// rw.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "rw.h" #include "nbtheory.h" #include "asn.h" NAMESPACE_BEGIN(CryptoPP) template<> const byte EMSA2DigestDecoration::decoration = 0x33; template<> const byte EMSA2DigestDecoration::decoration = 0x31; void EMSA2Pad::Pad(RandomNumberGenerator &, const byte *input, unsigned int inputLen, byte *emsa2Block, unsigned int emsa2BlockLen) const { assert (inputLen > 0 && inputLen <= MaxUnpaddedLength(emsa2BlockLen)); // convert from bit length to byte length emsa2BlockLen++; if (emsa2BlockLen % 8 > 1) { emsa2Block[0] = 0; emsa2Block++; } emsa2BlockLen /= 8; emsa2Block[0] = input[0]; // indicate empty or non-empty message memset(emsa2Block+1, 0xbb, emsa2BlockLen-inputLen-2); // padd with 0xbb emsa2Block[emsa2BlockLen-inputLen-1] = 0xba; // separator memcpy(emsa2Block+emsa2BlockLen-inputLen, input+1, inputLen-1); emsa2Block[emsa2BlockLen-1] = 0xcc; // make it congruent to 12 mod 16 } DecodingResult EMSA2Pad::Unpad(const byte *emsa2Block, unsigned int emsa2BlockLen, byte *output) const { // convert from bit length to byte length emsa2BlockLen++; if (emsa2BlockLen % 8 > 1) { if (emsa2Block[0] != 0) return DecodingResult(); emsa2Block++; } emsa2BlockLen /= 8; // check last byte if (emsa2Block[emsa2BlockLen-1] != 0xcc) return DecodingResult(); // skip past the padding until we find the seperator unsigned i=1; while (i void RWFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); seq.MessageEnd(); } template void RWFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); seq.MessageEnd(); } template Integer RWFunction::ApplyFunction(const Integer &in) const { DoQuickSanityCheck(); Integer out = in.Squared()%m_n; const word r2 = r/2; const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13 const word r3b = (16 + 13 - r) % 16; const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5 switch (out % 16) { case r: break; case r2: case r2+8: out <<= 1; break; case r3a: case r3b: out.Negate(); out += m_n; break; case r4: case r4+8: out.Negate(); out += m_n; out <<= 1; break; default: out = Integer::Zero(); } return out; } template bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = true; pass = pass && m_n > Integer::One() && m_n%8 == 5; return pass; } template bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) ; } template void RWFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) ; } // ***************************************************************************** // private key operations: // generate a random private key template void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) { int modulusSize = 2048; alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize); if (modulusSize < 16) throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small"); const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize); m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8))); m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8))); m_n = m_p * m_q; m_u = m_q.InverseMod(m_p); } template void InvertibleRWFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_p.BERDecode(seq); m_q.BERDecode(seq); m_u.BERDecode(seq); seq.MessageEnd(); } template void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_p.DEREncode(seq); m_q.DEREncode(seq); m_u.DEREncode(seq); seq.MessageEnd(); } template Integer InvertibleRWFunction::CalculateInverse(const Integer &in) const { DoQuickSanityCheck(); Integer cp=in%m_p, cq=in%m_q; if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1) { cp = cp%2 ? (cp+m_p) >> 1 : cp >> 1; cq = cq%2 ? (cq+m_q) >> 1 : cq >> 1; } cp = ModularSquareRoot(cp, m_p); cq = ModularSquareRoot(cq, m_q); Integer out = CRT(cq, m_q, cp, m_p, m_u); return STDMIN(out, m_n-out); } template bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = RWFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n; pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n; pass = pass && m_u.IsPositive() && m_u < m_p; if (level >= 1) { pass = pass && m_p * m_q == m_n; pass = pass && m_u * m_q % m_p == 1; } if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; } template bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper >(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } template void InvertibleRWFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper >(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } template class RWFunction; template class InvertibleRWFunction; NAMESPACE_END