From 242d67fb17619670d9b757c442dcf2e26d8478a1 Mon Sep 17 00:00:00 2001 From: weidai Date: Thu, 20 Jan 2005 04:19:35 +0000 Subject: changes done for FIPS-140 lab code drop git-svn-id: svn://svn.code.sf.net/p/cryptopp/code/trunk/c5@195 57ff6487-cd31-0410-9ec3-f628ee90f5f0 --- nbtheory.h | 58 +++++++++++++++++++++++++++++----------------------------- 1 file changed, 29 insertions(+), 29 deletions(-) (limited to 'nbtheory.h') diff --git a/nbtheory.h b/nbtheory.h index c731c50..43e8ebd 100644 --- a/nbtheory.h +++ b/nbtheory.h @@ -9,41 +9,41 @@ NAMESPACE_BEGIN(CryptoPP) // obtain pointer to small prime table and get its size -CRYPTOPP_DLL const word16 * GetPrimeTable(unsigned int &size); +CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size); // ************ primality testing **************** // generate a provable prime -CRYPTOPP_DLL Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); -CRYPTOPP_DLL Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); +CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); +CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); -CRYPTOPP_DLL bool IsSmallPrime(const Integer &p); +CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p); // returns true if p is divisible by some prime less than bound // bound not be greater than the largest entry in the prime table -CRYPTOPP_DLL bool TrialDivision(const Integer &p, unsigned bound); +CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound); // returns true if p is NOT divisible by small primes -CRYPTOPP_DLL bool SmallDivisorsTest(const Integer &p); +CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p); // These is no reason to use these two, use the ones below instead -CRYPTOPP_DLL bool IsFermatProbablePrime(const Integer &n, const Integer &b); -CRYPTOPP_DLL bool IsLucasProbablePrime(const Integer &n); +CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b); +CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n); -CRYPTOPP_DLL bool IsStrongProbablePrime(const Integer &n, const Integer &b); -CRYPTOPP_DLL bool IsStrongLucasProbablePrime(const Integer &n); +CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b); +CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n); // Rabin-Miller primality test, i.e. repeating the strong probable prime test // for several rounds with random bases -CRYPTOPP_DLL bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds); +CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds); // primality test, used to generate primes -CRYPTOPP_DLL bool IsPrime(const Integer &p); +CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p); // more reliable than IsPrime(), used to verify primes generated by others -CRYPTOPP_DLL bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); +CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); -class PrimeSelector +class CRYPTOPP_DLL PrimeSelector { public: const PrimeSelector *GetSelectorPointer() const {return this;} @@ -52,12 +52,12 @@ public: // use a fast sieve to find the first probable prime in {x | p<=x<=max and x%mod==equiv} // returns true iff successful, value of p is undefined if no such prime exists -CRYPTOPP_DLL bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); +CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); -CRYPTOPP_DLL unsigned int PrimeSearchInterval(const Integer &max); +CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max); CRYPTOPP_DLL AlgorithmParameters, Integer>, Integer> - MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); + CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); // ********** other number theoretic functions ************ @@ -71,39 +71,39 @@ inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b {return a.InverseMod(b);} // use Chinese Remainder Theorem to calculate x given x mod p and x mod q -CRYPTOPP_DLL Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q); +CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q); // use this one if u = inverse of p mod q has been precalculated -CRYPTOPP_DLL Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); +CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); // if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise // check a number theory book for what Jacobi symbol means when b is not prime -CRYPTOPP_DLL int Jacobi(const Integer &a, const Integer &b); +CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b); // calculates the Lucas function V_e(p, 1) mod n -CRYPTOPP_DLL Integer Lucas(const Integer &e, const Integer &p, const Integer &n); +CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n); // calculates x such that m==Lucas(e, x, p*q), p q primes -CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q); +CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q); // use this one if u=inverse of p mod q has been precalculated -CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); +CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m) {return a_exp_b_mod_c(a, e, m);} // returns x such that x*x%p == a, p prime -CRYPTOPP_DLL Integer ModularSquareRoot(const Integer &a, const Integer &p); +CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p); // returns x such that a==ModularExponentiation(x, e, p*q), p q primes, // and e relatively prime to (p-1)*(q-1) -CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &e, const Integer &p, const Integer &q); +CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &e, const Integer &p, const Integer &q); // use this one if dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1)) // and u=inverse of p mod q have been precalculated -CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); +CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); // find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime // returns true if solutions exist -CRYPTOPP_DLL bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); +CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); // returns log base 2 of estimated number of operations to calculate discrete log or factor a number -CRYPTOPP_DLL unsigned int DiscreteLogWorkFactor(unsigned int bitlength); -CRYPTOPP_DLL unsigned int FactoringWorkFactor(unsigned int bitlength); +CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength); +CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength); // ******************************************************** -- cgit v1.2.1