/* libffi support for Altera Nios II. Copyright (c) 2013 Mentor Graphics. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include /* The Nios II Processor Reference Handbook defines the procedure call ABI as follows. Arguments are passed as if a structure containing the types of the arguments were constructed. The first 16 bytes are passed in r4 through r7, the remainder on the stack. The first 16 bytes of a function taking variable arguments are passed in r4-r7 in the same way. Return values of types up to 8 bytes are returned in r2 and r3. For return values greater than 8 bytes, the caller must allocate memory for the result and pass the address as if it were argument 0. While this isn't specified explicitly in the ABI documentation, GCC promotes integral arguments smaller than int size to 32 bits. Also of note, the ABI specifies that all structure objects are aligned to 32 bits even if all their fields have a smaller natural alignment. See FFI_AGGREGATE_ALIGNMENT. */ /* Declare the assembly language hooks. */ extern UINT64 ffi_call_sysv (void (*) (char *, extended_cif *), extended_cif *, unsigned, void (*fn) (void)); extern void ffi_closure_sysv (void); /* Perform machine-dependent cif processing. */ ffi_status ffi_prep_cif_machdep (ffi_cif *cif) { /* We always want at least 16 bytes in the parameter block since it simplifies the low-level call function. Also round the parameter block size up to a multiple of 4 bytes to preserve 32-bit alignment of the stack pointer. */ if (cif->bytes < 16) cif->bytes = 16; else cif->bytes = (cif->bytes + 3) & ~3; return FFI_OK; } /* ffi_prep_args is called by the assembly routine to transfer arguments to the stack using the pointers in the ecif array. Note that the stack buffer is big enough to fit all the arguments, but the first 16 bytes will be copied to registers for the actual call. */ void ffi_prep_args (char *stack, extended_cif *ecif) { char *argp = stack; unsigned int i; /* The implicit return value pointer is passed as if it were a hidden first argument. */ if (ecif->cif->rtype->type == FFI_TYPE_STRUCT && ecif->cif->rtype->size > 8) { (*(void **) argp) = ecif->rvalue; argp += 4; } for (i = 0; i < ecif->cif->nargs; i++) { void *avalue = ecif->avalue[i]; ffi_type *atype = ecif->cif->arg_types[i]; size_t size = atype->size; size_t alignment = atype->alignment; /* Align argp as appropriate for the argument type. */ if ((alignment - 1) & (unsigned) argp) argp = (char *) ALIGN (argp, alignment); /* Copy the argument, promoting integral types smaller than a word to word size. */ if (size < sizeof (int)) { size = sizeof (int); switch (atype->type) { case FFI_TYPE_SINT8: *(signed int *) argp = (signed int) *(SINT8 *) avalue; break; case FFI_TYPE_UINT8: *(unsigned int *) argp = (unsigned int) *(UINT8 *) avalue; break; case FFI_TYPE_SINT16: *(signed int *) argp = (signed int) *(SINT16 *) avalue; break; case FFI_TYPE_UINT16: *(unsigned int *) argp = (unsigned int) *(UINT16 *) avalue; break; case FFI_TYPE_STRUCT: memcpy (argp, avalue, atype->size); break; default: FFI_ASSERT(0); } } else if (size == sizeof (int)) *(unsigned int *) argp = (unsigned int) *(UINT32 *) avalue; else memcpy (argp, avalue, size); argp += size; } } /* Call FN using the prepared CIF. RVALUE points to space allocated by the caller for the return value, and AVALUE is an array of argument pointers. */ void ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue) { extended_cif ecif; UINT64 result; /* If bigret is true, this is the case where a return value of larger than 8 bytes is handled by being passed by reference as an implicit argument. */ int bigret = (cif->rtype->type == FFI_TYPE_STRUCT && cif->rtype->size > 8); ecif.cif = cif; ecif.avalue = avalue; /* Allocate space for return value if this is the pass-by-reference case and the caller did not provide a buffer. */ if (rvalue == NULL && bigret) ecif.rvalue = alloca (cif->rtype->size); else ecif.rvalue = rvalue; result = ffi_call_sysv (ffi_prep_args, &ecif, cif->bytes, fn); /* Now result contains the 64 bit contents returned from fn in r2 and r3. Copy the value of the appropriate size to the user-provided rvalue buffer. */ if (rvalue && !bigret) switch (cif->rtype->size) { case 1: *(UINT8 *)rvalue = (UINT8) result; break; case 2: *(UINT16 *)rvalue = (UINT16) result; break; case 4: *(UINT32 *)rvalue = (UINT32) result; break; case 8: *(UINT64 *)rvalue = (UINT64) result; break; default: memcpy (rvalue, (void *)&result, cif->rtype->size); break; } } /* This function is invoked from the closure trampoline to invoke CLOSURE with argument block ARGS. Parse ARGS according to CLOSURE->cfi and invoke CLOSURE->fun. */ static UINT64 ffi_closure_helper (unsigned char *args, ffi_closure *closure) { ffi_cif *cif = closure->cif; unsigned char *argp = args; void **parsed_args = alloca (cif->nargs * sizeof (void *)); UINT64 result; void *retptr; unsigned int i; /* First figure out what to do about the return type. If this is the big-structure-return case, the first arg is the hidden return buffer allocated by the caller. */ if (cif->rtype->type == FFI_TYPE_STRUCT && cif->rtype->size > 8) { retptr = *((void **) argp); argp += 4; } else retptr = (void *) &result; /* Fill in the array of argument pointers. */ for (i = 0; i < cif->nargs; i++) { size_t size = cif->arg_types[i]->size; size_t alignment = cif->arg_types[i]->alignment; /* Align argp as appropriate for the argument type. */ if ((alignment - 1) & (unsigned) argp) argp = (char *) ALIGN (argp, alignment); /* Arguments smaller than an int are promoted to int. */ if (size < sizeof (int)) size = sizeof (int); /* Store the pointer. */ parsed_args[i] = argp; argp += size; } /* Call the user-supplied function. */ (closure->fun) (cif, retptr, parsed_args, closure->user_data); return result; } /* Initialize CLOSURE with a trampoline to call FUN with CIF and USER_DATA. */ ffi_status ffi_prep_closure_loc (ffi_closure* closure, ffi_cif* cif, void (*fun) (ffi_cif*, void*, void**, void*), void *user_data, void *codeloc) { unsigned int *tramp = (unsigned int *) &closure->tramp[0]; int i; if (cif->abi != FFI_SYSV) return FFI_BAD_ABI; /* The trampoline looks like: movhi r8, %hi(ffi_closure_sysv) ori r8, r8, %lo(ffi_closure_sysv) movhi r9, %hi(ffi_closure_helper) ori r0, r9, %lo(ffi_closure_helper) movhi r10, %hi(closure) ori r10, r10, %lo(closure) jmp r8 and then ffi_closure_sysv retrieves the closure pointer out of r10 in addition to the arguments passed in the normal way for the call, and invokes ffi_closure_helper. We encode the pointer to ffi_closure_helper in the trampoline because making a PIC call to it in ffi_closure_sysv would be messy (it would have to indirect through the GOT). */ #define HI(x) ((((unsigned int) (x)) >> 16) & 0xffff) #define LO(x) (((unsigned int) (x)) & 0xffff) tramp[0] = (0 << 27) | (8 << 22) | (HI (ffi_closure_sysv) << 6) | 0x34; tramp[1] = (8 << 27) | (8 << 22) | (LO (ffi_closure_sysv) << 6) | 0x14; tramp[2] = (0 << 27) | (9 << 22) | (HI (ffi_closure_helper) << 6) | 0x34; tramp[3] = (9 << 27) | (9 << 22) | (LO (ffi_closure_helper) << 6) | 0x14; tramp[4] = (0 << 27) | (10 << 22) | (HI (closure) << 6) | 0x34; tramp[5] = (10 << 27) | (10 << 22) | (LO (closure) << 6) | 0x14; tramp[6] = (8 << 27) | (0x0d << 11) | 0x3a; #undef HI #undef LO /* Flush the caches. See Example 9-4 in the Nios II Software Developer's Handbook. */ for (i = 0; i < 7; i++) asm volatile ("flushd 0(%0); flushi %0" :: "r"(tramp + i) : "memory"); asm volatile ("flushp" ::: "memory"); closure->cif = cif; closure->fun = fun; closure->user_data = user_data; return FFI_OK; }