/* * Copyright (c) 2008-2016 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include #include "numbertheory.h" #include "sixstep.h" #include "transpose.h" #include "umodarith.h" #include "fourstep.h" /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the form 3 * 2**n (See literature/matrix-transform.txt). */ #ifndef PPRO static inline void std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3], mpd_uint_t umod) { mpd_uint_t r1, r2; mpd_uint_t w; mpd_uint_t s, tmp; /* k = 0 -> w = 1 */ s = *x1; s = addmod(s, *x2, umod); s = addmod(s, *x3, umod); r1 = s; /* k = 1 */ s = *x1; w = w3table[1]; tmp = MULMOD(*x2, w); s = addmod(s, tmp, umod); w = w3table[2]; tmp = MULMOD(*x3, w); s = addmod(s, tmp, umod); r2 = s; /* k = 2 */ s = *x1; w = w3table[2]; tmp = MULMOD(*x2, w); s = addmod(s, tmp, umod); w = w3table[1]; tmp = MULMOD(*x3, w); s = addmod(s, tmp, umod); *x3 = s; *x2 = r2; *x1 = r1; } #else /* PPRO */ static inline void ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3], mpd_uint_t umod, double *dmod, uint32_t dinvmod[3]) { mpd_uint_t r1, r2; mpd_uint_t w; mpd_uint_t s, tmp; /* k = 0 -> w = 1 */ s = *x1; s = addmod(s, *x2, umod); s = addmod(s, *x3, umod); r1 = s; /* k = 1 */ s = *x1; w = w3table[1]; tmp = ppro_mulmod(*x2, w, dmod, dinvmod); s = addmod(s, tmp, umod); w = w3table[2]; tmp = ppro_mulmod(*x3, w, dmod, dinvmod); s = addmod(s, tmp, umod); r2 = s; /* k = 2 */ s = *x1; w = w3table[2]; tmp = ppro_mulmod(*x2, w, dmod, dinvmod); s = addmod(s, tmp, umod); w = w3table[1]; tmp = ppro_mulmod(*x3, w, dmod, dinvmod); s = addmod(s, tmp, umod); *x3 = s; *x2 = r2; *x1 = r1; } #endif /* forward transform, sign = -1; transform length = 3 * 2**n */ int four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { mpd_size_t R = 3; /* number of rows */ mpd_size_t C = n / 3; /* number of columns */ mpd_uint_t w3table[3]; mpd_uint_t kernel, w0, w1, wstep; mpd_uint_t *s, *p0, *p1, *p2; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_size_t i, k; assert(n >= 48); assert(n <= 3*MPD_MAXTRANSFORM_2N); /* Length R transform on the columns. */ SETMODULUS(modnum); _mpd_init_w3table(w3table, -1, modnum); for (p0=a, p1=p0+C, p2=p0+2*C; p0= 48); assert(n <= 3*MPD_MAXTRANSFORM_2N); #if 0 /* An unordered transform is sufficient for convolution. */ /* Transpose the matrix, producing an R*C matrix. */ transpose_3xpow2(a, C, R); #endif /* Length C transform on the rows. */ for (s = a; s < a+n; s += C) { if (!inv_six_step_fnt(s, C, modnum)) { return 0; } } /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ SETMODULUS(modnum); kernel = _mpd_getkernel(n, 1, modnum); for (i = 1; i < R; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* Length R transform on the columns. */ _mpd_init_w3table(w3table, 1, modnum); for (p0=a, p1=p0+C, p2=p0+2*C; p0