// rng.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "rng.h" #include "fips140.h" #include #include NAMESPACE_BEGIN(CryptoPP) // linear congruential generator // originally by William S. England // do not use for cryptographic purposes /* ** Original_numbers are the original published m and q in the ** ACM article above. John Burton has furnished numbers for ** a reportedly better generator. The new numbers are now ** used in this program by default. */ #ifndef LCRNG_ORIGINAL_NUMBERS const word32 LC_RNG::m=2147483647L; const word32 LC_RNG::q=44488L; const word16 LC_RNG::a=(unsigned int)48271L; const word16 LC_RNG::r=3399; #else const word32 LC_RNG::m=2147483647L; const word32 LC_RNG::q=127773L; const word16 LC_RNG::a=16807; const word16 LC_RNG::r=2836; #endif void LC_RNG::GenerateBlock(byte *output, size_t size) { while (size--) { word32 hi = seed/q; word32 lo = seed%q; long test = a*lo - r*hi; if (test > 0) seed = test; else seed = test+ m; *output++ = (GETBYTE(seed, 0) ^ GETBYTE(seed, 1) ^ GETBYTE(seed, 2) ^ GETBYTE(seed, 3)); } } // ******************************************************** #ifndef CRYPTOPP_IMPORTS X917RNG::X917RNG(BlockTransformation *c, const byte *seed, const byte *deterministicTimeVector) : cipher(c), S(cipher->BlockSize()), dtbuf(S), randseed(seed, S), m_lastBlock(S), m_deterministicTimeVector(deterministicTimeVector, deterministicTimeVector ? S : 0) { if (!deterministicTimeVector) { time_t tstamp1 = time(0); xorbuf(dtbuf, (byte *)&tstamp1, UnsignedMin(sizeof(tstamp1), S)); cipher->ProcessBlock(dtbuf); clock_t tstamp2 = clock(); xorbuf(dtbuf, (byte *)&tstamp2, UnsignedMin(sizeof(tstamp2), S)); cipher->ProcessBlock(dtbuf); } // for FIPS 140-2 GenerateBlock(m_lastBlock, S); } void X917RNG::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword size) { while (size > 0) { // calculate new enciphered timestamp if (m_deterministicTimeVector.size()) { cipher->ProcessBlock(m_deterministicTimeVector, dtbuf); IncrementCounterByOne(m_deterministicTimeVector, S); } else { clock_t c = clock(); xorbuf(dtbuf, (byte *)&c, UnsignedMin(sizeof(c), S)); time_t t = time(NULL); xorbuf(dtbuf+S-UnsignedMin(sizeof(t), S), (byte *)&t, UnsignedMin(sizeof(t), S)); cipher->ProcessBlock(dtbuf); } // combine enciphered timestamp with seed xorbuf(randseed, dtbuf, S); // generate a new block of random bytes cipher->ProcessBlock(randseed); if (memcmp(m_lastBlock, randseed, S) == 0) throw SelfTestFailure("X917RNG: Continuous random number generator test failed."); // output random bytes size_t len = UnsignedMin(S, size); target.ChannelPut(channel, randseed, len); size -= len; // compute new seed vector memcpy(m_lastBlock, randseed, S); xorbuf(randseed, dtbuf, S); cipher->ProcessBlock(randseed); } } #endif MaurerRandomnessTest::MaurerRandomnessTest() : sum(0.0), n(0) { for (unsigned i=0; i= Q) sum += log(double(n - tab[inByte])); tab[inByte] = n; n++; } return 0; } double MaurerRandomnessTest::GetTestValue() const { if (BytesNeeded() > 0) throw Exception(Exception::OTHER_ERROR, "MaurerRandomnessTest: " + IntToString(BytesNeeded()) + " more bytes of input needed"); double fTu = (sum/(n-Q))/log(2.0); // this is the test value defined by Maurer double value = fTu * 0.1392; // arbitrarily normalize it to return value > 1.0 ? 1.0 : value; // a number between 0 and 1 } NAMESPACE_END