#ifndef CRYPTOPP_ELGAMAL_H #define CRYPTOPP_ELGAMAL_H #include "modexppc.h" #include "dsa.h" NAMESPACE_BEGIN(CryptoPP) class CRYPTOPP_NO_VTABLE ElGamalBase : public DL_KeyAgreementAlgorithm_DH, public DL_KeyDerivationAlgorithm, public DL_SymmetricEncryptionAlgorithm { public: void Derive(const DL_GroupParameters &groupParams, byte *derivedKey, size_t derivedLength, const Integer &agreedElement, const Integer &ephemeralPublicKey, const NameValuePairs &derivationParams) const { agreedElement.Encode(derivedKey, derivedLength); } size_t GetSymmetricKeyLength(size_t plainTextLength) const { return GetGroupParameters().GetModulus().ByteCount(); } size_t GetSymmetricCiphertextLength(size_t plainTextLength) const { unsigned int len = GetGroupParameters().GetModulus().ByteCount(); if (plainTextLength <= GetMaxSymmetricPlaintextLength(len)) return len; else return 0; } size_t GetMaxSymmetricPlaintextLength(size_t cipherTextLength) const { unsigned int len = GetGroupParameters().GetModulus().ByteCount(); if (cipherTextLength == len) return STDMIN(255U, len-3); else return 0; } void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plainText, size_t plainTextLength, byte *cipherText, const NameValuePairs ¶meters) const { const Integer &p = GetGroupParameters().GetModulus(); unsigned int modulusLen = p.ByteCount(); SecByteBlock block(modulusLen-1); rng.GenerateBlock(block, modulusLen-2-plainTextLength); memcpy(block+modulusLen-2-plainTextLength, plainText, plainTextLength); block[modulusLen-2] = (byte)plainTextLength; a_times_b_mod_c(Integer(key, modulusLen), Integer(block, modulusLen-1), p).Encode(cipherText, modulusLen); } DecodingResult SymmetricDecrypt(const byte *key, const byte *cipherText, size_t cipherTextLength, byte *plainText, const NameValuePairs ¶meters) const { const Integer &p = GetGroupParameters().GetModulus(); unsigned int modulusLen = p.ByteCount(); if (cipherTextLength != modulusLen) return DecodingResult(); Integer m = a_times_b_mod_c(Integer(cipherText, modulusLen), Integer(key, modulusLen).InverseMod(p), p); m.Encode(plainText, 1); unsigned int plainTextLength = plainText[0]; if (plainTextLength > GetMaxSymmetricPlaintextLength(modulusLen)) return DecodingResult(); m >>= 8; m.Encode(plainText, plainTextLength); return DecodingResult(plainTextLength); } virtual const DL_GroupParameters_GFP & GetGroupParameters() const =0; }; template class ElGamalObjectImpl : public DL_ObjectImplBase, public ElGamalBase { public: size_t FixedMaxPlaintextLength() const {return this->MaxPlaintextLength(FixedCiphertextLength());} size_t FixedCiphertextLength() const {return this->CiphertextLength(0);} const DL_GroupParameters_GFP & GetGroupParameters() const {return this->GetKey().GetGroupParameters();} DecodingResult FixedLengthDecrypt(RandomNumberGenerator &rng, const byte *cipherText, byte *plainText) const {return Decrypt(rng, cipherText, FixedCiphertextLength(), plainText);} protected: const DL_KeyAgreementAlgorithm & GetKeyAgreementAlgorithm() const {return *this;} const DL_KeyDerivationAlgorithm & GetKeyDerivationAlgorithm() const {return *this;} const DL_SymmetricEncryptionAlgorithm & GetSymmetricEncryptionAlgorithm() const {return *this;} }; struct ElGamalKeys { typedef DL_CryptoKeys_GFP::GroupParameters GroupParameters; typedef DL_PrivateKey_GFP_OldFormat PrivateKey; typedef DL_PublicKey_GFP_OldFormat PublicKey; }; //! ElGamal encryption scheme with non-standard padding struct ElGamal { typedef DL_CryptoSchemeOptions SchemeOptions; static const char * StaticAlgorithmName() {return "ElgamalEnc/Crypto++Padding";} typedef SchemeOptions::GroupParameters GroupParameters; //! implements PK_Encryptor interface typedef PK_FinalTemplate, SchemeOptions, SchemeOptions::PublicKey> > Encryptor; //! implements PK_Decryptor interface typedef PK_FinalTemplate, SchemeOptions, SchemeOptions::PrivateKey> > Decryptor; }; typedef ElGamal::Encryptor ElGamalEncryptor; typedef ElGamal::Decryptor ElGamalDecryptor; NAMESPACE_END #endif