// nbtheory.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "nbtheory.h" #include "modarith.h" #include "algparam.h" #include #include NAMESPACE_BEGIN(CryptoPP) const unsigned int maxPrimeTableSize = 3511; // last prime 32719 const word lastSmallPrime = 32719; unsigned int primeTableSize=552; word primeTable[maxPrimeTableSize] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003}; void BuildPrimeTable() { unsigned int p=primeTable[primeTableSize-1]; for (unsigned int i=primeTableSize; i= bound); unsigned int i; for (i = 0; primeTable[i]3 && b>1 && b3 && b>1 && b>a; Integer z = a_exp_b_mod_c(b, m, n); if (z==1 || z==nminus1) return true; for (unsigned j=1; j3); Integer b; for (unsigned int i=0; i2); Integer b=3; unsigned int i=0; int j; while ((j=Jacobi(b.Squared()-4, n)) == 1) { if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square return false; ++b; ++b; } if (j==0) return false; else return Lucas(n+1, b, n)==2; } bool IsStrongLucasProbablePrime(const Integer &n) { if (n <= 1) return false; if (n.IsEven()) return n==2; assert(n>2); Integer b=3; unsigned int i=0; int j; while ((j=Jacobi(b.Squared()-4, n)) == 1) { if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square return false; ++b; ++b; } if (j==0) return false; Integer n1 = n+1; unsigned int a; // calculate a = largest power of 2 that divides n1 for (a=0; ; a++) if (n1.GetBit(a)) break; Integer m = n1>>a; Integer z = Lucas(m, b, n); if (z==2 || z==n-2) return true; for (i=1; i= 1) pass = pass && RabinMillerTest(rng, p, 10); return pass; } unsigned int PrimeSearchInterval(const Integer &max) { return max.BitCount(); } static inline bool FastProbablePrimeTest(const Integer &n) { return IsStrongProbablePrime(n,2); } AlgorithmParameters, Integer>, Integer> MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength) { if (productBitLength < 16) throw InvalidArgument("invalid bit length"); Integer minP, maxP; if (productBitLength%2==0) { minP = Integer(182) << (productBitLength/2-8); maxP = Integer::Power2(productBitLength/2)-1; } else { minP = Integer::Power2((productBitLength-1)/2); maxP = Integer(181) << ((productBitLength+1)/2-8); } return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP); } class PrimeSieve { public: // delta == 1 or -1 means double sieve with p = 2*q + delta PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0); bool NextCandidate(Integer &c); void DoSieve(); static void SieveSingle(std::vector &sieve, word p, const Integer &first, const Integer &step, word stepInv); Integer m_first, m_last, m_step; signed int m_delta; word m_next; std::vector m_sieve; }; PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta) : m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0) { DoSieve(); } bool PrimeSieve::NextCandidate(Integer &c) { m_next = std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin(); if (m_next == m_sieve.size()) { m_first += m_sieve.size()*m_step; if (m_first > m_last) return false; else { m_next = 0; DoSieve(); return NextCandidate(c); } } else { c = m_first + m_next*m_step; ++m_next; return true; } } void PrimeSieve::SieveSingle(std::vector &sieve, word p, const Integer &first, const Integer &step, word stepInv) { if (stepInv) { unsigned int sieveSize = sieve.size(); word j = word((dword(p-(first%p))*stepInv) % p); // if the first multiple of p is p, skip it if (first.WordCount() <= 1 && first + step*j == p) j += p; for (; j < sieveSize; j += p) sieve[j] = true; } } void PrimeSieve::DoSieve() { BuildPrimeTable(); const unsigned int maxSieveSize = 32768; unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong(); m_sieve.clear(); m_sieve.resize(sieveSize, false); if (m_delta == 0) { for (unsigned int i = 0; i < primeTableSize; ++i) SieveSingle(m_sieve, primeTable[i], m_first, m_step, m_step.InverseMod(primeTable[i])); } else { assert(m_step%2==0); Integer qFirst = (m_first-m_delta) >> 1; Integer halfStep = m_step >> 1; for (unsigned int i = 0; i < primeTableSize; ++i) { word p = primeTable[i]; word stepInv = m_step.InverseMod(p); SieveSingle(m_sieve, p, m_first, m_step, stepInv); word halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p; SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv); } } } bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector) { assert(!equiv.IsNegative() && equiv < mod); Integer gcd = GCD(equiv, mod); if (gcd != Integer::One()) { // the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv) if (p <= gcd && gcd <= max && IsPrime(gcd)) { p = gcd; return true; } else return false; } BuildPrimeTable(); if (p <= primeTable[primeTableSize-1]) { word *pItr; --p; if (p.IsPositive()) pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong()); else pItr = primeTable; while (pItr < primeTable+primeTableSize && *pItr%mod != equiv) ++pItr; if (pItr < primeTable+primeTableSize) { p = *pItr; return p <= max; } p = primeTable[primeTableSize-1]+1; } assert(p > primeTable[primeTableSize-1]); if (mod.IsOdd()) return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector); p += (equiv-p)%mod; if (p>max) return false; PrimeSieve sieve(p, max, mod); while (sieve.NextCandidate(p)) { if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p)) return true; } return false; } // the following two functions are based on code and comments provided by Preda Mihailescu static bool ProvePrime(const Integer &p, const Integer &q) { assert(p < q*q*q); assert(p % q == 1); // this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test // for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q, // or be prime. The next two lines build the discriminant of a quadratic equation // which holds iff p is built up of two factors (excercise ... ) Integer r = (p-1)/q; if (((r%q).Squared()-4*(r/q)).IsSquare()) return false; assert(primeTableSize >= 50); for (int i=0; i<50; i++) { Integer b = a_exp_b_mod_c(primeTable[i], r, p); if (b != 1) return a_exp_b_mod_c(b, q, p) == 1; } return false; } Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits) { Integer p; Integer minP = Integer::Power2(pbits-1); Integer maxP = Integer::Power2(pbits) - 1; if (maxP <= Integer(lastSmallPrime).Squared()) { // Randomize() will generate a prime provable by trial division p.Randomize(rng, minP, maxP, Integer::PRIME); return p; } unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36); Integer q = MihailescuProvablePrime(rng, qbits); Integer q2 = q<<1; while (true) { // this initializes the sieve to search in the arithmetic // progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q, // with q the recursively generated prime above. We will be able // to use Lucas tets for proving primality. A trick of Quisquater // allows taking q > cubic_root(p) rather then square_root: this // decreases the recursion. p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2); PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2); while (sieve.NextCandidate(p)) { if (FastProbablePrimeTest(p) && ProvePrime(p, q)) return p; } } // not reached return p; } Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits) { const unsigned smallPrimeBound = 29, c_opt=10; Integer p; BuildPrimeTable(); if (bits < smallPrimeBound) { do p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2); while (TrialDivision(p, 1 << ((bits+1)/2))); } else { const unsigned margin = bits > 50 ? 20 : (bits-10)/2; double relativeSize; do relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1); while (bits * relativeSize >= bits - margin); Integer a,b; Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize)); Integer I = Integer::Power2(bits-2)/q; Integer I2 = I << 1; unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt); bool success = false; while (!success) { p.Randomize(rng, I, I2, Integer::ANY); p *= q; p <<= 1; ++p; if (!TrialDivision(p, trialDivisorBound)) { a.Randomize(rng, 2, p-1, Integer::ANY); b = a_exp_b_mod_c(a, (p-1)/q, p); success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1); } } } return p; } Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u) { // isn't operator overloading great? return p * (u * (xq-xp) % q) + xp; } Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q) { return CRT(xp, p, xq, q, EuclideanMultiplicativeInverse(p, q)); } Integer ModularSquareRoot(const Integer &a, const Integer &p) { if (p%4 == 3) return a_exp_b_mod_c(a, (p+1)/4, p); Integer q=p-1; unsigned int r=0; while (q.IsEven()) { r++; q >>= 1; } Integer n=2; while (Jacobi(n, p) != -1) ++n; Integer y = a_exp_b_mod_c(n, q, p); Integer x = a_exp_b_mod_c(a, (q-1)/2, p); Integer b = (x.Squared()%p)*a%p; x = a*x%p; Integer tempb, t; while (b != 1) { unsigned m=0; tempb = b; do { m++; b = b.Squared()%p; if (m==r) return Integer::Zero(); } while (b != 1); t = y; for (unsigned i=0; i>= 1; b >>= 1; k++; } while (a[0]==0) a >>= 1; while (b[0]==0) b >>= 1; while (1) { switch (a.Compare(b)) { case -1: b -= a; while (b[0]==0) b >>= 1; break; case 0: return (a <<= k); case 1: a -= b; while (a[0]==0) a >>= 1; break; default: assert(false); } } } Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) { assert(b.Positive()); if (a.Negative()) return EuclideanMultiplicativeInverse(a%b, b); if (b[0]==0) { if (!b || a[0]==0) return Integer::Zero(); // no inverse if (a==1) return 1; Integer u = EuclideanMultiplicativeInverse(b, a); if (!u) return Integer::Zero(); // no inverse else return (b*(a-u)+1)/a; } Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1; if (a[0]) { t1 = Integer::Zero(); t3 = -b; } else { t1 = b2; t3 = a>>1; } while (!!t3) { while (t3[0]==0) { t3 >>= 1; if (t1[0]==0) t1 >>= 1; else { t1 >>= 1; t1 += b2; } } if (t3.Positive()) { u = t1; d = t3; } else { v1 = b-t1; v3 = -t3; } t1 = u-v1; t3 = d-v3; if (t1.Negative()) t1 += b; } if (d==1) return u; else return Integer::Zero(); // no inverse } */ int Jacobi(const Integer &aIn, const Integer &bIn) { assert(bIn.IsOdd()); Integer b = bIn, a = aIn%bIn; int result = 1; while (!!a) { unsigned i=0; while (a.GetBit(i)==0) i++; a>>=i; if (i%2==1 && (b%8==3 || b%8==5)) result = -result; if (a%4==3 && b%4==3) result = -result; std::swap(a, b); a %= b; } return (b==1) ? result : 0; } Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n) { unsigned i = e.BitCount(); if (i==0) return Integer::Two(); MontgomeryRepresentation m(n); Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two()); Integer v=p, v1=m.Subtract(m.Square(p), two); i--; while (i--) { if (e.GetBit(i)) { // v = (v*v1 - p) % m; v = m.Subtract(m.Multiply(v,v1), p); // v1 = (v1*v1 - 2) % m; v1 = m.Subtract(m.Square(v1), two); } else { // v1 = (v*v1 - p) % m; v1 = m.Subtract(m.Multiply(v,v1), p); // v = (v*v - 2) % m; v = m.Subtract(m.Square(v), two); } } return m.ConvertOut(v); } // This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm. // The total number of multiplies and squares used is less than the binary // algorithm (see above). Unfortunately I can't get it to run as fast as // the binary algorithm because of the extra overhead. /* Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus) { if (!n) return 2; #define f(A, B, C) m.Subtract(m.Multiply(A, B), C) #define X2(A) m.Subtract(m.Square(A), two) #define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three)) MontgomeryRepresentation m(modulus); Integer two=m.ConvertIn(2), three=m.ConvertIn(3); Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U; while (d!=1) { p = d; unsigned int b = WORD_BITS * p.WordCount(); Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1); r = (p*alpha)>>b; e = d-r; B = A; C = two; d = r; while (d!=e) { if (d>2)) if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t)) { // #1 // t = (d+d-e)/3; // t = d; t += d; t -= e; t /= 3; // e = (e+e-d)/3; // e += e; e -= d; e /= 3; // d = t; // t = (d+e)/3 t = d; t += e; t /= 3; e -= t; d -= t; T = f(A, B, C); U = f(T, A, B); B = f(T, B, A); A = U; continue; } // if (dm6 == em6 && d <= e + (e>>2)) if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t)) { // #2 // d = (d-e)>>1; d -= e; d >>= 1; B = f(A, B, C); A = X2(A); continue; } // if (d <= (e<<2)) if (d <= (t = e, t <<= 2)) { // #3 d -= e; C = f(A, B, C); swap(B, C); continue; } if (dm2 == em2) { // #4 // d = (d-e)>>1; d -= e; d >>= 1; B = f(A, B, C); A = X2(A); continue; } if (dm2 == 0) { // #5 d >>= 1; C = f(A, C, B); A = X2(A); continue; } if (dm3 == 0) { // #6 // d = d/3 - e; d /= 3; d -= e; T = X2(A); C = f(T, f(A, B, C), C); swap(B, C); A = f(T, A, A); continue; } if (dm3+em3==0 || dm3+em3==3) { // #7 // d = (d-e-e)/3; d -= e; d -= e; d /= 3; T = f(A, B, C); B = f(T, A, B); A = X3(A); continue; } if (dm3 == em3) { // #8 // d = (d-e)/3; d -= e; d /= 3; T = f(A, B, C); C = f(A, C, B); B = T; A = X3(A); continue; } assert(em2 == 0); // #9 e >>= 1; C = f(C, B, A); B = X2(B); } A = f(A, B, C); } #undef f #undef X2 #undef X3 return m.ConvertOut(A); } */ Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u) { Integer d = (m*m-4); Integer p2 = p-Jacobi(d,p); Integer q2 = q-Jacobi(d,q); return CRT(Lucas(EuclideanMultiplicativeInverse(e,p2), m, p), p, Lucas(EuclideanMultiplicativeInverse(e,q2), m, q), q, u); } Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q) { return InverseLucas(e, m, p, q, EuclideanMultiplicativeInverse(p, q)); } unsigned int FactoringWorkFactor(unsigned int n) { // extrapolated from the table in Odlyzko's "The Future of Integer Factorization" // updated to reflect the factoring of RSA-130 if (n<5) return 0; else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5); } unsigned int DiscreteLogWorkFactor(unsigned int n) { // assuming discrete log takes about the same time as factoring if (n<5) return 0; else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5); } // ******************************************************** void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits) { // no prime exists for delta = -1, qbits = 4, and pbits = 5 assert(qbits > 4); assert(pbits > qbits); if (qbits+1 == pbits) { Integer minP = Integer::Power2(pbits-1); Integer maxP = Integer::Power2(pbits) - 1; bool success = false; while (!success) { p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12); PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta); while (sieve.NextCandidate(p)) { assert(IsSmallPrime(p) || SmallDivisorsTest(p)); q = (p-delta) >> 1; assert(IsSmallPrime(q) || SmallDivisorsTest(q)); if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p)) { success = true; break; } } } if (delta == 1) { // find g such that g is a quadratic residue mod p, then g has order q // g=4 always works, but this way we get the smallest quadratic residue (other than 1) for (g=2; Jacobi(g, p) != 1; ++g) {} // contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity assert((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4); } else { assert(delta == -1); // find g such that g*g-4 is a quadratic non-residue, // and such that g has order q for (g=3; ; ++g) if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2) break; } } else { Integer minQ = Integer::Power2(qbits-1); Integer maxQ = Integer::Power2(qbits) - 1; Integer minP = Integer::Power2(pbits-1); Integer maxP = Integer::Power2(pbits) - 1; do { q.Randomize(rng, minQ, maxQ, Integer::PRIME); } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q)); // find a random g of order q if (delta==1) { do { Integer h(rng, 2, p-2, Integer::ANY); g = a_exp_b_mod_c(h, (p-1)/q, p); } while (g <= 1); assert(a_exp_b_mod_c(g, q, p)==1); } else { assert(delta==-1); do { Integer h(rng, 3, p-1, Integer::ANY); if (Jacobi(h*h-4, p)==1) continue; g = Lucas((p+1)/q, h, p); } while (g <= 2); assert(Lucas(q, g, p) == 2); } } } NAMESPACE_END