// rng.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "rng.h" #include #include NAMESPACE_BEGIN(CryptoPP) // linear congruential generator // originally by William S. England // do not use for cryptographic purposes /* ** Original_numbers are the original published m and q in the ** ACM article above. John Burton has furnished numbers for ** a reportedly better generator. The new numbers are now ** used in this program by default. */ #ifndef LCRNG_ORIGINAL_NUMBERS const word32 LC_RNG::m=2147483647L; const word32 LC_RNG::q=44488L; const word16 LC_RNG::a=(unsigned int)48271L; const word16 LC_RNG::r=3399; #else const word32 LC_RNG::m=2147483647L; const word32 LC_RNG::q=127773L; const word16 LC_RNG::a=16807; const word16 LC_RNG::r=2836; #endif byte LC_RNG::GenerateByte() { word32 hi = seed/q; word32 lo = seed%q; long test = a*lo - r*hi; if (test > 0) seed = test; else seed = test+ m; return (GETBYTE(seed, 0) ^ GETBYTE(seed, 1) ^ GETBYTE(seed, 2) ^ GETBYTE(seed, 3)); } // ******************************************************** X917RNG::X917RNG(BlockTransformation *c, const byte *seed, unsigned long deterministicTimeVector) : cipher(c), S(cipher->BlockSize()), dtbuf(S), randseed(seed, S), randbuf(S), randbuf_counter(0), m_deterministicTimeVector(deterministicTimeVector) { if (m_deterministicTimeVector) { memset(dtbuf, 0, S); memcpy(dtbuf, (byte *)&m_deterministicTimeVector, STDMIN((int)sizeof(m_deterministicTimeVector), S)); } else { time_t tstamp1 = time(0); xorbuf(dtbuf, (byte *)&tstamp1, STDMIN((int)sizeof(tstamp1), S)); cipher->ProcessBlock(dtbuf); clock_t tstamp2 = clock(); xorbuf(dtbuf, (byte *)&tstamp2, STDMIN((int)sizeof(tstamp2), S)); cipher->ProcessBlock(dtbuf); } } byte X917RNG::GenerateByte() { if (randbuf_counter==0) { // calculate new enciphered timestamp if (m_deterministicTimeVector) { xorbuf(dtbuf, (byte *)&m_deterministicTimeVector, STDMIN((int)sizeof(m_deterministicTimeVector), S)); while (++m_deterministicTimeVector == 0) {} // skip 0 } else { clock_t tstamp = clock(); xorbuf(dtbuf, (byte *)&tstamp, STDMIN((int)sizeof(tstamp), S)); } cipher->ProcessBlock(dtbuf); // combine enciphered timestamp with seed xorbuf(randseed, dtbuf, S); // generate a new block of random bytes cipher->ProcessBlock(randseed, randbuf); // compute new seed vector for (int i=0; iProcessBlock(randseed); randbuf_counter=S; } return(randbuf[--randbuf_counter]); } MaurerRandomnessTest::MaurerRandomnessTest() : sum(0.0), n(0) { for (unsigned i=0; i= Q) sum += log(double(n - tab[inByte])); tab[inByte] = n; n++; } void MaurerRandomnessTest::Put(const byte *inString, unsigned int length) { while (length--) Put(*inString++); } double MaurerRandomnessTest::GetTestValue() const { double fTu = (sum/(n-Q))/log(2.0); // this is the test value defined by Maurer double value = fTu * 0.1392; // arbitrarily normalize it to return value > 1.0 ? 1.0 : value; // a number between 0 and 1 } NAMESPACE_END