// validat2.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1 #include "blumshub.h" #include "rsa.h" #include "md2.h" #include "elgamal.h" #include "nr.h" #include "dsa.h" #include "dh.h" #include "mqv.h" #include "luc.h" #include "xtrcrypt.h" #include "rabin.h" #include "rw.h" #include "eccrypto.h" #include "ecp.h" #include "ec2n.h" #include "asn.h" #include "rng.h" #include "misc.h" #include "files.h" #include "hex.h" #include "oids.h" #include "esign.h" #include "osrng.h" #include #include #include "validate.h" USING_NAMESPACE(CryptoPP) USING_NAMESPACE(std) class FixedRNG : public RandomNumberGenerator { public: FixedRNG(BufferedTransformation &source) : m_source(source) {} void GenerateBlock(byte *output, size_t size) { m_source.Get(output, size); } private: BufferedTransformation &m_source; }; bool ValidateBBS() { cout << "\nBlumBlumShub validation suite running...\n\n"; Integer p("212004934506826557583707108431463840565872545889679278744389317666981496005411448865750399674653351"); Integer q("100677295735404212434355574418077394581488455772477016953458064183204108039226017738610663984508231"); Integer seed("63239752671357255800299643604761065219897634268887145610573595874544114193025997412441121667211431"); BlumBlumShub bbs(p, q, seed); bool pass = true, fail; int j; static const byte output1[] = { 0x49,0xEA,0x2C,0xFD,0xB0,0x10,0x64,0xA0,0xBB,0xB9, 0x2A,0xF1,0x01,0xDA,0xC1,0x8A,0x94,0xF7,0xB7,0xCE}; static const byte output2[] = { 0x74,0x45,0x48,0xAE,0xAC,0xB7,0x0E,0xDF,0xAF,0xD7, 0xD5,0x0E,0x8E,0x29,0x83,0x75,0x6B,0x27,0x46,0xA1}; byte buf[20]; bbs.GenerateBlock(buf, 20); fail = !VerifyBufsEqual(output1, buf, 20); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); for (j=0;j<20;j++) cout << setw(2) << setfill('0') << hex << (int)buf[j]; cout << endl; bbs.Seek(10); bbs.GenerateBlock(buf, 10); fail = !VerifyBufsEqual(output1+10, buf, 10); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); for (j=0;j<10;j++) cout << setw(2) << setfill('0') << hex << (int)buf[j]; cout << endl; bbs.Seek(1234567); bbs.GenerateBlock(buf, 20); fail = !VerifyBufsEqual(output2, buf, 20); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); for (j=0;j<20;j++) cout << setw(2) << setfill('0') << hex << (int)buf[j]; cout << endl; return pass; } bool SignatureValidate(PK_Signer &priv, PK_Verifier &pub, bool thorough = false) { bool pass = true, fail; fail = !pub.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2) || !priv.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "signature key validation\n"; static const byte message[] = "test message"; const int messageLen = COUNTOF(message); SecByteBlock signature(priv.MaxSignatureLength()); size_t signatureLength = priv.SignMessage(GlobalRNG(), message, messageLen, signature); fail = !pub.VerifyMessage(message, messageLen, signature, signatureLength); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "signature and verification\n"; ++signature[0]; fail = pub.VerifyMessage(message, messageLen, signature, signatureLength); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "checking invalid signature" << endl; if (priv.MaxRecoverableLength() > 0) { signatureLength = priv.SignMessageWithRecovery(GlobalRNG(), message, messageLen, NULL, 0, signature); SecByteBlock recovered(priv.MaxRecoverableLengthFromSignatureLength(signatureLength)); DecodingResult result = pub.RecoverMessage(recovered, NULL, 0, signature, signatureLength); fail = !(result.isValidCoding && result.messageLength == messageLen && VerifyBufsEqual(recovered, message, messageLen)); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "signature and verification with recovery" << endl; ++signature[0]; result = pub.RecoverMessage(recovered, NULL, 0, signature, signatureLength); fail = result.isValidCoding; pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "recovery with invalid signature" << endl; } return pass; } bool CryptoSystemValidate(PK_Decryptor &priv, PK_Encryptor &pub, bool thorough = false) { bool pass = true, fail; fail = !pub.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2) || !priv.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "cryptosystem key validation\n"; static const byte message[] = "test message"; const int messageLen = COUNTOF(message); SecByteBlock ciphertext(priv.CiphertextLength(messageLen)); SecByteBlock plaintext(priv.MaxPlaintextLength(ciphertext.size())); pub.Encrypt(GlobalRNG(), message, messageLen, ciphertext); fail = priv.Decrypt(GlobalRNG(), ciphertext, priv.CiphertextLength(messageLen), plaintext) != DecodingResult(messageLen); fail = fail || !VerifyBufsEqual(message, plaintext, messageLen); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "encryption and decryption\n"; return pass; } bool SimpleKeyAgreementValidate(SimpleKeyAgreementDomain &d) { if (d.GetCryptoParameters().Validate(GlobalRNG(), 3)) cout << "passed simple key agreement domain parameters validation" << endl; else { cout << "FAILED simple key agreement domain parameters invalid" << endl; return false; } SecByteBlock priv1(d.PrivateKeyLength()), priv2(d.PrivateKeyLength()); SecByteBlock pub1(d.PublicKeyLength()), pub2(d.PublicKeyLength()); SecByteBlock val1(d.AgreedValueLength()), val2(d.AgreedValueLength()); d.GenerateKeyPair(GlobalRNG(), priv1, pub1); d.GenerateKeyPair(GlobalRNG(), priv2, pub2); memset(val1.begin(), 0x10, val1.size()); memset(val2.begin(), 0x11, val2.size()); if (!(d.Agree(val1, priv1, pub2) && d.Agree(val2, priv2, pub1))) { cout << "FAILED simple key agreement failed" << endl; return false; } if (!VerifyBufsEqual(val1.begin(), val2.begin(), d.AgreedValueLength())) { cout << "FAILED simple agreed values not equal" << endl; return false; } cout << "passed simple key agreement" << endl; return true; } bool AuthenticatedKeyAgreementValidate(AuthenticatedKeyAgreementDomain &d) { if (d.GetCryptoParameters().Validate(GlobalRNG(), 3)) cout << "passed authenticated key agreement domain parameters validation" << endl; else { cout << "FAILED authenticated key agreement domain parameters invalid" << endl; return false; } SecByteBlock spriv1(d.StaticPrivateKeyLength()), spriv2(d.StaticPrivateKeyLength()); SecByteBlock epriv1(d.EphemeralPrivateKeyLength()), epriv2(d.EphemeralPrivateKeyLength()); SecByteBlock spub1(d.StaticPublicKeyLength()), spub2(d.StaticPublicKeyLength()); SecByteBlock epub1(d.EphemeralPublicKeyLength()), epub2(d.EphemeralPublicKeyLength()); SecByteBlock val1(d.AgreedValueLength()), val2(d.AgreedValueLength()); d.GenerateStaticKeyPair(GlobalRNG(), spriv1, spub1); d.GenerateStaticKeyPair(GlobalRNG(), spriv2, spub2); d.GenerateEphemeralKeyPair(GlobalRNG(), epriv1, epub1); d.GenerateEphemeralKeyPair(GlobalRNG(), epriv2, epub2); memset(val1.begin(), 0x10, val1.size()); memset(val2.begin(), 0x11, val2.size()); if (!(d.Agree(val1, spriv1, epriv1, spub2, epub2) && d.Agree(val2, spriv2, epriv2, spub1, epub1))) { cout << "FAILED authenticated key agreement failed" << endl; return false; } if (!VerifyBufsEqual(val1.begin(), val2.begin(), d.AgreedValueLength())) { cout << "FAILED authenticated agreed values not equal" << endl; return false; } cout << "passed authenticated key agreement" << endl; return true; } bool ValidateRSA() { cout << "\nRSA validation suite running...\n\n"; byte out[100], outPlain[100]; bool pass = true, fail; { static const char plain[] = "Everyone gets Friday off."; byte *signature = (byte *) "\x05\xfa\x6a\x81\x2f\xc7\xdf\x8b\xf4\xf2\x54\x25\x09\xe0\x3e\x84" "\x6e\x11\xb9\xc6\x20\xbe\x20\x09\xef\xb4\x40\xef\xbc\xc6\x69\x21" "\x69\x94\xac\x04\xf3\x41\xb5\x7d\x05\x20\x2d\x42\x8f\xb2\xa2\x7b" "\x5c\x77\xdf\xd9\xb1\x5b\xfc\x3d\x55\x93\x53\x50\x34\x10\xc1\xe1"; FileSource keys("TestData/rsa512a.dat", true, new HexDecoder); Weak::RSASSA_PKCS1v15_MD2_Signer rsaPriv(keys); Weak::RSASSA_PKCS1v15_MD2_Verifier rsaPub(rsaPriv); size_t signatureLength = rsaPriv.SignMessage(GlobalRNG(), (byte *)plain, strlen(plain), out); fail = !VerifyBufsEqual(signature, out, 64); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "signature check against test vector\n"; fail = !rsaPub.VerifyMessage((byte *)plain, strlen(plain), out, signatureLength); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "verification check against test vector\n"; out[10]++; fail = rsaPub.VerifyMessage((byte *)plain, strlen(plain), out, signatureLength); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "invalid signature verification\n"; } { FileSource keys("TestData/rsa1024.dat", true, new HexDecoder); RSAES_PKCS1v15_Decryptor rsaPriv(keys); RSAES_PKCS1v15_Encryptor rsaPub(rsaPriv); pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass; } { RSAES >::Decryptor rsaPriv(GlobalRNG(), 512); RSAES >::Encryptor rsaPub(rsaPriv); pass = CryptoSystemValidate(rsaPriv, rsaPub) && pass; } { byte *plain = (byte *) "\x54\x85\x9b\x34\x2c\x49\xea\x2a"; byte *encrypted = (byte *) "\x14\xbd\xdd\x28\xc9\x83\x35\x19\x23\x80\xe8\xe5\x49\xb1\x58\x2a" "\x8b\x40\xb4\x48\x6d\x03\xa6\xa5\x31\x1f\x1f\xd5\xf0\xa1\x80\xe4" "\x17\x53\x03\x29\xa9\x34\x90\x74\xb1\x52\x13\x54\x29\x08\x24\x52" "\x62\x51"; byte *oaepSeed = (byte *) "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2" "\xf0\x6c\xb5\x8f"; ByteQueue bq; bq.Put(oaepSeed, 20); FixedRNG rng(bq); FileSource privFile("TestData/rsa400pv.dat", true, new HexDecoder); FileSource pubFile("TestData/rsa400pb.dat", true, new HexDecoder); RSAES_OAEP_SHA_Decryptor rsaPriv; rsaPriv.AccessKey().BERDecodePrivateKey(privFile, false, 0); RSAES_OAEP_SHA_Encryptor rsaPub(pubFile); memset(out, 0, 50); memset(outPlain, 0, 8); rsaPub.Encrypt(rng, plain, 8, out); DecodingResult result = rsaPriv.FixedLengthDecrypt(GlobalRNG(), encrypted, outPlain); fail = !result.isValidCoding || (result.messageLength!=8) || !VerifyBufsEqual(out, encrypted, 50) || !VerifyBufsEqual(plain, outPlain, 8); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "PKCS 2.0 encryption and decryption\n"; } return pass; } bool ValidateDH() { cout << "\nDH validation suite running...\n\n"; FileSource f("TestData/dh1024.dat", true, new HexDecoder()); DH dh(f); return SimpleKeyAgreementValidate(dh); } bool ValidateMQV() { cout << "\nMQV validation suite running...\n\n"; FileSource f("TestData/mqv1024.dat", true, new HexDecoder()); MQV mqv(f); return AuthenticatedKeyAgreementValidate(mqv); } bool ValidateLUC_DH() { cout << "\nLUC-DH validation suite running...\n\n"; FileSource f("TestData/lucd512.dat", true, new HexDecoder()); LUC_DH dh(f); return SimpleKeyAgreementValidate(dh); } bool ValidateXTR_DH() { cout << "\nXTR-DH validation suite running...\n\n"; FileSource f("TestData/xtrdh171.dat", true, new HexDecoder()); XTR_DH dh(f); return SimpleKeyAgreementValidate(dh); } bool ValidateElGamal() { cout << "\nElGamal validation suite running...\n\n"; bool pass = true; { FileSource fc("TestData/elgc1024.dat", true, new HexDecoder); ElGamalDecryptor privC(fc); ElGamalEncryptor pubC(privC); privC.AccessKey().Precompute(); ByteQueue queue; privC.AccessKey().SavePrecomputation(queue); privC.AccessKey().LoadPrecomputation(queue); pass = CryptoSystemValidate(privC, pubC) && pass; } return pass; } bool ValidateDLIES() { cout << "\nDLIES validation suite running...\n\n"; bool pass = true; { FileSource fc("TestData/dlie1024.dat", true, new HexDecoder); DLIES<>::Decryptor privC(fc); DLIES<>::Encryptor pubC(privC); pass = CryptoSystemValidate(privC, pubC) && pass; } { cout << "Generating new encryption key..." << endl; DLIES<>::GroupParameters gp; gp.GenerateRandomWithKeySize(GlobalRNG(), 128); DLIES<>::Decryptor decryptor; decryptor.AccessKey().GenerateRandom(GlobalRNG(), gp); DLIES<>::Encryptor encryptor(decryptor); pass = CryptoSystemValidate(decryptor, encryptor) && pass; } return pass; } bool ValidateNR() { cout << "\nNR validation suite running...\n\n"; bool pass = true; { FileSource f("TestData/nr2048.dat", true, new HexDecoder); NR::Signer privS(f); privS.AccessKey().Precompute(); NR::Verifier pubS(privS); pass = SignatureValidate(privS, pubS) && pass; } { cout << "Generating new signature key..." << endl; NR::Signer privS(GlobalRNG(), 256); NR::Verifier pubS(privS); pass = SignatureValidate(privS, pubS) && pass; } return pass; } bool ValidateDSA(bool thorough) { cout << "\nDSA validation suite running...\n\n"; bool pass = true; FileSource fs1("TestData/dsa1024.dat", true, new HexDecoder()); DSA::Signer priv(fs1); DSA::Verifier pub(priv); FileSource fs2("TestData/dsa1024b.dat", true, new HexDecoder()); DSA::Verifier pub1(fs2); assert(pub.GetKey() == pub1.GetKey()); pass = SignatureValidate(priv, pub, thorough) && pass; pass = RunTestDataFile("TestVectors/dsa.txt", g_nullNameValuePairs, thorough) && pass; return pass; } bool ValidateLUC() { cout << "\nLUC validation suite running...\n\n"; bool pass=true; { FileSource f("TestData/luc1024.dat", true, new HexDecoder); LUCSSA_PKCS1v15_SHA_Signer priv(f); LUCSSA_PKCS1v15_SHA_Verifier pub(priv); pass = SignatureValidate(priv, pub) && pass; } { LUCES_OAEP_SHA_Decryptor priv(GlobalRNG(), 512); LUCES_OAEP_SHA_Encryptor pub(priv); pass = CryptoSystemValidate(priv, pub) && pass; } return pass; } bool ValidateLUC_DL() { cout << "\nLUC-HMP validation suite running...\n\n"; FileSource f("TestData/lucs512.dat", true, new HexDecoder); LUC_HMP::Signer privS(f); LUC_HMP::Verifier pubS(privS); bool pass = SignatureValidate(privS, pubS); cout << "\nLUC-IES validation suite running...\n\n"; FileSource fc("TestData/lucc512.dat", true, new HexDecoder); LUC_IES<>::Decryptor privC(fc); LUC_IES<>::Encryptor pubC(privC); pass = CryptoSystemValidate(privC, pubC) && pass; return pass; } bool ValidateRabin() { cout << "\nRabin validation suite running...\n\n"; bool pass=true; { FileSource f("TestData/rabi1024.dat", true, new HexDecoder); RabinSS::Signer priv(f); RabinSS::Verifier pub(priv); pass = SignatureValidate(priv, pub) && pass; } { RabinES >::Decryptor priv(GlobalRNG(), 512); RabinES >::Encryptor pub(priv); pass = CryptoSystemValidate(priv, pub) && pass; } return pass; } bool ValidateRW() { cout << "\nRW validation suite running...\n\n"; bool pass=true; FileSource f("TestData/rw1024.dat", true, new HexDecoder); RWSS::Signer priv(f); RWSS::Verifier pub(priv); pass = pass && SignatureValidate(priv, pub); return pass; } /* bool ValidateBlumGoldwasser() { cout << "\nBlumGoldwasser validation suite running...\n\n"; FileSource f("TestData/blum512.dat", true, new HexDecoder); BlumGoldwasserPrivateKey priv(f); BlumGoldwasserPublicKey pub(priv); return CryptoSystemValidate(priv, pub); } */ bool ValidateECP() { cout << "\nECP validation suite running...\n\n"; ECIES::Decryptor cpriv(GlobalRNG(), ASN1::secp192r1()); ECIES::Encryptor cpub(cpriv); ByteQueue bq; cpriv.GetKey().DEREncode(bq); cpub.AccessKey().AccessGroupParameters().SetEncodeAsOID(true); cpub.GetKey().DEREncode(bq); ECDSA::Signer spriv(bq); ECDSA::Verifier spub(bq); ECDH::Domain ecdhc(ASN1::secp192r1()); ECMQV::Domain ecmqvc(ASN1::secp192r1()); spriv.AccessKey().Precompute(); ByteQueue queue; spriv.AccessKey().SavePrecomputation(queue); spriv.AccessKey().LoadPrecomputation(queue); bool pass = SignatureValidate(spriv, spub); cpub.AccessKey().Precompute(); cpriv.AccessKey().Precompute(); pass = CryptoSystemValidate(cpriv, cpub) && pass; pass = SimpleKeyAgreementValidate(ecdhc) && pass; pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass; cout << "Turning on point compression..." << endl; cpriv.AccessKey().AccessGroupParameters().SetPointCompression(true); cpub.AccessKey().AccessGroupParameters().SetPointCompression(true); ecdhc.AccessGroupParameters().SetPointCompression(true); ecmqvc.AccessGroupParameters().SetPointCompression(true); pass = CryptoSystemValidate(cpriv, cpub) && pass; pass = SimpleKeyAgreementValidate(ecdhc) && pass; pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass; cout << "Testing SEC 2, NIST, and Brainpool recommended curves..." << endl; OID oid; while (!(oid = DL_GroupParameters_EC::GetNextRecommendedParametersOID(oid)).m_values.empty()) { DL_GroupParameters_EC params(oid); bool fail = !params.Validate(GlobalRNG(), 2); cout << (fail ? "FAILED" : "passed") << " " << dec << params.GetCurve().GetField().MaxElementBitLength() << " bits" << endl; pass = pass && !fail; } return pass; } bool ValidateEC2N() { cout << "\nEC2N validation suite running...\n\n"; ECIES::Decryptor cpriv(GlobalRNG(), ASN1::sect193r1()); ECIES::Encryptor cpub(cpriv); ByteQueue bq; cpriv.DEREncode(bq); cpub.AccessKey().AccessGroupParameters().SetEncodeAsOID(true); cpub.DEREncode(bq); ECDSA::Signer spriv(bq); ECDSA::Verifier spub(bq); ECDH::Domain ecdhc(ASN1::sect193r1()); ECMQV::Domain ecmqvc(ASN1::sect193r1()); spriv.AccessKey().Precompute(); ByteQueue queue; spriv.AccessKey().SavePrecomputation(queue); spriv.AccessKey().LoadPrecomputation(queue); bool pass = SignatureValidate(spriv, spub); pass = CryptoSystemValidate(cpriv, cpub) && pass; pass = SimpleKeyAgreementValidate(ecdhc) && pass; pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass; cout << "Turning on point compression..." << endl; cpriv.AccessKey().AccessGroupParameters().SetPointCompression(true); cpub.AccessKey().AccessGroupParameters().SetPointCompression(true); ecdhc.AccessGroupParameters().SetPointCompression(true); ecmqvc.AccessGroupParameters().SetPointCompression(true); pass = CryptoSystemValidate(cpriv, cpub) && pass; pass = SimpleKeyAgreementValidate(ecdhc) && pass; pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass; #if 0 // TODO: turn this back on when I make EC2N faster for pentanomial basis cout << "Testing SEC 2 recommended curves..." << endl; OID oid; while (!(oid = DL_GroupParameters_EC::GetNextRecommendedParametersOID(oid)).m_values.empty()) { DL_GroupParameters_EC params(oid); bool fail = !params.Validate(GlobalRNG(), 2); cout << (fail ? "FAILED" : "passed") << " " << params.GetCurve().GetField().MaxElementBitLength() << " bits" << endl; pass = pass && !fail; } #endif return pass; } bool ValidateECDSA() { cout << "\nECDSA validation suite running...\n\n"; // from Sample Test Vectors for P1363 GF2NT gf2n(191, 9, 0); byte a[]="\x28\x66\x53\x7B\x67\x67\x52\x63\x6A\x68\xF5\x65\x54\xE1\x26\x40\x27\x6B\x64\x9E\xF7\x52\x62\x67"; byte b[]="\x2E\x45\xEF\x57\x1F\x00\x78\x6F\x67\xB0\x08\x1B\x94\x95\xA3\xD9\x54\x62\xF5\xDE\x0A\xA1\x85\xEC"; EC2N ec(gf2n, PolynomialMod2(a,24), PolynomialMod2(b,24)); EC2N::Point P; ec.DecodePoint(P, (byte *)"\x04\x36\xB3\xDA\xF8\xA2\x32\x06\xF9\xC4\xF2\x99\xD7\xB2\x1A\x9C\x36\x91\x37\xF2\xC8\x4A\xE1\xAA\x0D" "\x76\x5B\xE7\x34\x33\xB3\xF9\x5E\x33\x29\x32\xE7\x0E\xA2\x45\xCA\x24\x18\xEA\x0E\xF9\x80\x18\xFB", ec.EncodedPointSize()); Integer n("40000000000000000000000004a20e90c39067c893bbb9a5H"); Integer d("340562e1dda332f9d2aec168249b5696ee39d0ed4d03760fH"); EC2N::Point Q(ec.Multiply(d, P)); ECDSA::Signer priv(ec, P, n, d); ECDSA::Verifier pub(priv); Integer h("A9993E364706816ABA3E25717850C26C9CD0D89DH"); Integer k("3eeace72b4919d991738d521879f787cb590aff8189d2b69H"); byte sig[]="\x03\x8e\x5a\x11\xfb\x55\xe4\xc6\x54\x71\xdc\xd4\x99\x84\x52\xb1\xe0\x2d\x8a\xf7\x09\x9b\xb9\x30" "\x0c\x9a\x08\xc3\x44\x68\xc2\x44\xb4\xe5\xd6\xb2\x1b\x3c\x68\x36\x28\x07\x41\x60\x20\x32\x8b\x6e"; Integer r(sig, 24); Integer s(sig+24, 24); Integer rOut, sOut; bool fail, pass=true; priv.RawSign(k, h, rOut, sOut); fail = (rOut != r) || (sOut != s); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "signature check against test vector\n"; fail = !pub.VerifyMessage((byte *)"abc", 3, sig, sizeof(sig)); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "verification check against test vector\n"; fail = pub.VerifyMessage((byte *)"xyz", 3, sig, sizeof(sig)); pass = pass && !fail; pass = SignatureValidate(priv, pub) && pass; return pass; } bool ValidateESIGN() { cout << "\nESIGN validation suite running...\n\n"; bool pass = true, fail; static const char plain[] = "test"; static const byte signature[] = "\xA3\xE3\x20\x65\xDE\xDA\xE7\xEC\x05\xC1\xBF\xCD\x25\x79\x7D\x99\xCD\xD5\x73\x9D\x9D\xF3\xA4\xAA\x9A\xA4\x5A\xC8\x23\x3D\x0D\x37\xFE\xBC\x76\x3F\xF1\x84\xF6\x59" "\x14\x91\x4F\x0C\x34\x1B\xAE\x9A\x5C\x2E\x2E\x38\x08\x78\x77\xCB\xDC\x3C\x7E\xA0\x34\x44\x5B\x0F\x67\xD9\x35\x2A\x79\x47\x1A\x52\x37\x71\xDB\x12\x67\xC1\xB6\xC6" "\x66\x73\xB3\x40\x2E\xD6\xF2\x1A\x84\x0A\xB6\x7B\x0F\xEB\x8B\x88\xAB\x33\xDD\xE4\x83\x21\x90\x63\x2D\x51\x2A\xB1\x6F\xAB\xA7\x5C\xFD\x77\x99\xF2\xE1\xEF\x67\x1A" "\x74\x02\x37\x0E\xED\x0A\x06\xAD\xF4\x15\x65\xB8\xE1\xD1\x45\xAE\x39\x19\xB4\xFF\x5D\xF1\x45\x7B\xE0\xFE\x72\xED\x11\x92\x8F\x61\x41\x4F\x02\x00\xF2\x76\x6F\x7C" "\x79\xA2\xE5\x52\x20\x5D\x97\x5E\xFE\x39\xAE\x21\x10\xFB\x35\xF4\x80\x81\x41\x13\xDD\xE8\x5F\xCA\x1E\x4F\xF8\x9B\xB2\x68\xFB\x28"; FileSource keys("TestData/esig1536.dat", true, new HexDecoder); ESIGN::Signer signer(keys); ESIGN::Verifier verifier(signer); fail = !SignatureValidate(signer, verifier); pass = pass && !fail; fail = !verifier.VerifyMessage((byte *)plain, strlen(plain), signature, verifier.SignatureLength()); pass = pass && !fail; cout << (fail ? "FAILED " : "passed "); cout << "verification check against test vector\n"; cout << "Generating signature key from seed..." << endl; signer.AccessKey().GenerateRandom(GlobalRNG(), MakeParameters("Seed", ConstByteArrayParameter((const byte *)"test", 4))("KeySize", 3*512)); verifier = signer; fail = !SignatureValidate(signer, verifier); pass = pass && !fail; return pass; }