summaryrefslogtreecommitdiff
path: root/lib/md4.c
blob: 1bdc9f367cd19fcf0746734907ba37601fdc303c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
 * MD4 Message-Digest Algorithm (RFC 1320).
 *
 * Homepage:
 http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
 *
 * Author:
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
 *
 * This software was written by Alexander Peslyak in 2001.  No copyright is
 * claimed, and the software is hereby placed in the public domain.  In case
 * this attempt to disclaim copyright and place the software in the public
 * domain is deemed null and void, then the software is Copyright (c) 2001
 * Alexander Peslyak and it is hereby released to the general public under the
 * following terms:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted.
 *
 * There's ABSOLUTELY NO WARRANTY, express or implied.
 *
 * (This is a heavily cut-down "BSD license".)
 *
 * This differs from Colin Plumb's older public domain implementation in that
 * no exactly 32-bit integer data type is required (any 32-bit or wider
 * unsigned integer data type will do), there's no compile-time endianness
 * configuration, and the function prototypes match OpenSSL's.  No code from
 * Colin Plumb's implementation has been reused; this comment merely compares
 * the properties of the two independent implementations.
 *
 * The primary goals of this implementation are portability and ease of use.
 * It is meant to be fast, but not as fast as possible.  Some known
 * optimizations are not included to reduce source code size and avoid
 * compile-time configuration.
 */

#include "curl_setup.h"

/* NSS and OS/400 crypto library do not provide the MD4 hash algorithm, so
 * that we have a local implementation of it */
#if defined(USE_NSS) || defined(USE_OS400CRYPTO)

#include "curl_md4.h"
#include "warnless.h"

#ifndef HAVE_OPENSSL

#include <string.h>

/* Any 32-bit or wider unsigned integer data type will do */
typedef unsigned int MD4_u32plus;

typedef struct {
  MD4_u32plus lo, hi;
  MD4_u32plus a, b, c, d;
  unsigned char buffer[64];
  MD4_u32plus block[16];
} MD4_CTX;

static void MD4_Init(MD4_CTX *ctx);
static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size);
static void MD4_Final(unsigned char *result, MD4_CTX *ctx);

/*
 * The basic MD4 functions.
 *
 * F and G are optimized compared to their RFC 1320 definitions, with the
 * optimization for F borrowed from Colin Plumb's MD5 implementation.
 */
#define F(x, y, z)                      ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)                      (((x) & ((y) | (z))) | ((y) & (z)))
#define H(x, y, z)                      ((x) ^ (y) ^ (z))

/*
 * The MD4 transformation for all three rounds.
 */
#define STEP(f, a, b, c, d, x, s) \
        (a) += f((b), (c), (d)) + (x); \
        (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));

/*
 * SET reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 *
 * The check for little-endian architectures that tolerate unaligned
 * memory accesses is just an optimization.  Nothing will break if it
 * doesn't work.
 */
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#define SET(n) \
        (*(MD4_u32plus *)&ptr[(n) * 4])
#define GET(n) \
        SET(n)
#else
#define SET(n) \
        (ctx->block[(n)] = \
        (MD4_u32plus)ptr[(n) * 4] | \
        ((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \
        ((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \
        ((MD4_u32plus)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
        (ctx->block[(n)])
#endif

/*
 * This processes one or more 64-byte data blocks, but does NOT update
 * the bit counters.  There are no alignment requirements.
 */
static const void *body(MD4_CTX *ctx, const void *data, unsigned long size)
{
  const unsigned char *ptr;
  MD4_u32plus a, b, c, d;
  MD4_u32plus saved_a, saved_b, saved_c, saved_d;

  ptr = (const unsigned char *)data;

  a = ctx->a;
  b = ctx->b;
  c = ctx->c;
  d = ctx->d;

  do {
    saved_a = a;
    saved_b = b;
    saved_c = c;
    saved_d = d;

/* Round 1 */
    STEP(F, a, b, c, d, SET(0), 3)
      STEP(F, d, a, b, c, SET(1), 7)
      STEP(F, c, d, a, b, SET(2), 11)
      STEP(F, b, c, d, a, SET(3), 19)
      STEP(F, a, b, c, d, SET(4), 3)
      STEP(F, d, a, b, c, SET(5), 7)
      STEP(F, c, d, a, b, SET(6), 11)
      STEP(F, b, c, d, a, SET(7), 19)
      STEP(F, a, b, c, d, SET(8), 3)
      STEP(F, d, a, b, c, SET(9), 7)
      STEP(F, c, d, a, b, SET(10), 11)
      STEP(F, b, c, d, a, SET(11), 19)
      STEP(F, a, b, c, d, SET(12), 3)
      STEP(F, d, a, b, c, SET(13), 7)
      STEP(F, c, d, a, b, SET(14), 11)
      STEP(F, b, c, d, a, SET(15), 19)

/* Round 2 */
      STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3)
      STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5)
      STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9)
      STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13)
      STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3)
      STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5)
      STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9)
      STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13)
      STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3)
      STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5)
      STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9)
      STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13)
      STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3)
      STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5)
      STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9)
      STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13)

/* Round 3 */
      STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3)
      STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9)
      STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11)
      STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15)
      STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3)
      STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9)
      STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11)
      STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15)
      STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3)
      STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9)
      STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11)
      STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15)
      STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3)
      STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9)
      STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11)
      STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15)

      a += saved_a;
    b += saved_b;
    c += saved_c;
    d += saved_d;

    ptr += 64;
  } while(size -= 64);

  ctx->a = a;
  ctx->b = b;
  ctx->c = c;
  ctx->d = d;

  return ptr;
}

static void MD4_Init(MD4_CTX *ctx)
{
  ctx->a = 0x67452301;
  ctx->b = 0xefcdab89;
  ctx->c = 0x98badcfe;
  ctx->d = 0x10325476;

  ctx->lo = 0;
  ctx->hi = 0;
}

static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size)
{
  MD4_u32plus saved_lo;
  unsigned long used, available;

  saved_lo = ctx->lo;
  ctx->lo = (saved_lo + size) & 0x1fffffff;
  if(ctx->lo < saved_lo)
    ctx->hi++;
  ctx->hi += (MD4_u32plus)size >> 29;

  used = saved_lo & 0x3f;

  if(used) {
    available = 64 - used;

    if(size < available) {
      memcpy(&ctx->buffer[used], data, size);
      return;
    }

    memcpy(&ctx->buffer[used], data, available);
    data = (const unsigned char *)data + available;
    size -= available;
    body(ctx, ctx->buffer, 64);
  }

  if(size >= 64) {
    data = body(ctx, data, size & ~(unsigned long)0x3f);
    size &= 0x3f;
  }

  memcpy(ctx->buffer, data, size);
}

static void MD4_Final(unsigned char *result, MD4_CTX *ctx)
{
  unsigned long used, available;

  used = ctx->lo & 0x3f;

  ctx->buffer[used++] = 0x80;

  available = 64 - used;

  if(available < 8) {
    memset(&ctx->buffer[used], 0, available);
    body(ctx, ctx->buffer, 64);
    used = 0;
    available = 64;
  }

  memset(&ctx->buffer[used], 0, available - 8);

  ctx->lo <<= 3;
  ctx->buffer[56] = curlx_ultouc((ctx->lo)&0xff);
  ctx->buffer[57] = curlx_ultouc((ctx->lo >> 8)&0xff);
  ctx->buffer[58] = curlx_ultouc((ctx->lo >> 16)&0xff);
  ctx->buffer[59] = curlx_ultouc((ctx->lo >> 24)&0xff);
  ctx->buffer[60] = curlx_ultouc((ctx->hi)&0xff);
  ctx->buffer[61] = curlx_ultouc((ctx->hi >> 8)&0xff);
  ctx->buffer[62] = curlx_ultouc((ctx->hi >> 16)&0xff);
  ctx->buffer[63] = curlx_ultouc(ctx->hi >> 24);

  body(ctx, ctx->buffer, 64);

  result[0] = curlx_ultouc((ctx->a)&0xff);
  result[1] = curlx_ultouc((ctx->a >> 8)&0xff);
  result[2] = curlx_ultouc((ctx->a >> 16)&0xff);
  result[3] = curlx_ultouc(ctx->a >> 24);
  result[4] = curlx_ultouc((ctx->b)&0xff);
  result[5] = curlx_ultouc((ctx->b >> 8)&0xff);
  result[6] = curlx_ultouc((ctx->b >> 16)&0xff);
  result[7] = curlx_ultouc(ctx->b >> 24);
  result[8] = curlx_ultouc((ctx->c)&0xff);
  result[9] = curlx_ultouc((ctx->c >> 8)&0xff);
  result[10] = curlx_ultouc((ctx->c >> 16)&0xff);
  result[11] = curlx_ultouc(ctx->c >> 24);
  result[12] = curlx_ultouc((ctx->d)&0xff);
  result[13] = curlx_ultouc((ctx->d >> 8)&0xff);
  result[14] = curlx_ultouc((ctx->d >> 16)&0xff);
  result[15] = curlx_ultouc(ctx->d >> 24);

  memset(ctx, 0, sizeof(*ctx));
}

#endif

void Curl_md4it(unsigned char *output, const unsigned char *input, size_t len)
{
  MD4_CTX ctx;
  MD4_Init(&ctx);
  MD4_Update(&ctx, input, curlx_uztoui(len));
  MD4_Final(output, &ctx);
}
#endif /* defined(USE_NSS) || defined(USE_OS400CRYPTO) */