from .PyrexTypes import BufferType, CType, CTypedefType, CStructOrUnionType _pythran_var_prefix = "__pythran__" # Pythran/Numpy specific operations def has_np_pythran(env): while not env is None: if hasattr(env, "directives") and env.directives.get('np_pythran', False): return True env = env.outer_scope def is_pythran_supported_dtype(type_): if isinstance(type_, CTypedefType): return is_pythran_supported_type(type_.typedef_base_type) return type_.is_numeric def pythran_type(Ty,ptype="ndarray"): if Ty.is_buffer: ndim,dtype = Ty.ndim, Ty.dtype if isinstance(dtype, CStructOrUnionType): ctype = dtype.cname elif isinstance(dtype, CType): ctype = dtype.sign_and_name() elif isinstance(dtype, CTypedefType): ctype = dtype.typedef_cname else: raise ValueError("unsupported type %s!" % str(dtype)) return "pythonic::types::%s<%s,%d>" % (ptype,ctype, ndim) from .PyrexTypes import PythranExpr if Ty.is_pythran_expr: return Ty.pythran_type #if Ty.is_none: # return "decltype(pythonic::__builtin__::None)" if Ty.is_numeric: return Ty.sign_and_name() raise ValueError("unsupported pythran type %s (%s)" % (str(Ty), str(type(Ty)))) return None def type_remove_ref(ty): return "typename std::remove_reference<%s>::type" % ty def pythran_binop_type(op, tA, tB): return "decltype(std::declval<%s>() %s std::declval<%s>())" % \ (pythran_type(tA), op, pythran_type(tB)) def pythran_unaryop_type(op, type_): return "decltype(%sstd::declval<%s>())" % ( op, pythran_type(type_)) def pythran_indexing_type(type_, indices): def index_code(idx): if idx.is_slice: if idx.step.is_none: func = "contiguous_slice" n = 2 else: func = "slice" n = 3 return "pythonic::types::%s(%s)" % (func,",".join(["0"]*n)) elif idx.type.is_int: return "std::declval()" elif idx.type.is_pythran_expr: return "std::declval<%s>()" % idx.type.pythran_type raise ValueError("unsupported indice type %s!" % idx.type) indexing = ",".join(index_code(idx) for idx in indices) return type_remove_ref("decltype(std::declval<%s>()(%s))" % (pythran_type(type_), indexing)) def pythran_indexing_code(indices): def index_code(idx): if idx.is_slice: values = idx.start, idx.stop, idx.step if idx.step.is_none: func = "contiguous_slice" values = values[:2] else: func = "slice" return "pythonic::types::%s(%s)" % (func,",".join((v.pythran_result() for v in values))) elif idx.type.is_int: return idx.result() elif idx.type.is_pythran_expr: return idx.pythran_result() raise ValueError("unsupported indice type %s!" % str(idx.type)) return ",".join(index_code(idx) for idx in indices) def pythran_func_type(func, args): args = ",".join(("std::declval<%s>()" % pythran_type(a.type) for a in args)) return "decltype(pythonic::numpy::functor::%s{}(%s))" % (func, args) def to_pythran(op,ptype=None): op_type = op.type if is_type(op_type,["is_pythran_expr", "is_int", "is_numeric", "is_float", "is_complex"]): return op.result() if op.is_none: return "pythonic::__builtin__::None" if ptype is None: ptype = pythran_type(op_type) assert(op.type.is_pyobject) return "from_python<%s>(%s)" % (ptype, op.py_result()) def from_pythran(): return "to_python" def is_type(type_, types): for attr in types: if getattr(type_, attr, False): return True return False def is_pythran_supported_node_or_none(node): return node.is_none or is_pythran_supported_type(node.type) def is_pythran_supported_type(type_): pythran_supported = ( "is_pythran_expr", "is_int", "is_numeric", "is_float", "is_none", "is_complex") return is_type(type_, pythran_supported) or is_pythran_expr(type_) def is_pythran_supported_operation_type(type_): pythran_supported = ( "is_pythran_expr", "is_int", "is_numeric", "is_float", "is_complex") return is_type(type_,pythran_supported) or is_pythran_expr(type_) def is_pythran_expr(type_): return type_.is_pythran_expr def is_pythran_buffer(type_): return type_.is_numpy_buffer and is_pythran_supported_dtype(type_.dtype) and \ type_.mode in ("c","strided") and not type_.cast def include_pythran_generic(env): # Generic files env.add_include_file("pythonic/core.hpp") env.add_include_file("pythonic/python/core.hpp") env.add_include_file("pythonic/types/bool.hpp") env.add_include_file("pythonic/types/ndarray.hpp") env.add_include_file("") # for placement new for i in (8,16,32,64): env.add_include_file("pythonic/types/uint%d.hpp" % i) env.add_include_file("pythonic/types/int%d.hpp" % i) for t in ("float", "float32", "float64", "set", "slice", "tuple", "int", "long", "complex", "complex64", "complex128"): env.add_include_file("pythonic/types/%s.hpp" % t) def include_pythran_type(env, type_): pass def type_is_numpy(type_): if not hasattr(type_, "is_numpy"): return False return type_.is_numpy