOOR, decimal.ROUND_FLOOR), (_PyTime.ROUND_CEILING, decimal.ROUND_CEILING), (_PyTime.ROUND_HALF_EVEN, decimal.ROUND_HALF_EVEN), ) class TimeTestCase(unittest.TestCase): def setUp(self): self.t = time.time() def test_data_attributes(self): time.altzone time.daylight time.timezone time.tzname def test_time(self): time.time() info = time.get_clock_info('time') self.assertFalse(info.monotonic) self.assertTrue(info.adjustable) def test_clock(self): time.clock() info = time.get_clock_info('clock') self.assertTrue(info.monotonic) self.assertFalse(info.adjustable) @unittest.skipUnless(hasattr(time, 'clock_gettime'), 'need time.clock_gettime()') def test_clock_realtime(self): time.clock_gettime(time.CLOCK_REALTIME) @unittest.skipUnless(hasattr(time, 'clock_gettime'), 'need time.clock_gettime()') @unittest.skipUnless(hasattr(time, 'CLOCK_MONOTONIC'), 'need time.CLOCK_MONOTONIC') def test_clock_monotonic(self): a = time.clock_gettime(time.CLOCK_MONOTONIC) b = time.clock_gettime(time.CLOCK_MONOTONIC) self.assertLessEqual(a, b) @unittest.skipUnless(hasattr(time, 'clock_getres'), 'need time.clock_getres()') def test_clock_getres(self): res = time.clock_getres(time.CLOCK_REALTIME) self.assertGreater(res, 0.0) self.assertLessEqual(res, 1.0) @unittest.skipUnless(hasattr(time, 'clock_settime'), 'need time.clock_settime()') def test_clock_settime(self): t = time.clock_gettime(time.CLOCK_REALTIME) try: time.clock_settime(time.CLOCK_REALTIME, t) except PermissionError: pass if hasattr(time, 'CLOCK_MONOTONIC'): self.assertRaises(OSError, time.clock_settime, time.CLOCK_MONOTONIC, 0) def test_conversions(self): self.assertEqual(time.ctime(self.t), time.asctime(time.localtime(self.t))) self.assertEqual(int(time.mktime(time.localtime(self.t))), int(self.t)) def test_sleep(self): self.assertRaises(ValueError, time.sleep, -2) self.assertRaises(ValueError, time.sleep, -1) time.sleep(1.2) def test_strftime(self): tt = time.gmtime(self.t) for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I', 'j', 'm', 'M', 'p', 'S', 'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'): format = ' %' + directive try: time.strftime(format, tt) except ValueError: self.fail('conversion specifier: %r failed.' % format) def _bounds_checking(self, func): # Make sure that strftime() checks the bounds of the various parts # of the time tuple (0 is valid for *all* values). # The year field is tested by other test cases above # Check month [1, 12] + zero support func((1900, 0, 1, 0, 0, 0, 0, 1, -1)) func((1900, 12, 1, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, -1, 1, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 13, 1, 0, 0, 0, 0, 1, -1)) # Check day of month [1, 31] + zero support func((1900, 1, 0, 0, 0, 0, 0, 1, -1)) func((1900, 1, 31, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, -1, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 32, 0, 0, 0, 0, 1, -1)) # Check hour [0, 23] func((1900, 1, 1, 23, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, -1, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 24, 0, 0, 0, 1, -1)) # Check minute [0, 59] func((1900, 1, 1, 0, 59, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, -1, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 60, 0, 0, 1, -1)) # Check second [0, 61] self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, -1, 0, 1, -1)) # C99 only requires allowing for one leap second, but Python's docs say # allow two leap seconds (0..61) func((1900, 1, 1, 0, 0, 60, 0, 1, -1)) func((1900, 1, 1, 0, 0, 61, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 62, 0, 1, -1)) # No check for upper-bound day of week; # value forced into range by a ``% 7`` calculation. # Start check at -2 since gettmarg() increments value before taking # modulo. self.assertEqual(func((1900, 1, 1, 0, 0, 0, -1, 1, -1)), func((1900, 1, 1, 0, 0, 0, +6, 1, -1))) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 0, -2, 1, -1)) # Check day of the year [1, 366] + zero support func((1900, 1, 1, 0, 0, 0, 0, 0, -1)) func((1900, 1, 1, 0, 0, 0, 0, 366, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 0, 0, -1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 0, 0, 367, -1)) def test_strftime_bounding_check(self): self._bounds_checking(lambda tup: time.strftime('', tup)) def test_strftime_format_check(self): # Test that strftime does not crash on invalid format strings # that may trigger a buffer overread. When not triggered, # strftime may succeed or raise ValueError depending on # the platform. for x in [ '', 'A', '%A', '%AA' ]: for y in range(0x0, 0x10): for z in [ '%', 'A%', 'AA%', '%A%', 'A%A%', '%#' ]: try: time.strftime(x * y + z) except ValueError: pass def test_default_values_for_zero(self): # Make sure that using all zeros uses the proper default # values. No test for daylight savings since strftime() does # not change output based on its value and no test for year # because systems vary in their support for year 0. expected = "2000 01 01 00 00 00 1 001" with support.check_warnings(): result = time.strftime("%Y %m %d %H %M %S %w %j", (2000,)+(0,)*8) self.assertEqual(expected, result) def test_strptime(self): # Should be able to go round-trip from strftime to strptime without # raising an exception. tt = time.gmtime(self.t) for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I', 'j', 'm', 'M', 'p', 'S', 'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'): format = '%' + directive strf_output = time.strftime(format, tt) try: time.strptime(strf_output, format) except ValueError: self.fail("conversion specifier %r failed with '%s' input." % (format, strf_output)) def test_strptime_bytes(self): # Make sure only strings are accepted as arguments to strptime. self.assertRaises(TypeError, time.strptime, b'2009', "%Y") self.assertRaises(TypeError, time.strptime, '2009', b'%Y') def test_strptime_exception_context(self): # check that this doesn't chain exceptions needlessly (see #17572) with self.assertRaises(ValueError) as e: time.strptime('', '%D') self.assertIs(e.exception.__suppress_context__, True) # additional check for IndexError branch (issue #19545) with self.assertRaises(ValueError) as e: time.strptime('19', '%Y %') self.assertIs(e.exception.__suppress_context__, True) def test_asctime(self): time.asctime(time.gmtime(self.t)) # Max year is only limited by the size of C int. for bigyear in TIME_MAXYEAR, TIME_MINYEAR: asc = time.asctime((bigyear, 6, 1) + (0,) * 6) self.assertEqual(asc[-len(str(bigyear)):], str(bigyear)) self.assertRaises(OverflowError, time.asctime, (TIME_MAXYEAR + 1,) + (0,) * 8) self.assertRaises(OverflowError, time.asctime, (TIME_MINYEAR - 1,) + (0,) * 8) self.assertRaises(TypeError, time.asctime, 0) self.assertRaises(TypeError, time.asctime, ()) self.assertRaises(TypeError, time.asctime, (0,) * 10) def test_asctime_bounding_check(self): self._bounds_checking(time.asctime) def test_ctime(self): t = time.mktime((1973, 9, 16, 1, 3, 52, 0, 0, -1)) self.assertEqual(time.ctime(t), 'Sun Sep 16 01:03:52 1973') t = time.mktime((2000, 1, 1, 0, 0, 0, 0, 0, -1)) self.assertEqual(time.ctime(t), 'Sat Jan 1 00:00:00 2000') for year in [-100, 100, 1000, 2000, 2050, 10000]: try: testval = time.mktime((year, 1, 10) + (0,)*6) except (ValueError, OverflowError): # If mktime fails, ctime will fail too. This may happen # on some platforms. pass else: self.assertEqual(time.ctime(testval)[20:], str(year)) @unittest.skipUnless(hasattr(time, "tzset"), "time module has no attribute tzset") def test_tzset(self): from os import environ # Epoch time of midnight Dec 25th 2002. Never DST in northern # hemisphere. xmas2002 = 1040774400.0 # These formats are correct for 2002, and possibly future years # This format is the 'standard' as documented at: # http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap08.html # They are also documented in the tzset(3) man page on most Unix # systems. eastern = 'EST+05EDT,M4.1.0,M10.5.0' victoria = 'AEST-10AEDT-11,M10.5.0,M3.5.0' utc='UTC+0' org_TZ = environ.get('TZ',None) try: # Make sure we can switch to UTC time and results are correct # Note that unknown timezones default to UTC. # Note that altzone is undefined in UTC, as there is no DST environ['TZ'] = eastern time.tzset() environ['TZ'] = utc time.tzset() self.assertEqual( time.gmtime(xmas2002), time.localtime(xmas2002) ) self.assertEqual(time.daylight, 0) self.assertEqual(time.timezone, 0) self.assertEqual(time.localtime(xmas2002).tm_isdst, 0) # Make sure we can switch to US/Eastern environ['TZ'] = eastern time.tzset() self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002)) self.assertEqual(time.tzname, ('EST', 'EDT')) self.assertEqual(len(time.tzname), 2) self.assertEqual(time.daylight, 1) self.assertEqual(time.timezone, 18000) self.assertEqual(time.altzone, 14400) self.assertEqual(time.localtime(xmas2002).tm_isdst, 0) self.assertEqual(len(time.tzname), 2) # Now go to the southern hemisphere. environ['TZ'] = victoria time.tzset() self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002)) # Issue #11886: Australian Eastern Standard Time (UTC+10) is called # "EST" (as Eastern Standard Time, UTC-5) instead of "AEST" # (non-DST timezone), and "EDT" instead of "AEDT" (DST timezone), # on some operating systems (e.g. FreeBSD), which is wrong. See for # example this bug: # http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=93810 self.assertIn(time.tzname[0], ('AEST' 'EST'), time.tzname[0]) self.assertTrue(time.tzname[1] in ('AEDT', 'EDT'), str(time.tzname[1])) self.assertEqual(len(time.tzname), 2) self.assertEqual(time.daylight, 1) self.assertEqual(time.timezone, -36000) self.assertEqual(time.altzone, -39600) self.assertEqual(time.localtime(xmas2002).tm_isdst, 1) finally: # Repair TZ environment variable in case any other tests # rely on it. if org_TZ is not None: environ['TZ'] = org_TZ elif 'TZ' in environ: del environ['TZ'] time.tzset() def test_insane_timestamps(self): # It's possible that some platform maps time_t to double, # and that this test will fail there. This test should # exempt such platforms (provided they return reasonable # results!). for func in time.ctime, time.gmtime, time.localtime: for unreasonable in -1e200, 1e200: self.assertRaises(OverflowError, func, unreasonable) def test_ctime_without_arg(self): # Not sure how to check the values, since the clock could tick # at any time. Make sure these are at least accepted and # don't raise errors. time.ctime() time.ctime(None) def test_gmtime_without_arg(self): gt0 = time.gmtime() gt1 = time.gmtime(None) t0 = time.mktime(gt0) t1 = time.mktime(gt1) self.assertAlmostEqual(t1, t0, delta=0.2) def test_localtime_without_arg(self): lt0 = time.localtime() lt1 = time.localtime(None) t0 = time.mktime(lt0) t1 = time.mktime(lt1) self.assertAlmostEqual(t1, t0, delta=0.2) def test_mktime(self): # Issue #1726687 for t in (-2, -1, 0, 1): if sys.platform.startswith('aix') and t == -1: # Issue #11188, #19748: mktime() returns -1 on error. On Linux, # the tm_wday field is used as a sentinel () to detect if -1 is # really an error or a valid timestamp. On AIX, tm_wday is # unchanged even on success and so cannot be used as a # sentinel. continue try: tt = time.localtime(t) except (OverflowError, OSError): pass else: self.assertEqual(time.mktime(tt), t) # Issue #13309: passing extreme values to mktime() or localtime() # borks the glibc's internal timezone data. @unittest.skipUnless(platform.libc_ver()[0] != 'glibc', "disabled because of a bug in glibc. Issue #13309") def test_mktime_error(self): # It may not be possible to reliably make mktime return error # on all platfom. This will make sure that no other exception # than OverflowError is raised for an extreme value. tt = time.gmtime(self.t) tzname = time.strftime('%Z', tt) self.assertNotEqual(tzname, 'LMT') try: time.mktime((-1, 1, 1, 0, 0, 0, -1, -1, -1)) except OverflowError: pass self.assertEqual(time.strftime('%Z', tt), tzname) @unittest.skipUnless(hasattr(time, 'monotonic'), 'need time.monotonic') def test_monotonic(self): # monotonic() should not go backward times = [time.monotonic() for n in range(100)] t1 = times[0] for t2 in times[1:]: self.assertGreaterEqual(t2, t1, "times=%s" % times) t1 = t2 # monotonic() includes time elapsed during a sleep t1 = time.monotonic() time.sleep(0.5) t2 = time.monotonic() dt = t2 - t1 self.assertGreater(t2, t1) # Issue #20101: On some Windows machines, dt may be slightly low self.assertTrue(0.45 <= dt <= 1.0, dt) # monotonic() is a monotonic but non adjustable clock info = time.get_clock_info('monotonic') self.assertTrue(info.monotonic) self.assertFalse(info.adjustable) def test_perf_counter(self): time.perf_counter() def test_process_time(self): # process_time() should not include time spend during a sleep start = time.process_time() time.sleep(0.100) stop = time.process_time() # use 20 ms because process_time() has usually a resolution of 15 ms # on Windows self.assertLess(stop - start, 0.020) info = time.get_clock_info('process_time') self.assertTrue(info.monotonic) self.assertFalse(info.adjustable) @unittest.skipUnless(hasattr(time, 'monotonic'), 'need time.monotonic') @unittest.skipUnless(hasattr(time, 'clock_settime'), 'need time.clock_settime') def test_monotonic_settime(self): t1 = time.monotonic() realtime = time.clock_gettime(time.CLOCK_REALTIME) # jump backward with an offset of 1 hour try: time.clock_settime(time.CLOCK_REALTIME, realtime - 3600) except PermissionError as err: self.skipTest(err) t2 = time.monotonic() time.clock_settime(time.CLOCK_REALTIME, realtime) # monotonic must not be affected by system clock updates self.assertGreaterEqual(t2, t1) def test_localtime_failure(self): # Issue #13847: check for localtime() failure invalid_time_t = None for time_t in (-1, 2**30, 2**33, 2**60): try: time.localtime(time_t) except OverflowError: self.skipTest("need 64-bit time_t") except OSError: invalid_time_t = time_t break if invalid_time_t is None: self.skipTest("unable to find an invalid time_t value") self.assertRaises(OSError, time.localtime, invalid_time_t) self.assertRaises(OSError, time.ctime, invalid_time_t) def test_get_clock_info(self): clocks = ['clock', 'perf_counter', 'process_time', 'time'] if hasattr(time, 'monotonic'): clocks.append('monotonic') for name in clocks: info = time.get_clock_info(name) #self.assertIsInstance(info, dict) self.assertIsInstance(info.implementation, str) self.assertNotEqual(info.implementation, '') self.assertIsInstance(info.monotonic, bool) self.assertIsInstance(info.resolution, float) # 0.0 < resolution <= 1.0 self.assertGreater(info.resolution, 0.0) self.assertLessEqual(info.resolution, 1.0) self.assertIsInstance(info.adjustable, bool) self.assertRaises(ValueError, time.get_clock_info, 'xxx') class TestLocale(unittest.TestCase): def setUp(self): self.oldloc = locale.setlocale(locale.LC_ALL) def tearDown(self): locale.setlocale(locale.LC_ALL, self.oldloc) def test_bug_3061(self): try: tmp = locale.setlocale(locale.LC_ALL, "fr_FR") except locale.Error: self.skipTest('could not set locale.LC_ALL to fr_FR') # This should not cause an exception time.strftime("%B", (2009,2,1,0,0,0,0,0,0)) class _TestAsctimeYear: _format = '%d' def yearstr(self, y): return time.asctime((y,) + (0,) * 8).split()[-1] def test_large_year(self): # Check that it doesn't crash for year > 9999 self.assertEqual(self.yearstr(12345), '12345') self.assertEqual(self.yearstr(123456789), '123456789') class _TestStrftimeYear: # Issue 13305: For years < 1000, the value is not always # padded to 4 digits across platforms. The C standard # assumes year >= 1900, so it does not specify the number # of digits. if time.strftime('%Y', (1,) + (0,) * 8) == '0001': _format = '%04d' else: _format = '%d' def yearstr(self, y): return time.strftime('%Y', (y,) + (0,) * 8) def test_4dyear(self): # Check that we can return the zero padded value. if self._format == '%04d': self.test_year('%04d') else: def year4d(y): return time.strftime('%4Y', (y,) + (0,) * 8) self.test_year('%04d', func=year4d) def skip_if_not_supported(y): msg = "strftime() is limited to [1; 9999] with Visual Studio" # Check that it doesn't crash for year > 9999 try: time.strftime('%Y', (y,) + (0,) * 8) except ValueError: cond = False else: cond = True return unittest.skipUnless(cond, msg) @skip_if_not_supported(10000) def test_large_year(self): return super().test_large_year() @skip_if_not_supported(0) def test_negative(self): return super().test_negative() del skip_if_not_supported class _Test4dYear: _format = '%d' def test_year(self, fmt=None, func=None): fmt = fmt or self._format func = func or self.yearstr self.assertEqual(func(1), fmt % 1) self.assertEqual(func(68), fmt % 68) self.assertEqual(func(69), fmt % 69) self.assertEqual(func(99), fmt % 99) self.assertEqual(func(999), fmt % 999) self.assertEqual(func(9999), fmt % 9999) def test_large_year(self): self.assertEqual(self.yearstr(12345), '12345') self.assertEqual(self.yearstr(123456789), '123456789') self.assertEqual(self.yearstr(TIME_MAXYEAR), str(TIME_MAXYEAR)) self.assertRaises(OverflowError, self.yearstr, TIME_MAXYEAR + 1) def test_negative(self): self.assertEqual(self.yearstr(-1), self._format % -1) self.assertEqual(self.yearstr(-1234), '-1234') self.assertEqual(self.yearstr(-123456), '-123456') self.assertEqual(self.yearstr(-123456789), str(-123456789)) self.assertEqual(self.yearstr(-1234567890), str(-1234567890)) self.assertEqual(self.yearstr(TIME_MINYEAR + 1900), str(TIME_MINYEAR + 1900)) # Issue #13312: it may return wrong value for year < TIME_MINYEAR + 1900 # Skip the value test, but check that no error is raised self.yearstr(TIME_MINYEAR) # self.assertEqual(self.yearstr(TIME_MINYEAR), str(TIME_MINYEAR)) self.assertRaises(OverflowError, self.yearstr, TIME_MINYEAR - 1) class TestAsctime4dyear(_TestAsctimeYear, _Test4dYear, unittest.TestCase): pass class TestStrftime4dyear(_TestStrftimeYear, _Test4dYear, unittest.TestCase): pass class TestPytime(unittest.TestCase): @unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support") def test_localtime_timezone(self): # Get the localtime and examine it for the offset and zone. lt = time.localtime() self.assertTrue(hasattr(lt, "tm_gmtoff")) self.assertTrue(hasattr(lt, "tm_zone")) # See if the offset and zone are similar to the module # attributes. if lt.tm_gmtoff is None: self.assertTrue(not hasattr(time, "timezone")) else: self.assertEqual(lt.tm_gmtoff, -[time.timezone, time.altzone][lt.tm_isdst]) if lt.tm_zone is None: self.assertTrue(not hasattr(time, "tzname")) else: self.assertEqual(lt.tm_zone, time.tzname[lt.tm_isdst]) # Try and make UNIX times from the localtime and a 9-tuple # created from the localtime. Test to see that the times are # the same. t = time.mktime(lt); t9 = time.mktime(lt[:9]) self.assertEqual(t, t9) # Make localtimes from the UNIX times and compare them to # the original localtime, thus making a round trip. new_lt = time.localtime(t); new_lt9 = time.localtime(t9) self.assertEqual(new_lt, lt) self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff) self.assertEqual(new_lt.tm_zone, lt.tm_zone) self.assertEqual(new_lt9, lt) self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff) self.assertEqual(new_lt9.tm_zone, lt.tm_zone) @unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support") def test_strptime_timezone(self): t = time.strptime("UTC", "%Z") self.assertEqual(t.tm_zone, 'UTC') t = time.strptime("+0500", "%z") self.assertEqual(t.tm_gmtoff, 5 * 3600) @unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support") def test_short_times(self): import pickle # Load a short time structure using pickle. st = b"ctime\nstruct_time\np0\n((I2007\nI8\nI11\nI1\nI24\nI49\nI5\nI223\nI1\ntp1\n(dp2\ntp3\nRp4\n." lt = pickle.loads(st) self.assertIs(lt.tm_gmtoff, None) self.assertIs(lt.tm_zone, None) @unittest.skipIf(_testcapi is None, 'need the _testcapi module') class CPyTimeTestCase: """ Base class to test the C _PyTime_t API. """ OVERFLOW_SECONDS = None def setUp(self): from _testcapi import SIZEOF_TIME_T bits = SIZEOF_TIME_T * 8 - 1 self.time_t_min = -2 ** bits self.time_t_max = 2 ** bits - 1 def time_t_filter(self, seconds): return (self.time_t_min <= seconds <= self.time_t_max) def _rounding_values(self, use_float): "Build timestamps used to test rounding." units = [1, US_TO_NS, MS_TO_NS, SEC_TO_NS] if use_float: # picoseconds are only tested to pytime_converter accepting floats units.append(1e-3) values = ( # small values 1, 2, 5, 7, 123, 456, 1234, # 10^k - 1 9, 99, 999, 9999, 99999, 999999, # test half even rounding near 0.5, 1.5, 2.5, 3.5, 4.5 499, 500, 501, 1499, 1500, 1501, 2500, 3500, 4500, ) ns_timestamps = [0] for unit in units: for value in values: ns = value * unit ns_timestamps.extend((-ns, ns)) for pow2 in (0, 5, 10, 15, 22, 23, 24, 30, 33): ns = (2 ** pow2) * SEC_TO_NS ns_timestamps.extend(( -ns-1, -ns, -ns+1, ns-1, ns, ns+1 )) for seconds in (_testcapi.INT_MIN, _testcapi.INT_MAX): ns_timestamps.append(seconds * SEC_TO_NS) if use_float: # numbers with an exact representation in IEEE 754 (base 2) for pow2 in (3, 7, 10, 15): ns = 2.0 ** (-pow2) ns_timestamps.extend((-ns, ns)) # seconds close to _PyTime_t type limit ns = (2 ** 63 // SEC_TO_NS) * SEC_TO_NS ns_timestamps.extend((-ns, ns)) return ns_timestamps def _check_rounding(self, pytime_converter, expected_func, use_float, unit_to_sec, value_filter=None): def convert_values(ns_timestamps): if use_float: unit_to_ns = SEC_TO_NS / float(unit_to_sec) values = [ns / unit_to_ns for ns in ns_timestamps] else: unit_to_ns = SEC_TO_NS // unit_to_sec values = [ns // unit_to_ns for ns in ns_timestamps] if value_filter: values = filter(value_filter, values) # remove duplicates and sort return sorted(set(values)) # test rounding ns_timestamps = self._rounding_values(use_float) valid_values = convert_values(ns_timestamps) for time_rnd, decimal_rnd in ROUNDING_MODES : context = decimal.getcontext() context.rounding = decimal_rnd for value in valid_values: debug_info = {'value': value, 'rounding': decimal_rnd} try: result = pytime_converter(value, time_rnd) expected = expected_func(value) except Exception as exc: self.fail("Error on timestamp conversion: %s" % debug_info) self.assertEqual(result, expected, debug_info) # test overflow ns = self.OVERFLOW_SECONDS * SEC_TO_NS ns_timestamps = (-ns, ns) overflow_values = convert_values(ns_timestamps) for time_rnd, _ in ROUNDING_MODES : for value in overflow_values: debug_info = {'value': value, 'rounding': time_rnd} with self.assertRaises(OverflowError, msg=debug_info): pytime_converter(value, time_rnd) def check_int_rounding(self, pytime_converter, expected_func, unit_to_sec=1, value_filter=None): self._check_rounding(pytime_converter, expected_func, False, unit_to_sec, value_filter) def check_float_rounding(self, pytime_converter, expected_func, unit_to_sec=1, value_filter=None): self._check_rounding(pytime_converter, expected_func, True, unit_to_sec, value_filter) def decimal_round(self, x): d = decimal.Decimal(x) d = d.quantize(1) return int(d) class TestCPyTime(CPyTimeTestCase, unittest.TestCase): """ Test the C _PyTime_t API. """ # _PyTime_t is a 64-bit signed integer OVERFLOW_SECONDS = math.ceil((2**63 + 1) / SEC_TO_NS) def test_FromSeconds(self): from _testcapi import PyTime_FromSeconds # PyTime_FromSeconds() expects a C int, reject values out of range def c_int_filter(secs): return (_testcapi.INT_MIN <= secs <= _testcapi.INT_MAX) self.check_int_rounding(lambda secs, rnd: PyTime_FromSeconds(secs), lambda secs: secs * SEC_TO_NS, value_filter=c_int_filter) def test_FromSecondsObject(self): from _testcapi import PyTime_FromSecondsObject self.check_int_rounding( PyTime_FromSecondsObject, lambda secs: secs * SEC_TO_NS) self.check_float_rounding( PyTime_FromSecondsObject, lambda ns: self.decimal_round(ns * SEC_TO_NS)) def test_AsSecondsDouble(self): from _testcapi import PyTime_AsSecondsDouble def float_converter(ns): if abs(ns) % SEC_TO_NS == 0: return float(ns // SEC_TO_NS) else: return float(ns) / SEC_TO_NS self.check_int_rounding(lambda ns, rnd: PyTime_AsSecondsDouble(ns), float_converter, NS_TO_SEC) def create_decimal_converter(self, denominator): denom = decimal.Decimal(denominator) def converter(value): d = decimal.Decimal(value) / denom return self.decimal_round(d) return converter def test_AsTimeval(self): from _testcapi import PyTime_AsTimeval us_converter = self.create_decimal_converter(US_TO_NS) def timeval_converter(ns): us = us_converter(ns) return divmod(us, SEC_TO_US) if sys.platform == 'win32': from _testcapi import LONG_MIN, LONG_MAX # On Windows, timeval.tv_sec type is a C long def seconds_filter(secs): return LONG_MIN <= secs <= LONG_MAX else: seconds_filter = self.time_t_filter self.check_int_rounding(PyTime_AsTimeval, timeval_converter, NS_TO_SEC, value_filter=seconds_filter) @unittest.skipUnless(hasattr(_testcapi, 'PyTime_AsTimespec'), 'need _testcapi.PyTime_AsTimespec') def test_AsTimespec(self): from _testcapi import PyTime_AsTimespec def timespec_converter(ns): return divmod(ns, SEC_TO_NS) self.check_int_rounding(lambda ns, rnd: PyTime_AsTimespec(ns), timespec_converter, NS_TO_SEC, value_filter=self.time_t_filter) def test_AsMilliseconds(self): from _testcapi import PyTime_AsMilliseconds self.check_int_rounding(PyTime_AsMilliseconds, self.create_decimal_converter(MS_TO_NS), NS_TO_SEC) def test_AsMicroseconds(self): from _testcapi import PyTime_AsMicroseconds self.check_int_rounding(PyTime_AsMicroseconds, self.create_decimal_converter(US_TO_NS), NS_TO_SEC) class TestOldPyTime(CPyTimeTestCase, unittest.TestCase): """ Test the old C _PyTime_t API: _PyTime_ObjectToXXX() functions. """ # time_t is a 32-bit or 64-bit signed integer OVERFLOW_SECONDS = 2 ** 64 def test_object_to_time_t(self): from _testcapi import pytime_object_to_time_t self.check_int_rounding(pytime_object_to_time_t, lambda secs: secs, value_filter=self.time_t_filter) self.check_float_rounding(pytime_object_to_time_t, self.decimal_round, value_filter=self.time_t_filter) def create_converter(self, sec_to_unit): def converter(secs): floatpart, intpart = math.modf(secs) intpart = int(intpart) floatpart *= sec_to_unit floatpart = self.decimal_round(floatpart) if floatpart < 0: floatpart += sec_to_unit intpart -= 1 elif floatpart >= sec_to_unit: floatpart -= sec_to_unit intpart += 1 return (intpart, floatpart) return converter def test_object_to_timeval(self): from _testcapi import pytime_object_to_timeval self.check_int_rounding(pytime_object_to_timeval, lambda secs: (secs, 0), value_filter=self.time_t_filter) self.check_float_rounding(pytime_object_to_timeval, self.create_converter(SEC_TO_US), value_filter=self.time_t_filter) def test_object_to_timespec(self): from _testcapi import pytime_object_to_timespec self.check_int_rounding(pytime_object_to_timespec, lambda secs: (secs, 0), value_filter=self.time_t_filter) self.check_float_rounding(pytime_object_to_timespec, self.create_converter(SEC_TO_NS), value_filter=self.time_t_filter) if __name__ == "__main__": unittest.main()