// gcm.cpp - written and placed in the public domain by Wei Dai // use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM gcm.cpp" to generate MASM code #include "pch.h" #ifndef CRYPTOPP_IMPORTS #ifndef CRYPTOPP_GENERATE_X64_MASM #include "gcm.h" #include "cpu.h" NAMESPACE_BEGIN(CryptoPP) word16 GCM_Base::s_reductionTable[256]; volatile bool GCM_Base::s_reductionTableInitialized = false; void GCM_Base::GCTR::IncrementCounterBy256() { IncrementCounterByOne(m_counterArray+BlockSize()-4, 3); } #if 0 // preserved for testing void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c) { word64 Z0=0, Z1=0, V0, V1; typedef BlockGetAndPut Block; Block::Get(a)(V0)(V1); for (int i=0; i<16; i++) { for (int j=0x80; j!=0; j>>=1) { int x = b[i] & j; Z0 ^= x ? V0 : 0; Z1 ^= x ? V1 : 0; x = (int)V1 & 1; V1 = (V1>>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); } } Block::Put(NULL, c)(Z0)(Z1); } __m128i _mm_clmulepi64_si128(const __m128i &a, const __m128i &b, int i) { word64 A[1] = {ByteReverse(((word64*)&a)[i&1])}; word64 B[1] = {ByteReverse(((word64*)&b)[i>>4])}; PolynomialMod2 pa((byte *)A, 8); PolynomialMod2 pb((byte *)B, 8); PolynomialMod2 c = pa*pb; __m128i output; for (int i=0; i<16; i++) ((byte *)&output)[i] = c.GetByte(i); return output; } #endif #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE inline static void SSE2_Xor16(byte *a, const byte *b, const byte *c) { #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE *(__m128i *)a = _mm_xor_si128(*(__m128i *)b, *(__m128i *)c); #else asm ("movdqa %1, %%xmm0; pxor %2, %%xmm0; movdqa %%xmm0, %0;" : "=m" (a[0]) : "m"(b[0]), "m"(c[0])); #endif } #endif inline static void Xor16(byte *a, const byte *b, const byte *c) { ((word64 *)a)[0] = ((word64 *)b)[0] ^ ((word64 *)c)[0]; ((word64 *)a)[1] = ((word64 *)b)[1] ^ ((word64 *)c)[1]; } #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE static CRYPTOPP_ALIGN_DATA(16) const word64 s_clmulConstants64[] = { W64LIT(0xe100000000000000), W64LIT(0xc200000000000000), W64LIT(0x08090a0b0c0d0e0f), W64LIT(0x0001020304050607), W64LIT(0x0001020304050607), W64LIT(0x08090a0b0c0d0e0f)}; static const __m128i *s_clmulConstants = (const __m128i *)s_clmulConstants64; static const unsigned int s_clmulTableSizeInBlocks = 8; inline __m128i CLMUL_Reduce(__m128i c0, __m128i c1, __m128i c2, const __m128i &r) { /* The polynomial to be reduced is c0 * x^128 + c1 * x^64 + c2. c0t below refers to the most significant half of c0 as a polynomial, which, due to GCM's bit reflection, are in the rightmost bit positions, and the lowest byte addresses. c1 ^= c0t * 0xc200000000000000 c2t ^= c0t t = shift (c1t ^ c0b) left 1 bit c2 ^= t * 0xe100000000000000 c2t ^= c1b shift c2 left 1 bit and xor in lowest bit of c1t */ #if 0 // MSVC 2010 workaround: see http://connect.microsoft.com/VisualStudio/feedback/details/575301 c2 = _mm_xor_si128(c2, _mm_move_epi64(c0)); #else c1 = _mm_xor_si128(c1, _mm_slli_si128(c0, 8)); #endif c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(c0, r, 0x10)); c0 = _mm_srli_si128(c0, 8); c0 = _mm_xor_si128(c0, c1); c0 = _mm_slli_epi64(c0, 1); c0 = _mm_clmulepi64_si128(c0, r, 0); c2 = _mm_xor_si128(c2, c0); c2 = _mm_xor_si128(c2, _mm_srli_si128(c1, 8)); c1 = _mm_unpacklo_epi64(c1, c2); c1 = _mm_srli_epi64(c1, 63); c2 = _mm_slli_epi64(c2, 1); return _mm_xor_si128(c2, c1); } inline __m128i CLMUL_GF_Mul(const __m128i &x, const __m128i &h, const __m128i &r) { __m128i c0 = _mm_clmulepi64_si128(x,h,0); __m128i c1 = _mm_xor_si128(_mm_clmulepi64_si128(x,h,1), _mm_clmulepi64_si128(x,h,0x10)); __m128i c2 = _mm_clmulepi64_si128(x,h,0x11); return CLMUL_Reduce(c0, c1, c2, r); } #endif void GCM_Base::SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs ¶ms) { BlockCipher &blockCipher = AccessBlockCipher(); blockCipher.SetKey(userKey, keylength, params); if (blockCipher.BlockSize() != REQUIRED_BLOCKSIZE) throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16"); int tableSize, i, j, k; #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE if (HasCLMUL()) { params.GetIntValue(Name::TableSize(), tableSize); // avoid "parameter not used" error tableSize = s_clmulTableSizeInBlocks * REQUIRED_BLOCKSIZE; } else #endif { if (params.GetIntValue(Name::TableSize(), tableSize)) tableSize = (tableSize >= 64*1024) ? 64*1024 : 2*1024; else tableSize = (GetTablesOption() == GCM_64K_Tables) ? 64*1024 : 2*1024; #if defined(_MSC_VER) && (_MSC_VER >= 1300 && _MSC_VER < 1400) // VC 2003 workaround: compiler generates bad code for 64K tables tableSize = 2*1024; #endif } m_buffer.resize(3*REQUIRED_BLOCKSIZE + tableSize); byte *table = MulTable(); byte *hashKey = HashKey(); memset(hashKey, 0, REQUIRED_BLOCKSIZE); blockCipher.ProcessBlock(hashKey); #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE if (HasCLMUL()) { const __m128i r = s_clmulConstants[0]; __m128i h0 = _mm_shuffle_epi8(_mm_load_si128((__m128i *)hashKey), s_clmulConstants[1]); __m128i h = h0; for (i=0; i Block; Block::Get(hashKey)(V0)(V1); if (tableSize == 64*1024) { for (i=0; i<128; i++) { k = i%8; Block::Put(NULL, table+(i/8)*256*16+(size_t(1)<<(11-k)))(V0)(V1); int x = (int)V1 & 1; V1 = (V1>>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); } for (i=0; i<16; i++) { memset(table+i*256*16, 0, 16); #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE if (HasSSE2()) for (j=2; j<=0x80; j*=2) for (k=1; k>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); } for (i=0; i<4; i++) { memset(table+i*256, 0, 16); memset(table+1024+i*256, 0, 16); #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE if (HasSSE2()) for (j=2; j<=8; j*=2) for (k=1; k= HASH_BLOCKSIZE) { len = GCM_Base::AuthenticateBlocks(iv, len); iv += (origLen - len); } if (len > 0) { memcpy(m_buffer, iv, len); memset(m_buffer+len, 0, HASH_BLOCKSIZE-len); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); } PutBlock(NULL, m_buffer)(0)(origLen*8); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); ReverseHashBufferIfNeeded(); } if (m_state >= State_IVSet) m_ctr.Resynchronize(hashBuffer, REQUIRED_BLOCKSIZE); else m_ctr.SetCipherWithIV(cipher, hashBuffer); m_ctr.Seek(HASH_BLOCKSIZE); memset(hashBuffer, 0, HASH_BLOCKSIZE); } unsigned int GCM_Base::OptimalDataAlignment() const { return #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) HasSSE2() ? 16 : #endif GetBlockCipher().OptimalDataAlignment(); } #pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #ifdef CRYPTOPP_X64_MASM_AVAILABLE extern "C" { void GCM_AuthenticateBlocks_2K(const byte *data, size_t blocks, word64 *hashBuffer, const word16 *reductionTable); void GCM_AuthenticateBlocks_64K(const byte *data, size_t blocks, word64 *hashBuffer); } #endif #ifndef CRYPTOPP_GENERATE_X64_MASM size_t GCM_Base::AuthenticateBlocks(const byte *data, size_t len) { #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE if (HasCLMUL()) { const __m128i *table = (const __m128i *)MulTable(); __m128i x = _mm_load_si128((__m128i *)HashBuffer()); const __m128i r = s_clmulConstants[0], bswapMask = s_clmulConstants[1], bswapMask2 = s_clmulConstants[2]; while (len >= 16) { size_t s = UnsignedMin(len/16, s_clmulTableSizeInBlocks), i=0; __m128i d, d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-1)*16)), bswapMask2);; __m128i c0 = _mm_setzero_si128(); __m128i c1 = _mm_setzero_si128(); __m128i c2 = _mm_setzero_si128(); while (true) { __m128i h0 = _mm_load_si128(table+i); __m128i h1 = _mm_load_si128(table+i+1); __m128i h01 = _mm_xor_si128(h0, h1); if (++i == s) { d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask); d = _mm_xor_si128(d, x); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1)); d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2))); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0)); break; } d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask2); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d2, h0, 1)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1)); d2 = _mm_xor_si128(d2, d); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d2, h01, 1)); if (++i == s) { d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask); d = _mm_xor_si128(d, x); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 0x11)); d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2))); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10)); break; } d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d2, h1, 0x10)); d = _mm_xor_si128(d, d2); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10)); } data += s*16; len -= s*16; c1 = _mm_xor_si128(_mm_xor_si128(c1, c0), c2); x = CLMUL_Reduce(c0, c1, c2, r); } _mm_store_si128((__m128i *)HashBuffer(), x); return len; } #endif typedef BlockGetAndPut Block; word64 *hashBuffer = (word64 *)HashBuffer(); switch (2*(m_buffer.size()>=64*1024) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) + HasSSE2() #endif ) { case 0: // non-SSE2 and 2K tables { byte *table = MulTable(); word64 x0 = hashBuffer[0], x1 = hashBuffer[1]; do { word64 y0, y1, a0, a1, b0, b1, c0, c1, d0, d1; Block::Get(data)(y0)(y1); x0 ^= y0; x1 ^= y1; data += HASH_BLOCKSIZE; len -= HASH_BLOCKSIZE; #define READ_TABLE_WORD64_COMMON(a, b, c, d) *(word64 *)(table+(a*1024)+(b*256)+c+d*8) #ifdef IS_LITTLE_ENDIAN #if CRYPTOPP_BOOL_SLOW_WORD64 word32 z0 = (word32)x0; word32 z1 = (word32)(x0>>32); word32 z2 = (word32)x1; word32 z3 = (word32)(x1>>32); #define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, (d?(z##c>>((d?d-1:0)*4))&0xf0:(z##c&0xf)<<4), e) #else #define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, ((d+8*b)?(x##a>>(((d+8*b)?(d+8*b)-1:1)*4))&0xf0:(x##a&0xf)<<4), e) #endif #define GF_MOST_SIG_8BITS(a) (a##1 >> 7*8) #define GF_SHIFT_8(a) a##1 = (a##1 << 8) ^ (a##0 >> 7*8); a##0 <<= 8; #else #define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((1-d%2), c, ((15-d-8*b)?(x##a>>(((15-d-8*b)?(15-d-8*b)-1:0)*4))&0xf0:(x##a&0xf)<<4), e) #define GF_MOST_SIG_8BITS(a) (a##1 & 0xff) #define GF_SHIFT_8(a) a##1 = (a##1 >> 8) ^ (a##0 << 7*8); a##0 >>= 8; #endif #define GF_MUL_32BY128(op, a, b, c) \ a0 op READ_TABLE_WORD64(a, b, c, 0, 0) ^ READ_TABLE_WORD64(a, b, c, 1, 0);\ a1 op READ_TABLE_WORD64(a, b, c, 0, 1) ^ READ_TABLE_WORD64(a, b, c, 1, 1);\ b0 op READ_TABLE_WORD64(a, b, c, 2, 0) ^ READ_TABLE_WORD64(a, b, c, 3, 0);\ b1 op READ_TABLE_WORD64(a, b, c, 2, 1) ^ READ_TABLE_WORD64(a, b, c, 3, 1);\ c0 op READ_TABLE_WORD64(a, b, c, 4, 0) ^ READ_TABLE_WORD64(a, b, c, 5, 0);\ c1 op READ_TABLE_WORD64(a, b, c, 4, 1) ^ READ_TABLE_WORD64(a, b, c, 5, 1);\ d0 op READ_TABLE_WORD64(a, b, c, 6, 0) ^ READ_TABLE_WORD64(a, b, c, 7, 0);\ d1 op READ_TABLE_WORD64(a, b, c, 6, 1) ^ READ_TABLE_WORD64(a, b, c, 7, 1);\ GF_MUL_32BY128(=, 0, 0, 0) GF_MUL_32BY128(^=, 0, 1, 1) GF_MUL_32BY128(^=, 1, 0, 2) GF_MUL_32BY128(^=, 1, 1, 3) word32 r = (word32)s_reductionTable[GF_MOST_SIG_8BITS(d)] << 16; GF_SHIFT_8(d) c0 ^= d0; c1 ^= d1; r ^= (word32)s_reductionTable[GF_MOST_SIG_8BITS(c)] << 8; GF_SHIFT_8(c) b0 ^= c0; b1 ^= c1; r ^= s_reductionTable[GF_MOST_SIG_8BITS(b)]; GF_SHIFT_8(b) a0 ^= b0; a1 ^= b1; a0 ^= ConditionalByteReverse(LITTLE_ENDIAN_ORDER, r); x0 = a0; x1 = a1; } while (len >= HASH_BLOCKSIZE); hashBuffer[0] = x0; hashBuffer[1] = x1; return len; } case 2: // non-SSE2 and 64K tables { byte *table = MulTable(); word64 x0 = hashBuffer[0], x1 = hashBuffer[1]; do { word64 y0, y1, a0, a1; Block::Get(data)(y0)(y1); x0 ^= y0; x1 ^= y1; data += HASH_BLOCKSIZE; len -= HASH_BLOCKSIZE; #undef READ_TABLE_WORD64_COMMON #undef READ_TABLE_WORD64 #define READ_TABLE_WORD64_COMMON(a, c, d) *(word64 *)(table+(a)*256*16+(c)+(d)*8) #ifdef IS_LITTLE_ENDIAN #if CRYPTOPP_BOOL_SLOW_WORD64 word32 z0 = (word32)x0; word32 z1 = (word32)(x0>>32); word32 z2 = (word32)x1; word32 z3 = (word32)(x1>>32); #define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, (d?(z##c>>((d?d:1)*8-4))&0xff0:(z##c&0xff)<<4), e) #else #define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((d+4*(c%2))?(x##b>>(((d+4*(c%2))?(d+4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e) #endif #else #define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((7-d-4*(c%2))?(x##b>>(((7-d-4*(c%2))?(7-d-4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e) #endif #define GF_MUL_8BY128(op, b, c, d) \ a0 op READ_TABLE_WORD64(b, c, d, 0);\ a1 op READ_TABLE_WORD64(b, c, d, 1);\ GF_MUL_8BY128(=, 0, 0, 0) GF_MUL_8BY128(^=, 0, 0, 1) GF_MUL_8BY128(^=, 0, 0, 2) GF_MUL_8BY128(^=, 0, 0, 3) GF_MUL_8BY128(^=, 0, 1, 0) GF_MUL_8BY128(^=, 0, 1, 1) GF_MUL_8BY128(^=, 0, 1, 2) GF_MUL_8BY128(^=, 0, 1, 3) GF_MUL_8BY128(^=, 1, 2, 0) GF_MUL_8BY128(^=, 1, 2, 1) GF_MUL_8BY128(^=, 1, 2, 2) GF_MUL_8BY128(^=, 1, 2, 3) GF_MUL_8BY128(^=, 1, 3, 0) GF_MUL_8BY128(^=, 1, 3, 1) GF_MUL_8BY128(^=, 1, 3, 2) GF_MUL_8BY128(^=, 1, 3, 3) x0 = a0; x1 = a1; } while (len >= HASH_BLOCKSIZE); hashBuffer[0] = x0; hashBuffer[1] = x1; return len; } #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #ifdef CRYPTOPP_X64_MASM_AVAILABLE case 1: // SSE2 and 2K tables GCM_AuthenticateBlocks_2K(data, len/16, hashBuffer, s_reductionTable); return len % 16; case 3: // SSE2 and 64K tables GCM_AuthenticateBlocks_64K(data, len/16, hashBuffer); return len % 16; #endif #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE case 1: // SSE2 and 2K tables { #ifdef __GNUC__ __asm__ __volatile__ ( ".intel_syntax noprefix;" #elif defined(CRYPTOPP_GENERATE_X64_MASM) ALIGN 8 GCM_AuthenticateBlocks_2K PROC FRAME rex_push_reg rsi push_reg rdi push_reg rbx .endprolog mov rsi, r8 mov r11, r9 #else AS2( mov WORD_REG(cx), data ) AS2( mov WORD_REG(dx), len ) AS2( mov WORD_REG(si), hashBuffer ) AS2( shr WORD_REG(dx), 4 ) #endif AS_PUSH_IF86( bx) AS_PUSH_IF86( bp) #ifdef __GNUC__ AS2( mov AS_REG_7, WORD_REG(di)) #elif CRYPTOPP_BOOL_X86 AS2( lea AS_REG_7, s_reductionTable) #endif AS2( movdqa xmm0, [WORD_REG(si)] ) #define MUL_TABLE_0 WORD_REG(si) + 32 #define MUL_TABLE_1 WORD_REG(si) + 32 + 1024 #define RED_TABLE AS_REG_7 ASL(0) AS2( movdqu xmm4, [WORD_REG(cx)] ) AS2( pxor xmm0, xmm4 ) AS2( movd ebx, xmm0 ) AS2( mov eax, AS_HEX(f0f0f0f0) ) AS2( and eax, ebx ) AS2( shl ebx, 4 ) AS2( and ebx, AS_HEX(f0f0f0f0) ) AS2( movzx edi, ah ) AS2( movdqa xmm5, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( movzx edi, al ) AS2( movdqa xmm4, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( shr eax, 16 ) AS2( movzx edi, ah ) AS2( movdqa xmm3, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( movzx edi, al ) AS2( movdqa xmm2, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) #define SSE2_MUL_32BITS(i) \ AS2( psrldq xmm0, 4 )\ AS2( movd eax, xmm0 )\ AS2( and eax, AS_HEX(f0f0f0f0) )\ AS2( movzx edi, bh )\ AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movzx edi, bl )\ AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( shr ebx, 16 )\ AS2( movzx edi, bh )\ AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movzx edi, bl )\ AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movd ebx, xmm0 )\ AS2( shl ebx, 4 )\ AS2( and ebx, AS_HEX(f0f0f0f0) )\ AS2( movzx edi, ah )\ AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( movzx edi, al )\ AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( shr eax, 16 )\ AS2( movzx edi, ah )\ AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( movzx edi, al )\ AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ SSE2_MUL_32BITS(1) SSE2_MUL_32BITS(2) SSE2_MUL_32BITS(3) AS2( movzx edi, bh ) AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movzx edi, bl ) AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( shr ebx, 16 ) AS2( movzx edi, bh ) AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movzx edi, bl ) AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movdqa xmm0, xmm3 ) AS2( pslldq xmm3, 1 ) AS2( pxor xmm2, xmm3 ) AS2( movdqa xmm1, xmm2 ) AS2( pslldq xmm2, 1 ) AS2( pxor xmm5, xmm2 ) AS2( psrldq xmm0, 15 ) AS2( movd WORD_REG(di), xmm0 ) AS2( movzx eax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( shl eax, 8 ) AS2( movdqa xmm0, xmm5 ) AS2( pslldq xmm5, 1 ) AS2( pxor xmm4, xmm5 ) AS2( psrldq xmm1, 15 ) AS2( movd WORD_REG(di), xmm1 ) AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( shl eax, 8 ) AS2( psrldq xmm0, 15 ) AS2( movd WORD_REG(di), xmm0 ) AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( movd xmm0, eax ) AS2( pxor xmm0, xmm4 ) AS2( add WORD_REG(cx), 16 ) AS2( sub WORD_REG(dx), 1 ) ASJ( jnz, 0, b ) AS2( movdqa [WORD_REG(si)], xmm0 ) AS_POP_IF86( bp) AS_POP_IF86( bx) #ifdef __GNUC__ ".att_syntax prefix;" : : "c" (data), "d" (len/16), "S" (hashBuffer), "D" (s_reductionTable) : "memory", "cc", "%eax" #if CRYPTOPP_BOOL_X64 , "%ebx", "%r11" #endif ); #elif defined(CRYPTOPP_GENERATE_X64_MASM) pop rbx pop rdi pop rsi ret GCM_AuthenticateBlocks_2K ENDP #endif return len%16; } case 3: // SSE2 and 64K tables { #ifdef __GNUC__ __asm__ __volatile__ ( ".intel_syntax noprefix;" #elif defined(CRYPTOPP_GENERATE_X64_MASM) ALIGN 8 GCM_AuthenticateBlocks_64K PROC FRAME rex_push_reg rsi push_reg rdi .endprolog mov rsi, r8 #else AS2( mov WORD_REG(cx), data ) AS2( mov WORD_REG(dx), len ) AS2( mov WORD_REG(si), hashBuffer ) AS2( shr WORD_REG(dx), 4 ) #endif AS2( movdqa xmm0, [WORD_REG(si)] ) #undef MUL_TABLE #define MUL_TABLE(i,j) WORD_REG(si) + 32 + (i*4+j)*256*16 ASL(1) AS2( movdqu xmm1, [WORD_REG(cx)] ) AS2( pxor xmm1, xmm0 ) AS2( pxor xmm0, xmm0 ) #undef SSE2_MUL_32BITS #define SSE2_MUL_32BITS(i) \ AS2( movd eax, xmm1 )\ AS2( psrldq xmm1, 4 )\ AS2( movzx edi, al )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,0) + WORD_REG(di)*8] )\ AS2( movzx edi, ah )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,1) + WORD_REG(di)*8] )\ AS2( shr eax, 16 )\ AS2( movzx edi, al )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,2) + WORD_REG(di)*8] )\ AS2( movzx edi, ah )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,3) + WORD_REG(di)*8] )\ SSE2_MUL_32BITS(0) SSE2_MUL_32BITS(1) SSE2_MUL_32BITS(2) SSE2_MUL_32BITS(3) AS2( add WORD_REG(cx), 16 ) AS2( sub WORD_REG(dx), 1 ) ASJ( jnz, 1, b ) AS2( movdqa [WORD_REG(si)], xmm0 ) #ifdef __GNUC__ ".att_syntax prefix;" : : "c" (data), "d" (len/16), "S" (hashBuffer) : "memory", "cc", "%edi", "%eax" ); #elif defined(CRYPTOPP_GENERATE_X64_MASM) pop rdi pop rsi ret GCM_AuthenticateBlocks_64K ENDP #endif return len%16; } #endif #ifndef CRYPTOPP_GENERATE_X64_MASM } return len%16; } void GCM_Base::AuthenticateLastHeaderBlock() { if (m_bufferedDataLength > 0) { memset(m_buffer+m_bufferedDataLength, 0, HASH_BLOCKSIZE-m_bufferedDataLength); m_bufferedDataLength = 0; GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); } } void GCM_Base::AuthenticateLastConfidentialBlock() { GCM_Base::AuthenticateLastHeaderBlock(); PutBlock(NULL, m_buffer)(m_totalHeaderLength*8)(m_totalMessageLength*8); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); } void GCM_Base::AuthenticateLastFooterBlock(byte *mac, size_t macSize) { m_ctr.Seek(0); ReverseHashBufferIfNeeded(); m_ctr.ProcessData(mac, HashBuffer(), macSize); } NAMESPACE_END #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #endif