1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
|
#
# Pyrex - Parse tree nodes for expressions
#
import operator
from string import join
from Errors import error, warning, InternalError
from Errors import hold_errors, release_errors, held_errors, report_error
from Cython.Utils import UtilityCode
import StringEncoding
import Naming
from Nodes import Node
import PyrexTypes
from PyrexTypes import py_object_type, c_long_type, typecast, error_type
from Builtin import list_type, tuple_type, dict_type, unicode_type
import Symtab
import Options
from Annotate import AnnotationItem
from Cython.Debugging import print_call_chain
from DebugFlags import debug_disposal_code, debug_temp_alloc, \
debug_coercion
class ExprNode(Node):
# subexprs [string] Class var holding names of subexpr node attrs
# type PyrexType Type of the result
# result_code string Code fragment
# result_ctype string C type of result_code if different from type
# is_temp boolean Result is in a temporary variable
# is_sequence_constructor
# boolean Is a list or tuple constructor expression
# saved_subexpr_nodes
# [ExprNode or [ExprNode or None] or None]
# Cached result of subexpr_nodes()
result_ctype = None
type = None
# The Analyse Expressions phase for expressions is split
# into two sub-phases:
#
# Analyse Types
# Determines the result type of the expression based
# on the types of its sub-expressions, and inserts
# coercion nodes into the expression tree where needed.
# Marks nodes which will need to have temporary variables
# allocated.
#
# Allocate Temps
# Allocates temporary variables where needed, and fills
# in the result_code field of each node.
#
# ExprNode provides some convenience routines which
# perform both of the above phases. These should only
# be called from statement nodes, and only when no
# coercion nodes need to be added around the expression
# being analysed. In that case, the above two phases
# should be invoked separately.
#
# Framework code in ExprNode provides much of the common
# processing for the various phases. It makes use of the
# 'subexprs' class attribute of ExprNodes, which should
# contain a list of the names of attributes which can
# hold sub-nodes or sequences of sub-nodes.
#
# The framework makes use of a number of abstract methods.
# Their responsibilities are as follows.
#
# Declaration Analysis phase
#
# analyse_target_declaration
# Called during the Analyse Declarations phase to analyse
# the LHS of an assignment or argument of a del statement.
# Nodes which cannot be the LHS of an assignment need not
# implement it.
#
# Expression Analysis phase
#
# analyse_types
# - Call analyse_types on all sub-expressions.
# - Check operand types, and wrap coercion nodes around
# sub-expressions where needed.
# - Set the type of this node.
# - If a temporary variable will be required for the
# result, set the is_temp flag of this node.
#
# analyse_target_types
# Called during the Analyse Types phase to analyse
# the LHS of an assignment or argument of a del
# statement. Similar responsibilities to analyse_types.
#
# allocate_temps
# - Call allocate_temps for all sub-nodes.
# - Call allocate_temp for this node.
# - If a temporary was allocated, call release_temp on
# all sub-expressions.
#
# allocate_target_temps
# - Call allocate_temps on sub-nodes and allocate any other
# temps used during assignment.
# - Fill in result_code with a C lvalue if needed.
# - If a rhs node is supplied, call release_temp on it.
# - Call release_temp on sub-nodes and release any other
# temps used during assignment.
#
# target_code
# Called by the default implementation of allocate_target_temps.
# Should return a C lvalue for assigning to the node. The default
# implementation calls calculate_result_code.
#
# check_const
# - Check that this node and its subnodes form a
# legal constant expression. If so, do nothing,
# otherwise call not_const.
#
# The default implementation of check_const
# assumes that the expression is not constant.
#
# check_const_addr
# - Same as check_const, except check that the
# expression is a C lvalue whose address is
# constant. Otherwise, call addr_not_const.
#
# The default implementation of calc_const_addr
# assumes that the expression is not a constant
# lvalue.
#
# Code Generation phase
#
# generate_evaluation_code
# - Call generate_evaluation_code for sub-expressions.
# - Perform the functions of generate_result_code
# (see below).
# - If result is temporary, call generate_disposal_code
# on all sub-expressions.
#
# A default implementation of generate_evaluation_code
# is provided which uses the following abstract methods:
#
# generate_result_code
# - Generate any C statements necessary to calculate
# the result of this node from the results of its
# sub-expressions.
#
# calculate_result_code
# - Should return a C code fragment evaluating to the
# result. This is only called when the result is not
# a temporary.
#
# generate_assignment_code
# Called on the LHS of an assignment.
# - Call generate_evaluation_code for sub-expressions.
# - Generate code to perform the assignment.
# - If the assignment absorbed a reference, call
# generate_post_assignment_code on the RHS,
# otherwise call generate_disposal_code on it.
#
# generate_deletion_code
# Called on an argument of a del statement.
# - Call generate_evaluation_code for sub-expressions.
# - Generate code to perform the deletion.
# - Call generate_disposal_code on all sub-expressions.
#
#
is_sequence_constructor = 0
is_attribute = 0
saved_subexpr_nodes = None
is_temp = 0
is_target = 0
def get_child_attrs(self):
return self.subexprs
child_attrs = property(fget=get_child_attrs)
def not_implemented(self, method_name):
print_call_chain(method_name, "not implemented") ###
raise InternalError(
"%s.%s not implemented" %
(self.__class__.__name__, method_name))
def is_lvalue(self):
return 0
def is_ephemeral(self):
# An ephemeral node is one whose result is in
# a Python temporary and we suspect there are no
# other references to it. Certain operations are
# disallowed on such values, since they are
# likely to result in a dangling pointer.
return self.type.is_pyobject and self.is_temp
def subexpr_nodes(self):
# Extract a list of subexpression nodes based
# on the contents of the subexprs class attribute.
if self.saved_subexpr_nodes is None:
nodes = []
for name in self.subexprs:
item = getattr(self, name)
if item:
if isinstance(item, ExprNode):
nodes.append(item)
else:
nodes.extend(item)
self.saved_subexpr_nodes = nodes
return self.saved_subexpr_nodes
def result(self):
if not self.is_temp or self.is_target:
return self.calculate_result_code()
else: # i.e. self.is_temp:
return self.result_code
def result_as(self, type = None):
# Return the result code cast to the specified C type.
return typecast(type, self.ctype(), self.result())
def py_result(self):
# Return the result code cast to PyObject *.
return self.result_as(py_object_type)
def ctype(self):
# Return the native C type of the result (i.e. the
# C type of the result_code expression).
return self.result_ctype or self.type
def compile_time_value(self, denv):
# Return value of compile-time expression, or report error.
error(self.pos, "Invalid compile-time expression")
def compile_time_value_error(self, e):
error(self.pos, "Error in compile-time expression: %s: %s" % (
e.__class__.__name__, e))
# ------------- Declaration Analysis ----------------
def analyse_target_declaration(self, env):
error(self.pos, "Cannot assign to or delete this")
# ------------- Expression Analysis ----------------
def analyse_const_expression(self, env):
# Called during the analyse_declarations phase of a
# constant expression. Analyses the expression's type,
# checks whether it is a legal const expression,
# and determines its value.
self.analyse_types(env)
self.allocate_temps(env)
self.check_const()
def analyse_expressions(self, env):
# Convenience routine performing both the Type
# Analysis and Temp Allocation phases for a whole
# expression.
self.analyse_types(env)
self.allocate_temps(env)
def analyse_target_expression(self, env, rhs):
# Convenience routine performing both the Type
# Analysis and Temp Allocation phases for the LHS of
# an assignment.
self.analyse_target_types(env)
self.allocate_target_temps(env, rhs)
def analyse_boolean_expression(self, env):
# Analyse expression and coerce to a boolean.
self.analyse_types(env)
bool = self.coerce_to_boolean(env)
bool.allocate_temps(env)
return bool
def analyse_temp_boolean_expression(self, env):
# Analyse boolean expression and coerce result into
# a temporary. This is used when a branch is to be
# performed on the result and we won't have an
# opportunity to ensure disposal code is executed
# afterwards. By forcing the result into a temporary,
# we ensure that all disposal has been done by the
# time we get the result.
self.analyse_types(env)
bool = self.coerce_to_boolean(env)
temp_bool = bool.coerce_to_temp(env)
temp_bool.allocate_temps(env)
return temp_bool
# --------------- Type Analysis ------------------
def analyse_as_module(self, env):
# If this node can be interpreted as a reference to a
# cimported module, return its scope, else None.
return None
def analyse_as_type(self, env):
# If this node can be interpreted as a reference to a
# type, return that type, else None.
return None
def analyse_as_extension_type(self, env):
# If this node can be interpreted as a reference to an
# extension type, return its type, else None.
return None
def analyse_types(self, env):
self.not_implemented("analyse_types")
def analyse_target_types(self, env):
self.analyse_types(env)
def gil_assignment_check(self, env):
if env.nogil and self.type.is_pyobject:
error(self.pos, "Assignment of Python object not allowed without gil")
def check_const(self):
self.not_const()
def not_const(self):
error(self.pos, "Not allowed in a constant expression")
def check_const_addr(self):
self.addr_not_const()
def addr_not_const(self):
error(self.pos, "Address is not constant")
def gil_check(self, env):
if env.nogil and self.type.is_pyobject:
self.gil_error()
# ----------------- Result Allocation -----------------
def result_in_temp(self):
# Return true if result is in a temporary owned by
# this node or one of its subexpressions. Overridden
# by certain nodes which can share the result of
# a subnode.
return self.is_temp
def allocate_target_temps(self, env, rhs):
# Perform temp allocation for the LHS of an assignment.
if debug_temp_alloc:
print("%s Allocating target temps" % self)
self.allocate_subexpr_temps(env)
self.is_target = True
if rhs:
rhs.release_temp(env)
self.release_subexpr_temps(env)
def allocate_temps(self, env, result = None):
# Allocate temporary variables for this node and
# all its sub-expressions. If a result is specified,
# this must be a temp node and the specified variable
# is used as the result instead of allocating a new
# one.
if debug_temp_alloc:
print("%s Allocating temps" % self)
self.allocate_subexpr_temps(env)
self.allocate_temp(env, result)
if self.is_temp:
self.release_subexpr_temps(env)
def allocate_subexpr_temps(self, env):
# Allocate temporary variables for all sub-expressions
# of this node.
if debug_temp_alloc:
print("%s Allocating temps for: %s" % (self, self.subexprs))
for node in self.subexpr_nodes():
if node:
if debug_temp_alloc:
print("%s Allocating temps for %s" % (self, node))
node.allocate_temps(env)
def allocate_temp(self, env, result = None):
# If this node requires a temporary variable for its
# result, allocate one, otherwise set the result to
# a C code fragment. If a result is specified,
# this must be a temp node and the specified variable
# is used as the result instead of allocating a new
# one.
if debug_temp_alloc:
print("%s Allocating temp" % self)
if result:
if not self.is_temp:
raise InternalError("Result forced on non-temp node")
self.result_code = result
elif self.is_temp:
type = self.type
if not type.is_void:
if type.is_pyobject:
type = PyrexTypes.py_object_type
self.result_code = env.allocate_temp(type)
else:
self.result_code = None
if debug_temp_alloc:
print("%s Allocated result %s" % (self, self.result_code))
def target_code(self):
# Return code fragment for use as LHS of a C assignment.
return self.calculate_result_code()
def calculate_result_code(self):
self.not_implemented("calculate_result_code")
# def release_target_temp(self, env):
# # Release temporaries used by LHS of an assignment.
# self.release_subexpr_temps(env)
def release_temp(self, env):
# If this node owns a temporary result, release it,
# otherwise release results of its sub-expressions.
if self.is_temp:
if debug_temp_alloc:
print("%s Releasing result %s" % (self, self.result_code))
env.release_temp(self.result_code)
else:
self.release_subexpr_temps(env)
def release_subexpr_temps(self, env):
# Release the results of all sub-expressions of
# this node.
for node in self.subexpr_nodes():
if node:
node.release_temp(env)
# ---------------- Code Generation -----------------
def make_owned_reference(self, code):
# If result is a pyobject, make sure we own
# a reference to it.
if self.type.is_pyobject and not self.result_in_temp():
code.put_incref(self.result(), self.ctype())
def generate_evaluation_code(self, code):
code.mark_pos(self.pos)
# Generate code to evaluate this node and
# its sub-expressions, and dispose of any
# temporary results of its sub-expressions.
self.generate_subexpr_evaluation_code(code)
self.pre_generate_result_code(code)
self.generate_result_code(code)
if self.is_temp:
self.generate_subexpr_disposal_code(code)
def pre_generate_result_code(self, code):
pass
def generate_subexpr_evaluation_code(self, code):
for node in self.subexpr_nodes():
node.generate_evaluation_code(code)
def generate_result_code(self, code):
self.not_implemented("generate_result_code")
def generate_disposal_code(self, code):
# If necessary, generate code to dispose of
# temporary Python reference.
if self.is_temp:
if self.type.is_pyobject:
code.put_decref_clear(self.result(), self.ctype())
else:
self.generate_subexpr_disposal_code(code)
def generate_subexpr_disposal_code(self, code):
# Generate code to dispose of temporary results
# of all sub-expressions.
for node in self.subexpr_nodes():
node.generate_disposal_code(code)
def generate_post_assignment_code(self, code):
# Same as generate_disposal_code except that
# assignment will have absorbed a reference to
# the result if it is a Python object.
if self.is_temp:
if self.type.is_pyobject:
code.putln("%s = 0;" % self.result())
else:
self.generate_subexpr_disposal_code(code)
def generate_assignment_code(self, rhs, code):
# Stub method for nodes which are not legal as
# the LHS of an assignment. An error will have
# been reported earlier.
pass
def generate_deletion_code(self, code):
# Stub method for nodes that are not legal as
# the argument of a del statement. An error
# will have been reported earlier.
pass
# ---------------- Annotation ---------------------
def annotate(self, code):
for node in self.subexpr_nodes():
node.annotate(code)
# ----------------- Coercion ----------------------
def coerce_to(self, dst_type, env):
# Coerce the result so that it can be assigned to
# something of type dst_type. If processing is necessary,
# wraps this node in a coercion node and returns that.
# Otherwise, returns this node unchanged.
#
# This method is called during the analyse_expressions
# phase of the src_node's processing.
src = self
src_type = self.type
src_is_py_type = src_type.is_pyobject
dst_is_py_type = dst_type.is_pyobject
if dst_type.is_pyobject:
if not src.type.is_pyobject:
src = CoerceToPyTypeNode(src, env)
if not src.type.subtype_of(dst_type):
if not isinstance(src, NoneNode):
src = PyTypeTestNode(src, dst_type, env)
elif src.type.is_pyobject:
src = CoerceFromPyTypeNode(dst_type, src, env)
else: # neither src nor dst are py types
# Added the string comparison, since for c types that
# is enough, but Cython gets confused when the types are
# in different files.
if not (str(src.type) == str(dst_type) or dst_type.assignable_from(src_type)):
error(self.pos, "Cannot assign type '%s' to '%s'" %
(src.type, dst_type))
return src
def coerce_to_pyobject(self, env):
return self.coerce_to(PyrexTypes.py_object_type, env)
def coerce_to_boolean(self, env):
# Coerce result to something acceptable as
# a boolean value.
type = self.type
if type.is_pyobject or type.is_ptr or type.is_float:
return CoerceToBooleanNode(self, env)
else:
if not type.is_int and not type.is_error:
error(self.pos,
"Type '%s' not acceptable as a boolean" % type)
return self
def coerce_to_integer(self, env):
# If not already some C integer type, coerce to longint.
if self.type.is_int:
return self
else:
return self.coerce_to(PyrexTypes.c_long_type, env)
def coerce_to_temp(self, env):
# Ensure that the result is in a temporary.
if self.result_in_temp():
return self
else:
return CoerceToTempNode(self, env)
def coerce_to_simple(self, env):
# Ensure that the result is simple (see is_simple).
if self.is_simple():
return self
else:
return self.coerce_to_temp(env)
def is_simple(self):
# A node is simple if its result is something that can
# be referred to without performing any operations, e.g.
# a constant, local var, C global var, struct member
# reference, or temporary.
return self.result_in_temp()
def as_cython_attribute(self):
return None
class NewTempExprNode(ExprNode):
backwards_compatible_result = None
def result(self):
if self.is_temp:
return self.temp_code
else:
return self.calculate_result_code()
def allocate_target_temps(self, env, rhs):
self.allocate_subexpr_temps(env)
rhs.release_temp(rhs)
self.release_subexpr_temps(env)
def allocate_temps(self, env, result = None):
self.allocate_subexpr_temps(env)
self.backwards_compatible_result = result
if self.is_temp:
self.release_subexpr_temps(env)
def allocate_temp(self, env, result = None):
assert result is None
def release_temp(self, env):
if self.is_temp:
pass
else:
self.release_subexpr_temps(env)
def pre_generate_result_code(self, code):
if self.is_temp:
type = self.type
if not type.is_void:
if type.is_pyobject:
type = PyrexTypes.py_object_type
if self.backwards_compatible_result:
self.temp_code = self.backwards_compatible_result
else:
self.temp_code = code.funcstate.allocate_temp(type)
else:
self.temp_code = None
def generate_disposal_code(self, code):
if self.is_temp:
if self.type.is_pyobject:
code.put_decref_clear(self.result(), self.ctype())
if not self.backwards_compatible_result:
code.funcstate.release_temp(self.temp_code)
else:
self.generate_subexpr_disposal_code(code)
def generate_post_assignment_code(self, code):
if self.is_temp:
if self.type.is_pyobject:
code.putln("%s = 0;" % self.temp_code)
if not self.backwards_compatible_result:
code.funcstate.release_temp(self.temp_code)
else:
self.generate_subexpr_disposal_code(code)
class AtomicExprNode(ExprNode):
# Abstract base class for expression nodes which have
# no sub-expressions.
subexprs = []
class PyConstNode(AtomicExprNode):
# Abstract base class for constant Python values.
is_literal = 1
def is_simple(self):
return 1
def analyse_types(self, env):
self.type = py_object_type
def calculate_result_code(self):
return self.value
def generate_result_code(self, code):
pass
class NoneNode(PyConstNode):
# The constant value None
value = "Py_None"
def compile_time_value(self, denv):
return None
class EllipsisNode(PyConstNode):
# '...' in a subscript list.
value = "Py_Ellipsis"
def compile_time_value(self, denv):
return Ellipsis
class ConstNode(AtomicExprNode):
# Abstract base type for literal constant nodes.
#
# value string C code fragment
is_literal = 1
def is_simple(self):
return 1
def analyse_types(self, env):
pass # Types are held in class variables
def check_const(self):
pass
def calculate_result_code(self):
return str(self.value)
def generate_result_code(self, code):
pass
class BoolNode(ConstNode):
type = PyrexTypes.c_bint_type
# The constant value True or False
def compile_time_value(self, denv):
return self.value
def calculate_result_code(self):
return str(int(self.value))
class NullNode(ConstNode):
type = PyrexTypes.c_null_ptr_type
value = "NULL"
class CharNode(ConstNode):
type = PyrexTypes.c_char_type
def compile_time_value(self, denv):
return ord(self.value)
def calculate_result_code(self):
return "'%s'" % StringEncoding.escape_character(self.value)
class IntNode(ConstNode):
# unsigned "" or "U"
# longness "" or "L" or "LL"
unsigned = ""
longness = ""
type = PyrexTypes.c_long_type
def coerce_to(self, dst_type, env):
if dst_type.is_numeric:
self.type = PyrexTypes.c_long_type
return self
# Arrange for a Python version of the number to be pre-allocated
# when coercing to a Python type.
if dst_type.is_pyobject:
self.entry = env.get_py_num(self.value, self.longness)
self.type = PyrexTypes.py_object_type
# We still need to perform normal coerce_to processing on the
# result, because we might be coercing to an extension type,
# in which case a type test node will be needed.
return ConstNode.coerce_to(self, dst_type, env)
def coerce_to_boolean(self, env):
self.type = PyrexTypes.c_bint_type
return self
def calculate_result_code(self):
if self.type.is_pyobject:
return self.entry.cname
else:
return str(self.value) + self.unsigned + self.longness
def compile_time_value(self, denv):
return int(self.value, 0)
class FloatNode(ConstNode):
type = PyrexTypes.c_double_type
def compile_time_value(self, denv):
return float(self.value)
def calculate_result_code(self):
strval = str(self.value)
if strval == 'nan':
return "(Py_HUGE_VAL * 0)"
elif strval == 'inf':
return "Py_HUGE_VAL"
elif strval == '-inf':
return "(-Py_HUGE_VAL)"
else:
return strval
class StringNode(ConstNode):
# entry Symtab.Entry
type = PyrexTypes.c_char_ptr_type
def compile_time_value(self, denv):
return self.value
def analyse_types(self, env):
self.entry = env.add_string_const(self.value)
def analyse_as_type(self, env):
type = PyrexTypes.parse_basic_type(self.value)
if type is not None:
return type
from TreeFragment import TreeFragment
pos = (self.pos[0], self.pos[1], self.pos[2]-7)
declaration = TreeFragment(u"sizeof(%s)" % self.value, name=pos[0].filename, initial_pos=pos)
sizeof_node = declaration.root.stats[0].expr
sizeof_node.analyse_types(env)
if isinstance(sizeof_node, SizeofTypeNode):
return sizeof_node.arg_type
def coerce_to(self, dst_type, env):
if dst_type == PyrexTypes.c_char_ptr_type:
self.type = PyrexTypes.c_char_ptr_type
return self
if dst_type.is_int:
if not self.type.is_pyobject and len(self.entry.init) == 1:
return CharNode(self.pos, value=self.value)
else:
error(self.pos, "Only coerce single-character ascii strings can be used as ints.")
return self
# Arrange for a Python version of the string to be pre-allocated
# when coercing to a Python type.
if dst_type.is_pyobject and not self.type.is_pyobject:
node = self.as_py_string_node(env)
else:
node = self
# We still need to perform normal coerce_to processing on the
# result, because we might be coercing to an extension type,
# in which case a type test node will be needed.
return ConstNode.coerce_to(node, dst_type, env)
def as_py_string_node(self, env):
# Return a new StringNode with the same entry as this node
# but whose type is a Python type instead of a C type.
entry = self.entry
env.add_py_string(entry)
return StringNode(self.pos, value = self.value, entry = entry, type = py_object_type)
def calculate_result_code(self):
if self.type.is_pyobject:
return self.entry.pystring_cname
else:
return self.entry.cname
class UnicodeNode(PyConstNode):
# entry Symtab.Entry
type = unicode_type
def analyse_types(self, env):
self.entry = env.add_string_const(self.value)
env.add_py_string(self.entry)
def calculate_result_code(self):
return self.entry.pystring_cname
def _coerce_to(self, dst_type, env):
if not dst_type.is_pyobject:
node = StringNode(self.pos, entry = entry, type = py_object_type)
return ConstNode.coerce_to(node, dst_type, env)
else:
return self
# We still need to perform normal coerce_to processing on the
# result, because we might be coercing to an extension type,
# in which case a type test node will be needed.
def compile_time_value(self, env):
return self.value
class IdentifierStringNode(ConstNode):
# A Python string that behaves like an identifier, e.g. for
# keyword arguments in a call, or for imported names
type = PyrexTypes.py_object_type
def analyse_types(self, env):
self.cname = env.intern_identifier(self.value)
def calculate_result_code(self):
return self.cname
class LongNode(AtomicExprNode):
# Python long integer literal
#
# value string
def compile_time_value(self, denv):
return long(self.value)
gil_message = "Constructing Python long int"
def analyse_types(self, env):
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python long int"
def generate_evaluation_code(self, code):
code.putln(
'%s = PyLong_FromString("%s", 0, 0); %s' % (
self.result(),
self.value,
code.error_goto_if_null(self.result(), self.pos)))
class ImagNode(AtomicExprNode):
# Imaginary number literal
#
# value float imaginary part
def compile_time_value(self, denv):
return complex(0.0, self.value)
def analyse_types(self, env):
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing complex number"
def generate_evaluation_code(self, code):
code.putln(
"%s = PyComplex_FromDoubles(0.0, %s); %s" % (
self.result(),
self.value,
code.error_goto_if_null(self.result(), self.pos)))
class NameNode(AtomicExprNode):
# Reference to a local or global variable name.
#
# name string Python name of the variable
#
# entry Entry Symbol table entry
# interned_cname string
is_name = True
is_cython_module = False
cython_attribute = None
lhs_of_first_assignment = False
entry = None
def create_analysed_rvalue(pos, env, entry):
node = NameNode(pos)
node.analyse_types(env, entry=entry)
return node
def as_cython_attribute(self):
return self.cython_attribute
create_analysed_rvalue = staticmethod(create_analysed_rvalue)
def compile_time_value(self, denv):
try:
return denv.lookup(self.name)
except KeyError:
error(self.pos, "Compile-time name '%s' not defined" % self.name)
def coerce_to(self, dst_type, env):
# If coercing to a generic pyobject and this is a builtin
# C function with a Python equivalent, manufacture a NameNode
# referring to the Python builtin.
#print "NameNode.coerce_to:", self.name, dst_type ###
if dst_type is py_object_type:
entry = self.entry
if entry and entry.is_cfunction:
var_entry = entry.as_variable
if var_entry:
if var_entry.is_builtin and Options.cache_builtins:
var_entry = env.declare_builtin(var_entry.name, self.pos)
node = NameNode(self.pos, name = self.name)
node.entry = var_entry
node.analyse_rvalue_entry(env)
return node
return AtomicExprNode.coerce_to(self, dst_type, env)
def analyse_as_module(self, env):
# Try to interpret this as a reference to a cimported module.
# Returns the module scope, or None.
entry = self.entry
if not entry:
entry = env.lookup(self.name)
if entry and entry.as_module:
return entry.as_module
return None
def analyse_as_type(self, env):
if self.cython_attribute:
type = PyrexTypes.parse_basic_type(self.cython_attribute)
else:
type = PyrexTypes.parse_basic_type(self.name)
if type:
return type
entry = self.entry
if not entry:
entry = env.lookup(self.name)
if entry and entry.is_type:
return entry.type
else:
return None
def analyse_as_extension_type(self, env):
# Try to interpret this as a reference to an extension type.
# Returns the extension type, or None.
entry = self.entry
if not entry:
entry = env.lookup(self.name)
if entry and entry.is_type and entry.type.is_extension_type:
return entry.type
else:
return None
def analyse_target_declaration(self, env):
if not self.entry:
self.entry = env.lookup_here(self.name)
if not self.entry:
self.entry = env.declare_var(self.name, py_object_type, self.pos)
env.control_flow.set_state(self.pos, (self.name, 'initalized'), True)
env.control_flow.set_state(self.pos, (self.name, 'source'), 'assignment')
if self.entry.is_declared_generic:
self.result_ctype = py_object_type
def analyse_types(self, env):
if self.entry is None:
self.entry = env.lookup(self.name)
if not self.entry:
self.entry = env.declare_builtin(self.name, self.pos)
if not self.entry:
self.type = PyrexTypes.error_type
return
self.analyse_rvalue_entry(env)
def analyse_target_types(self, env):
self.analyse_entry(env)
if not self.is_lvalue():
error(self.pos, "Assignment to non-lvalue '%s'"
% self.name)
self.type = PyrexTypes.error_type
self.entry.used = 1
if self.entry.type.is_buffer:
import Buffer
Buffer.used_buffer_aux_vars(self.entry)
def analyse_rvalue_entry(self, env):
#print "NameNode.analyse_rvalue_entry:", self.name ###
#print "Entry:", self.entry.__dict__ ###
self.analyse_entry(env)
entry = self.entry
if entry.is_declared_generic:
self.result_ctype = py_object_type
if entry.is_pyglobal or entry.is_builtin:
if Options.cache_builtins and entry.is_builtin:
self.is_temp = 0
else:
self.is_temp = 1
env.use_utility_code(get_name_interned_utility_code)
self.gil_check(env)
gil_message = "Accessing Python global or builtin"
def analyse_entry(self, env):
#print "NameNode.analyse_entry:", self.name ###
self.check_identifier_kind()
entry = self.entry
type = entry.type
self.type = type
if entry.is_pyglobal or entry.is_builtin:
assert type.is_pyobject, "Python global or builtin not a Python object"
self.interned_cname = self.entry.interned_cname = \
env.intern_identifier(self.entry.name)
def check_identifier_kind(self):
#print "NameNode.check_identifier_kind:", self.entry.name ###
#print self.entry.__dict__ ###
entry = self.entry
#entry.used = 1
if not (entry.is_const or entry.is_variable
or entry.is_builtin or entry.is_cfunction):
if self.entry.as_variable:
self.entry = self.entry.as_variable
else:
error(self.pos,
"'%s' is not a constant, variable or function identifier" % self.name)
def is_simple(self):
# If it's not a C variable, it'll be in a temp.
return 1
def calculate_target_results(self, env):
pass
def check_const(self):
entry = self.entry
if entry is not None and not (entry.is_const or entry.is_cfunction or entry.is_builtin):
self.not_const()
def check_const_addr(self):
entry = self.entry
if not (entry.is_cglobal or entry.is_cfunction or entry.is_builtin):
self.addr_not_const()
def is_lvalue(self):
return self.entry.is_variable and \
not self.entry.type.is_array and \
not self.entry.is_readonly
def is_ephemeral(self):
# Name nodes are never ephemeral, even if the
# result is in a temporary.
return 0
def allocate_temp(self, env, result = None):
AtomicExprNode.allocate_temp(self, env, result)
entry = self.entry
if entry:
entry.used = 1
if entry.type.is_buffer:
import Buffer
Buffer.used_buffer_aux_vars(entry)
if entry.utility_code:
env.use_utility_code(entry.utility_code)
def calculate_result_code(self):
entry = self.entry
if not entry:
return "<error>" # There was an error earlier
return entry.cname
def generate_result_code(self, code):
assert hasattr(self, 'entry')
entry = self.entry
if entry is None:
return # There was an error earlier
if entry.is_builtin and Options.cache_builtins:
return # Lookup already cached
elif entry.is_pyglobal or entry.is_builtin:
if entry.is_builtin:
namespace = Naming.builtins_cname
else: # entry.is_pyglobal
namespace = entry.scope.namespace_cname
code.putln(
'%s = __Pyx_GetName(%s, %s); %s' % (
self.result(),
namespace,
self.interned_cname,
code.error_goto_if_null(self.result(), self.pos)))
elif entry.is_local and False:
# control flow not good enough yet
assigned = entry.scope.control_flow.get_state((entry.name, 'initalized'), self.pos)
if assigned is False:
error(self.pos, "local variable '%s' referenced before assignment" % entry.name)
elif not Options.init_local_none and assigned is None:
code.putln('if (%s == 0) { PyErr_SetString(PyExc_UnboundLocalError, "%s"); %s }' % (entry.cname, entry.name, code.error_goto(self.pos)))
entry.scope.control_flow.set_state(self.pos, (entry.name, 'initalized'), True)
def generate_assignment_code(self, rhs, code):
#print "NameNode.generate_assignment_code:", self.name ###
entry = self.entry
if entry is None:
return # There was an error earlier
if (self.entry.type.is_ptr and isinstance(rhs, ListNode)
and not self.lhs_of_first_assignment):
error(self.pos, "Literal list must be assigned to pointer at time of declaration")
# is_pyglobal seems to be True for module level-globals only.
# We use this to access class->tp_dict if necessary.
if entry.is_pyglobal:
namespace = self.entry.scope.namespace_cname
if entry.is_member:
# if the entry is a member we have to cheat: SetAttr does not work
# on types, so we create a descriptor which is then added to tp_dict
code.put_error_if_neg(self.pos,
'PyDict_SetItem(%s->tp_dict, %s, %s)' % (
namespace,
self.interned_cname,
rhs.py_result()))
# in Py2.6+, we need to invalidate the method cache
code.putln("PyType_Modified(%s);" %
entry.scope.parent_type.typeptr_cname)
else:
code.put_error_if_neg(self.pos,
'PyObject_SetAttr(%s, %s, %s)' % (
namespace,
self.interned_cname,
rhs.py_result()))
if debug_disposal_code:
print("NameNode.generate_assignment_code:")
print("...generating disposal code for %s" % rhs)
rhs.generate_disposal_code(code)
else:
if self.type.is_buffer:
# Generate code for doing the buffer release/acquisition.
# This might raise an exception in which case the assignment (done
# below) will not happen.
#
# The reason this is not in a typetest-like node is because the
# variables that the acquired buffer info is stored to is allocated
# per entry and coupled with it.
self.generate_acquire_buffer(rhs, code)
if self.type.is_pyobject:
rhs.make_owned_reference(code)
#print "NameNode.generate_assignment_code: to", self.name ###
#print "...from", rhs ###
#print "...LHS type", self.type, "ctype", self.ctype() ###
#print "...RHS type", rhs.type, "ctype", rhs.ctype() ###
if not self.lhs_of_first_assignment:
if entry.is_local and not Options.init_local_none:
initalized = entry.scope.control_flow.get_state((entry.name, 'initalized'), self.pos)
if initalized is True:
code.put_decref(self.result(), self.ctype())
elif initalized is None:
code.put_xdecref(self.result(), self.ctype())
else:
code.put_decref(self.result(), self.ctype())
code.putln('%s = %s;' % (self.result(), rhs.result_as(self.ctype())))
if debug_disposal_code:
print("NameNode.generate_assignment_code:")
print("...generating post-assignment code for %s" % rhs)
rhs.generate_post_assignment_code(code)
def generate_acquire_buffer(self, rhs, code):
rhstmp = code.funcstate.allocate_temp(self.entry.type)
buffer_aux = self.entry.buffer_aux
bufstruct = buffer_aux.buffer_info_var.cname
code.putln('%s = %s;' % (rhstmp, rhs.result_as(self.ctype())))
import Buffer
Buffer.put_assign_to_buffer(self.result(), rhstmp, buffer_aux, self.entry.type,
is_initialized=not self.lhs_of_first_assignment,
pos=self.pos, code=code)
code.putln("%s = 0;" % rhstmp)
code.funcstate.release_temp(rhstmp)
def generate_deletion_code(self, code):
if self.entry is None:
return # There was an error earlier
if not self.entry.is_pyglobal:
error(self.pos, "Deletion of local or C global name not supported")
return
code.put_error_if_neg(self.pos,
'PyObject_DelAttrString(%s, "%s")' % (
Naming.module_cname,
self.entry.name))
def annotate(self, code):
if hasattr(self, 'is_called') and self.is_called:
pos = (self.pos[0], self.pos[1], self.pos[2] - len(self.name) - 1)
if self.type.is_pyobject:
code.annotate(pos, AnnotationItem('py_call', 'python function', size=len(self.name)))
else:
code.annotate(pos, AnnotationItem('c_call', 'c function', size=len(self.name)))
class BackquoteNode(ExprNode):
# `expr`
#
# arg ExprNode
subexprs = ['arg']
def analyse_types(self, env):
self.arg.analyse_types(env)
self.arg = self.arg.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Backquote expression"
def generate_result_code(self, code):
code.putln(
"%s = PyObject_Repr(%s); %s" % (
self.result(),
self.arg.py_result(),
code.error_goto_if_null(self.result(), self.pos)))
class ImportNode(ExprNode):
# Used as part of import statement implementation.
# Implements result =
# __import__(module_name, globals(), None, name_list)
#
# module_name IdentifierStringNode dotted name of module
# name_list ListNode or None list of names to be imported
subexprs = ['module_name', 'name_list']
def analyse_types(self, env):
self.module_name.analyse_types(env)
self.module_name = self.module_name.coerce_to_pyobject(env)
if self.name_list:
self.name_list.analyse_types(env)
self.name_list.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
env.use_utility_code(import_utility_code)
gil_message = "Python import"
def generate_result_code(self, code):
if self.name_list:
name_list_code = self.name_list.py_result()
else:
name_list_code = "0"
code.putln(
"%s = __Pyx_Import(%s, %s); %s" % (
self.result(),
self.module_name.py_result(),
name_list_code,
code.error_goto_if_null(self.result(), self.pos)))
class IteratorNode(ExprNode):
# Used as part of for statement implementation.
# Implements result = iter(sequence)
#
# sequence ExprNode
subexprs = ['sequence']
def analyse_types(self, env):
self.sequence.analyse_types(env)
self.sequence = self.sequence.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
self.counter = TempNode(self.pos, PyrexTypes.c_py_ssize_t_type, env)
self.counter.allocate_temp(env)
gil_message = "Iterating over Python object"
def release_temp(self, env):
env.release_temp(self.result())
self.counter.release_temp(env)
def generate_result_code(self, code):
code.putln(
"if (PyList_CheckExact(%s) || PyTuple_CheckExact(%s)) {" % (
self.sequence.py_result(),
self.sequence.py_result()))
code.putln(
"%s = 0; %s = %s; Py_INCREF(%s);" % (
self.counter.result(),
self.result(),
self.sequence.py_result(),
self.result()))
code.putln("} else {")
code.putln("%s = -1; %s = PyObject_GetIter(%s); %s" % (
self.counter.result(),
self.result(),
self.sequence.py_result(),
code.error_goto_if_null(self.result(), self.pos)))
code.putln("}")
class NextNode(AtomicExprNode):
# Used as part of for statement implementation.
# Implements result = iterator.next()
# Created during analyse_types phase.
# The iterator is not owned by this node.
#
# iterator ExprNode
def __init__(self, iterator, env):
self.pos = iterator.pos
self.iterator = iterator
self.type = py_object_type
self.is_temp = 1
def generate_result_code(self, code):
for py_type in ["List", "Tuple"]:
code.putln(
"if (likely(Py%s_CheckExact(%s))) {" % (py_type, self.iterator.py_result()))
code.putln(
"if (%s >= Py%s_GET_SIZE(%s)) break;" % (
self.iterator.counter.result(),
py_type,
self.iterator.py_result()))
code.putln(
"%s = Py%s_GET_ITEM(%s, %s); Py_INCREF(%s); %s++;" % (
self.result(),
py_type,
self.iterator.py_result(),
self.iterator.counter.result(),
self.result(),
self.iterator.counter.result()))
code.put("} else ")
code.putln("{")
code.putln(
"%s = PyIter_Next(%s);" % (
self.result(),
self.iterator.py_result()))
code.putln(
"if (!%s) {" %
self.result())
code.putln(code.error_goto_if_PyErr(self.pos))
code.putln("break;")
code.putln("}")
code.putln("}")
class ExcValueNode(AtomicExprNode):
# Node created during analyse_types phase
# of an ExceptClauseNode to fetch the current
# exception value.
def __init__(self, pos, env, var):
ExprNode.__init__(self, pos)
self.type = py_object_type
self.var = var
def calculate_result_code(self):
return self.var
def generate_result_code(self, code):
pass
def analyse_types(self, env):
pass
class TempNode(AtomicExprNode):
# Node created during analyse_types phase
# of some nodes to hold a temporary value.
def __init__(self, pos, type, env):
ExprNode.__init__(self, pos)
self.type = type
if type.is_pyobject:
self.result_ctype = py_object_type
self.is_temp = 1
def analyse_types(self, env):
return self.type
def generate_result_code(self, code):
pass
class PyTempNode(TempNode):
# TempNode holding a Python value.
def __init__(self, pos, env):
TempNode.__init__(self, pos, PyrexTypes.py_object_type, env)
#-------------------------------------------------------------------
#
# Trailer nodes
#
#-------------------------------------------------------------------
class IndexNode(ExprNode):
# Sequence indexing.
#
# base ExprNode
# index ExprNode
# indices [ExprNode]
# is_buffer_access boolean Whether this is a buffer access.
#
# indices is used on buffer access, index on non-buffer access.
# The former contains a clean list of index parameters, the
# latter whatever Python object is needed for index access.
subexprs = ['base', 'index', 'indices']
indices = None
def __init__(self, pos, index, *args, **kw):
ExprNode.__init__(self, pos, index=index, *args, **kw)
self._index = index
def compile_time_value(self, denv):
base = self.base.compile_time_value(denv)
index = self.index.compile_time_value(denv)
try:
return base[index]
except Exception, e:
self.compile_time_value_error(e)
def is_ephemeral(self):
return self.base.is_ephemeral()
def analyse_target_declaration(self, env):
pass
def analyse_as_type(self, env):
base_type = self.base.analyse_as_type(env)
if base_type and not base_type.is_pyobject:
return PyrexTypes.CArrayType(base_type, int(self.index.compile_time_value(env)))
return None
def analyse_types(self, env):
self.analyse_base_and_index_types(env, getting = 1)
def analyse_target_types(self, env):
self.analyse_base_and_index_types(env, setting = 1)
def analyse_base_and_index_types(self, env, getting = 0, setting = 0):
# Note: This might be cleaned up by having IndexNode
# parsed in a saner way and only construct the tuple if
# needed.
# Note that this function must leave IndexNode in a cloneable state.
# For buffers, self.index is packed out on the initial analysis, and
# when cloning self.indices is copied.
self.is_buffer_access = False
self.base.analyse_types(env)
# Handle the case where base is a literal char* (and we expect a string, not an int)
if isinstance(self.base, StringNode):
self.base = self.base.coerce_to_pyobject(env)
skip_child_analysis = False
buffer_access = False
if self.base.type.is_buffer:
assert hasattr(self.base, "entry") # Must be a NameNode-like node
if self.indices:
indices = self.indices
else:
# On cloning, indices is cloned. Otherwise, unpack index into indices
assert not isinstance(self.index, CloneNode)
if isinstance(self.index, TupleNode):
indices = self.index.args
else:
indices = [self.index]
if len(indices) == self.base.type.ndim:
buffer_access = True
skip_child_analysis = True
for x in indices:
x.analyse_types(env)
if not x.type.is_int:
buffer_access = False
if buffer_access:
self.indices = indices
self.index = None
self.type = self.base.type.dtype
self.is_buffer_access = True
self.buffer_type = self.base.entry.type
if getting and self.type.is_pyobject:
self.is_temp = True
if setting:
if not self.base.entry.type.writable:
error(self.pos, "Writing to readonly buffer")
else:
self.base.entry.buffer_aux.writable_needed = True
else:
if isinstance(self.index, TupleNode):
self.index.analyse_types(env, skip_children=skip_child_analysis)
elif not skip_child_analysis:
self.index.analyse_types(env)
self.original_index_type = self.index.type
if self.base.type.is_pyobject:
if self.index.type.is_int and not self.index.type.is_longlong:
self.index = self.index.coerce_to(PyrexTypes.c_py_ssize_t_type, env).coerce_to_simple(env)
else:
self.index = self.index.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
else:
if self.base.type.is_ptr or self.base.type.is_array:
self.type = self.base.type.base_type
else:
error(self.pos,
"Attempting to index non-array type '%s'" %
self.base.type)
self.type = PyrexTypes.error_type
if self.index.type.is_pyobject:
self.index = self.index.coerce_to(
PyrexTypes.c_py_ssize_t_type, env)
if not self.index.type.is_int:
error(self.pos,
"Invalid index type '%s'" %
self.index.type)
gil_message = "Indexing Python object"
def check_const_addr(self):
self.base.check_const_addr()
self.index.check_const()
def is_lvalue(self):
return 1
def calculate_result_code(self):
if self.is_buffer_access:
return "(*%s)" % self.buffer_ptr_code
else:
return "(%s[%s])" % (
self.base.result(), self.index.result())
def index_unsigned_parameter(self):
if self.index.type.is_int:
if self.original_index_type.signed:
return ", 0"
else:
return ", sizeof(Py_ssize_t) <= sizeof(%s)" % self.original_index_type.declaration_code("")
else:
return ""
def generate_subexpr_evaluation_code(self, code):
self.base.generate_evaluation_code(code)
if not self.indices:
self.index.generate_evaluation_code(code)
else:
for i in self.indices:
i.generate_evaluation_code(code)
def generate_subexpr_disposal_code(self, code):
self.base.generate_disposal_code(code)
if not self.indices:
self.index.generate_disposal_code(code)
else:
for i in self.indices:
i.generate_disposal_code(code)
def generate_result_code(self, code):
if self.is_buffer_access:
if code.globalstate.directives['nonecheck']:
self.put_nonecheck(code)
self.buffer_ptr_code = self.buffer_lookup_code(code)
if self.type.is_pyobject:
# is_temp is True, so must pull out value and incref it.
code.putln("%s = *%s;" % (self.result(), self.buffer_ptr_code))
code.putln("Py_INCREF((PyObject*)%s);" % self.result())
elif self.type.is_pyobject:
if self.index.type.is_int:
function = "__Pyx_GetItemInt"
index_code = self.index.result()
code.globalstate.use_utility_code(getitem_int_utility_code)
else:
function = "PyObject_GetItem"
index_code = self.index.py_result()
sign_code = ""
code.putln(
"%s = %s(%s, %s%s); if (!%s) %s" % (
self.result(),
function,
self.base.py_result(),
index_code,
self.index_unsigned_parameter(),
self.result(),
code.error_goto(self.pos)))
def generate_setitem_code(self, value_code, code):
if self.index.type.is_int:
function = "__Pyx_SetItemInt"
index_code = self.index.result()
code.globalstate.use_utility_code(setitem_int_utility_code)
else:
function = "PyObject_SetItem"
index_code = self.index.py_result()
code.putln(
"if (%s(%s, %s, %s%s) < 0) %s" % (
function,
self.base.py_result(),
index_code,
value_code,
self.index_unsigned_parameter(),
code.error_goto(self.pos)))
def generate_buffer_setitem_code(self, rhs, code, op=""):
# Used from generate_assignment_code and InPlaceAssignmentNode
if code.globalstate.directives['nonecheck']:
self.put_nonecheck(code)
ptrexpr = self.buffer_lookup_code(code)
if self.buffer_type.dtype.is_pyobject:
# Must manage refcounts. Decref what is already there
# and incref what we put in.
ptr = code.funcstate.allocate_temp(self.buffer_type.buffer_ptr_type)
if rhs.is_temp:
rhs_code = code.funcstate.allocate_temp(rhs.type)
else:
rhs_code = rhs.result()
code.putln("%s = %s;" % (ptr, ptrexpr))
code.putln("Py_DECREF(*%s); Py_INCREF(%s);" % (
ptr, rhs_code
))
code.putln("*%s %s= %s;" % (ptr, op, rhs_code))
if rhs.is_temp:
code.funcstate.release_temp(rhs_code)
code.funcstate.release_temp(ptr)
else:
# Simple case
code.putln("*%s %s= %s;" % (ptrexpr, op, rhs.result()))
def generate_assignment_code(self, rhs, code):
self.generate_subexpr_evaluation_code(code)
if self.is_buffer_access:
self.generate_buffer_setitem_code(rhs, code)
elif self.type.is_pyobject:
self.generate_setitem_code(rhs.py_result(), code)
else:
code.putln(
"%s = %s;" % (
self.result(), rhs.result()))
self.generate_subexpr_disposal_code(code)
rhs.generate_disposal_code(code)
def generate_deletion_code(self, code):
self.generate_subexpr_evaluation_code(code)
#if self.type.is_pyobject:
if self.index.type.is_int:
function = "__Pyx_DelItemInt"
index_code = self.index.result()
code.globalstate.use_utility_code(delitem_int_utility_code)
else:
function = "PyObject_DelItem"
index_code = self.index.py_result()
code.putln(
"if (%s(%s, %s%s) < 0) %s" % (
function,
self.base.py_result(),
index_code,
self.index_unsigned_parameter(),
code.error_goto(self.pos)))
self.generate_subexpr_disposal_code(code)
def buffer_lookup_code(self, code):
# Assign indices to temps
index_temps = [code.funcstate.allocate_temp(i.type) for i in self.indices]
for temp, index in zip(index_temps, self.indices):
code.putln("%s = %s;" % (temp, index.result()))
# Generate buffer access code using these temps
import Buffer
# The above could happen because child_attrs is wrong somewhere so that
# options are not propagated.
return Buffer.put_buffer_lookup_code(entry=self.base.entry,
index_signeds=[i.type.signed for i in self.indices],
index_cnames=index_temps,
options=code.globalstate.directives,
pos=self.pos, code=code)
def put_nonecheck(self, code):
code.globalstate.use_utility_code(raise_noneindex_error_utility_code)
code.putln("if (%s) {" % code.unlikely("%s == Py_None") % self.base.result_as(PyrexTypes.py_object_type))
code.putln("__Pyx_RaiseNoneIndexingError();")
code.putln(code.error_goto(self.pos))
code.putln("}")
class SliceIndexNode(ExprNode):
# 2-element slice indexing
#
# base ExprNode
# start ExprNode or None
# stop ExprNode or None
subexprs = ['base', 'start', 'stop']
def compile_time_value(self, denv):
base = self.base.compile_time_value(denv)
if self.start is None:
start = 0
else:
start = self.start.compile_time_value(denv)
if self.stop is None:
stop = None
else:
stop = self.stop.compile_time_value(denv)
try:
return base[start:stop]
except Exception, e:
self.compile_time_value_error(e)
def analyse_target_declaration(self, env):
pass
def analyse_types(self, env):
self.base.analyse_types(env)
if self.start:
self.start.analyse_types(env)
if self.stop:
self.stop.analyse_types(env)
self.base = self.base.coerce_to_pyobject(env)
c_int = PyrexTypes.c_py_ssize_t_type
if self.start:
self.start = self.start.coerce_to(c_int, env)
if self.stop:
self.stop = self.stop.coerce_to(c_int, env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Slicing Python object"
def generate_result_code(self, code):
code.putln(
"%s = PySequence_GetSlice(%s, %s, %s); %s" % (
self.result(),
self.base.py_result(),
self.start_code(),
self.stop_code(),
code.error_goto_if_null(self.result(), self.pos)))
def generate_assignment_code(self, rhs, code):
self.generate_subexpr_evaluation_code(code)
code.put_error_if_neg(self.pos,
"PySequence_SetSlice(%s, %s, %s, %s)" % (
self.base.py_result(),
self.start_code(),
self.stop_code(),
rhs.result()))
self.generate_subexpr_disposal_code(code)
rhs.generate_disposal_code(code)
def generate_deletion_code(self, code):
self.generate_subexpr_evaluation_code(code)
code.put_error_if_neg(self.pos,
"PySequence_DelSlice(%s, %s, %s)" % (
self.base.py_result(),
self.start_code(),
self.stop_code()))
self.generate_subexpr_disposal_code(code)
def start_code(self):
if self.start:
return self.start.result()
else:
return "0"
def stop_code(self):
if self.stop:
return self.stop.result()
else:
return "PY_SSIZE_T_MAX"
def calculate_result_code(self):
# self.result() is not used, but this method must exist
return "<unused>"
class SliceNode(ExprNode):
# start:stop:step in subscript list
#
# start ExprNode
# stop ExprNode
# step ExprNode
def compile_time_value(self, denv):
start = self.start.compile_time_value(denv)
if self.stop is None:
stop = None
else:
stop = self.stop.compile_time_value(denv)
if self.step is None:
step = None
else:
step = self.step.compile_time_value(denv)
try:
return slice(start, stop, step)
except Exception, e:
self.compile_time_value_error(e)
subexprs = ['start', 'stop', 'step']
def analyse_types(self, env):
self.start.analyse_types(env)
self.stop.analyse_types(env)
self.step.analyse_types(env)
self.start = self.start.coerce_to_pyobject(env)
self.stop = self.stop.coerce_to_pyobject(env)
self.step = self.step.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python slice object"
def generate_result_code(self, code):
code.putln(
"%s = PySlice_New(%s, %s, %s); %s" % (
self.result(),
self.start.py_result(),
self.stop.py_result(),
self.step.py_result(),
code.error_goto_if_null(self.result(), self.pos)))
class CallNode(ExprNode):
def gil_check(self, env):
# Make sure we're not in a nogil environment
if env.nogil:
error(self.pos, "Calling gil-requiring function without gil")
def analyse_as_type_constructor(self, env):
type = self.function.analyse_as_type(env)
if type and type.is_struct_or_union:
args, kwds = self.explicit_args_kwds()
items = []
for arg, member in zip(args, type.scope.var_entries):
items.append(DictItemNode(pos=arg.pos, key=IdentifierStringNode(pos=arg.pos, value=member.name), value=arg))
if kwds:
items += kwds.key_value_pairs
self.key_value_pairs = items
self.__class__ = DictNode
self.analyse_types(env)
self.coerce_to(type, env)
return True
class SimpleCallNode(CallNode):
# Function call without keyword, * or ** args.
#
# function ExprNode
# args [ExprNode]
# arg_tuple ExprNode or None used internally
# self ExprNode or None used internally
# coerced_self ExprNode or None used internally
# wrapper_call bool used internally
# has_optional_args bool used internally
subexprs = ['self', 'coerced_self', 'function', 'args', 'arg_tuple']
self = None
coerced_self = None
arg_tuple = None
wrapper_call = False
has_optional_args = False
def compile_time_value(self, denv):
function = self.function.compile_time_value(denv)
args = [arg.compile_time_value(denv) for arg in self.args]
try:
return function(*args)
except Exception, e:
self.compile_time_value_error(e)
def analyse_as_type(self, env):
attr = self.function.as_cython_attribute()
if attr == 'pointer':
if len(self.args) != 1:
error(self.args.pos, "only one type allowed.")
else:
type = self.args[0].analyse_as_type(env)
if not type:
error(self.args[0].pos, "Unknown type")
else:
return PyrexTypes.CPtrType(type)
def explicit_args_kwds(self):
return self.args, None
def analyse_types(self, env):
if self.analyse_as_type_constructor(env):
return
function = self.function
function.is_called = 1
self.function.analyse_types(env)
if function.is_attribute and function.is_py_attr and \
function.attribute == "append" and len(self.args) == 1:
# L.append(x) is almost always applied to a list
self.py_func = self.function
self.function = NameNode(pos=self.function.pos, name="__Pyx_PyObject_Append")
self.function.analyse_types(env)
self.self = self.py_func.obj
function.obj = CloneNode(self.self)
env.use_utility_code(append_utility_code)
if function.is_attribute and function.entry and function.entry.is_cmethod:
# Take ownership of the object from which the attribute
# was obtained, because we need to pass it as 'self'.
self.self = function.obj
function.obj = CloneNode(self.self)
func_type = self.function_type()
if func_type.is_pyobject:
self.arg_tuple = TupleNode(self.pos, args = self.args)
self.arg_tuple.analyse_types(env)
self.args = None
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
else:
for arg in self.args:
arg.analyse_types(env)
if self.self and func_type.args:
# Coerce 'self' to the type expected by the method.
expected_type = func_type.args[0].type
self.coerced_self = CloneNode(self.self).coerce_to(
expected_type, env)
# Insert coerced 'self' argument into argument list.
self.args.insert(0, self.coerced_self)
self.analyse_c_function_call(env)
def function_type(self):
# Return the type of the function being called, coercing a function
# pointer to a function if necessary.
func_type = self.function.type
if func_type.is_ptr:
func_type = func_type.base_type
return func_type
def analyse_c_function_call(self, env):
func_type = self.function_type()
# Check function type
if not func_type.is_cfunction:
if not func_type.is_error:
error(self.pos, "Calling non-function type '%s'" %
func_type)
self.type = PyrexTypes.error_type
self.result_code = "<error>"
return
# Check no. of args
max_nargs = len(func_type.args)
expected_nargs = max_nargs - func_type.optional_arg_count
actual_nargs = len(self.args)
if actual_nargs < expected_nargs \
or (not func_type.has_varargs and actual_nargs > max_nargs):
expected_str = str(expected_nargs)
if func_type.has_varargs:
expected_str = "at least " + expected_str
elif func_type.optional_arg_count:
if actual_nargs < max_nargs:
expected_str = "at least " + expected_str
else:
expected_str = "at most " + str(max_nargs)
error(self.pos,
"Call with wrong number of arguments (expected %s, got %s)"
% (expected_str, actual_nargs))
self.args = None
self.type = PyrexTypes.error_type
self.result_code = "<error>"
return
if func_type.optional_arg_count and expected_nargs != actual_nargs:
self.has_optional_args = 1
self.is_temp = 1
self.opt_arg_struct = env.allocate_temp(func_type.op_arg_struct.base_type)
env.release_temp(self.opt_arg_struct)
# Coerce arguments
for i in range(min(max_nargs, actual_nargs)):
formal_type = func_type.args[i].type
self.args[i] = self.args[i].coerce_to(formal_type, env)
for i in range(max_nargs, actual_nargs):
if self.args[i].type.is_pyobject:
error(self.args[i].pos,
"Python object cannot be passed as a varargs parameter")
# Calc result type and code fragment
self.type = func_type.return_type
if self.type.is_pyobject \
or func_type.exception_value is not None \
or func_type.exception_check:
self.is_temp = 1
if self.type.is_pyobject:
self.result_ctype = py_object_type
# C++ exception handler
if func_type.exception_check == '+':
if func_type.exception_value is None:
env.use_utility_code(cpp_exception_utility_code)
# Check gil
if not func_type.nogil:
self.gil_check(env)
def calculate_result_code(self):
return self.c_call_code()
def c_call_code(self):
func_type = self.function_type()
if self.args is None or not func_type.is_cfunction:
return "<error>"
formal_args = func_type.args
arg_list_code = []
args = zip(formal_args, self.args)
max_nargs = len(func_type.args)
expected_nargs = max_nargs - func_type.optional_arg_count
actual_nargs = len(self.args)
for formal_arg, actual_arg in args[:expected_nargs]:
arg_code = actual_arg.result_as(formal_arg.type)
arg_list_code.append(arg_code)
if func_type.is_overridable:
arg_list_code.append(str(int(self.wrapper_call or self.function.entry.is_unbound_cmethod)))
if func_type.optional_arg_count:
if expected_nargs == actual_nargs:
optional_args = 'NULL'
else:
optional_args = "&%s" % self.opt_arg_struct
arg_list_code.append(optional_args)
for actual_arg in self.args[len(formal_args):]:
arg_list_code.append(actual_arg.result())
result = "%s(%s)" % (self.function.result(),
join(arg_list_code, ", "))
# if self.wrapper_call or \
# self.function.entry.is_unbound_cmethod and self.function.entry.type.is_overridable:
# result = "(%s = 1, %s)" % (Naming.skip_dispatch_cname, result)
return result
def generate_result_code(self, code):
func_type = self.function_type()
if func_type.is_pyobject:
arg_code = self.arg_tuple.py_result()
code.putln(
"%s = PyObject_Call(%s, %s, NULL); %s" % (
self.result(),
self.function.py_result(),
arg_code,
code.error_goto_if_null(self.result(), self.pos)))
elif func_type.is_cfunction:
if self.has_optional_args:
actual_nargs = len(self.args)
expected_nargs = len(func_type.args) - func_type.optional_arg_count
code.putln("%s.%s = %s;" % (
self.opt_arg_struct,
Naming.pyrex_prefix + "n",
len(self.args) - expected_nargs))
args = zip(func_type.args, self.args)
for formal_arg, actual_arg in args[expected_nargs:actual_nargs]:
code.putln("%s.%s = %s;" % (
self.opt_arg_struct,
formal_arg.name,
actual_arg.result_as(formal_arg.type)))
exc_checks = []
if self.type.is_pyobject:
exc_checks.append("!%s" % self.result())
else:
exc_val = func_type.exception_value
exc_check = func_type.exception_check
if exc_val is not None:
exc_checks.append("%s == %s" % (self.result(), exc_val))
if exc_check:
exc_checks.append("PyErr_Occurred()")
if self.is_temp or exc_checks:
rhs = self.c_call_code()
if self.result():
lhs = "%s = " % self.result()
if self.is_temp and self.type.is_pyobject:
#return_type = self.type # func_type.return_type
#print "SimpleCallNode.generate_result_code: casting", rhs, \
# "from", return_type, "to pyobject" ###
rhs = typecast(py_object_type, self.type, rhs)
else:
lhs = ""
if func_type.exception_check == '+':
if func_type.exception_value is None:
raise_py_exception = "__Pyx_CppExn2PyErr()"
elif func_type.exception_value.type.is_pyobject:
raise_py_exception = 'PyErr_SetString(%s, "")' % func_type.exception_value.entry.cname
else:
raise_py_exception = '%s(); if (!PyErr_Occurred()) PyErr_SetString(PyExc_RuntimeError , "Error converting c++ exception.")' % func_type.exception_value.entry.cname
code.putln(
"try {%s%s;} catch(...) {%s; %s}" % (
lhs,
rhs,
raise_py_exception,
code.error_goto(self.pos)))
else:
if exc_checks:
goto_error = code.error_goto_if(" && ".join(exc_checks), self.pos)
else:
goto_error = ""
code.putln("%s%s; %s" % (lhs, rhs, goto_error))
class GeneralCallNode(CallNode):
# General Python function call, including keyword,
# * and ** arguments.
#
# function ExprNode
# positional_args ExprNode Tuple of positional arguments
# keyword_args ExprNode or None Dict of keyword arguments
# starstar_arg ExprNode or None Dict of extra keyword args
subexprs = ['function', 'positional_args', 'keyword_args', 'starstar_arg']
def compile_time_value(self, denv):
function = self.function.compile_time_value(denv)
positional_args = self.positional_args.compile_time_value(denv)
keyword_args = self.keyword_args.compile_time_value(denv)
starstar_arg = self.starstar_arg.compile_time_value(denv)
try:
keyword_args.update(starstar_arg)
return function(*positional_args, **keyword_args)
except Exception, e:
self.compile_time_value_error(e)
def explicit_args_kwds(self):
if self.starstar_arg or not isinstance(self.positional_args, TupleNode):
raise PostParseError(self.pos,
'Compile-time keyword arguments must be explicit.')
return self.positional_args.args, self.keyword_args
def analyse_types(self, env):
if self.analyse_as_type_constructor(env):
return
self.function.analyse_types(env)
self.positional_args.analyse_types(env)
if self.keyword_args:
self.keyword_args.analyse_types(env)
if self.starstar_arg:
self.starstar_arg.analyse_types(env)
self.function = self.function.coerce_to_pyobject(env)
self.positional_args = \
self.positional_args.coerce_to_pyobject(env)
if self.starstar_arg:
self.starstar_arg = \
self.starstar_arg.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
def generate_result_code(self, code):
if self.keyword_args and self.starstar_arg:
code.put_error_if_neg(self.pos,
"PyDict_Update(%s, %s)" % (
self.keyword_args.py_result(),
self.starstar_arg.py_result()))
keyword_code = self.keyword_args.py_result()
elif self.keyword_args:
keyword_code = self.keyword_args.py_result()
elif self.starstar_arg:
keyword_code = self.starstar_arg.py_result()
else:
keyword_code = None
if not keyword_code:
call_code = "PyObject_Call(%s, %s, NULL)" % (
self.function.py_result(),
self.positional_args.py_result())
else:
call_code = "PyEval_CallObjectWithKeywords(%s, %s, %s)" % (
self.function.py_result(),
self.positional_args.py_result(),
keyword_code)
code.putln(
"%s = %s; %s" % (
self.result(),
call_code,
code.error_goto_if_null(self.result(), self.pos)))
class AsTupleNode(ExprNode):
# Convert argument to tuple. Used for normalising
# the * argument of a function call.
#
# arg ExprNode
subexprs = ['arg']
def compile_time_value(self, denv):
arg = self.arg.compile_time_value(denv)
try:
return tuple(arg)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
self.arg.analyse_types(env)
self.arg = self.arg.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python tuple"
def generate_result_code(self, code):
code.putln(
"%s = PySequence_Tuple(%s); %s" % (
self.result(),
self.arg.py_result(),
code.error_goto_if_null(self.result(), self.pos)))
class AttributeNode(ExprNode):
# obj.attribute
#
# obj ExprNode
# attribute string
# needs_none_check boolean Used if obj is an extension type.
# If set to True, it is known that the type is not None.
#
# Used internally:
#
# is_py_attr boolean Is a Python getattr operation
# member string C name of struct member
# is_called boolean Function call is being done on result
# entry Entry Symbol table entry of attribute
# interned_attr_cname string C name of interned attribute name
is_attribute = 1
subexprs = ['obj']
type = PyrexTypes.error_type
entry = None
is_called = 0
needs_none_check = True
def as_cython_attribute(self):
if isinstance(self.obj, NameNode) and self.obj.is_cython_module:
return self.attribute
def coerce_to(self, dst_type, env):
# If coercing to a generic pyobject and this is a cpdef function
# we can create the corresponding attribute
if dst_type is py_object_type:
entry = self.entry
if entry and entry.is_cfunction and entry.as_variable:
# must be a cpdef function
self.is_temp = 1
self.entry = entry.as_variable
self.analyse_as_python_attribute(env)
return self
return ExprNode.coerce_to(self, dst_type, env)
def compile_time_value(self, denv):
attr = self.attribute
if attr.beginswith("__") and attr.endswith("__"):
self.error("Invalid attribute name '%s' in compile-time expression"
% attr)
return None
obj = self.arg.compile_time_value(denv)
try:
return getattr(obj, attr)
except Exception, e:
self.compile_time_value_error(e)
def analyse_target_declaration(self, env):
pass
def analyse_target_types(self, env):
self.analyse_types(env, target = 1)
def analyse_types(self, env, target = 0):
if self.analyse_as_cimported_attribute(env, target):
return
if not target and self.analyse_as_unbound_cmethod(env):
return
self.analyse_as_ordinary_attribute(env, target)
def analyse_as_cimported_attribute(self, env, target):
# Try to interpret this as a reference to an imported
# C const, type, var or function. If successful, mutates
# this node into a NameNode and returns 1, otherwise
# returns 0.
module_scope = self.obj.analyse_as_module(env)
if module_scope:
entry = module_scope.lookup_here(self.attribute)
if entry and (
entry.is_cglobal or entry.is_cfunction
or entry.is_type or entry.is_const):
self.mutate_into_name_node(env, entry, target)
return 1
return 0
def analyse_as_unbound_cmethod(self, env):
# Try to interpret this as a reference to an unbound
# C method of an extension type. If successful, mutates
# this node into a NameNode and returns 1, otherwise
# returns 0.
type = self.obj.analyse_as_extension_type(env)
if type:
entry = type.scope.lookup_here(self.attribute)
if entry and entry.is_cmethod:
# Create a temporary entry describing the C method
# as an ordinary function.
ubcm_entry = Symtab.Entry(entry.name,
"%s->%s" % (type.vtabptr_cname, entry.cname),
entry.type)
ubcm_entry.is_cfunction = 1
ubcm_entry.func_cname = entry.func_cname
ubcm_entry.is_unbound_cmethod = 1
self.mutate_into_name_node(env, ubcm_entry, None)
return 1
return 0
def analyse_as_type(self, env):
module_scope = self.obj.analyse_as_module(env)
if module_scope:
return module_scope.lookup_type(self.attribute)
return None
def analyse_as_extension_type(self, env):
# Try to interpret this as a reference to an extension type
# in a cimported module. Returns the extension type, or None.
module_scope = self.obj.analyse_as_module(env)
if module_scope:
entry = module_scope.lookup_here(self.attribute)
if entry and entry.is_type and entry.type.is_extension_type:
return entry.type
return None
def analyse_as_module(self, env):
# Try to interpret this as a reference to a cimported module
# in another cimported module. Returns the module scope, or None.
module_scope = self.obj.analyse_as_module(env)
if module_scope:
entry = module_scope.lookup_here(self.attribute)
if entry and entry.as_module:
return entry.as_module
return None
def mutate_into_name_node(self, env, entry, target):
# Mutate this node into a NameNode and complete the
# analyse_types phase.
self.__class__ = NameNode
self.name = self.attribute
self.entry = entry
del self.obj
del self.attribute
if target:
NameNode.analyse_target_types(self, env)
else:
NameNode.analyse_rvalue_entry(self, env)
def analyse_as_ordinary_attribute(self, env, target):
self.obj.analyse_types(env)
self.analyse_attribute(env)
if self.entry and self.entry.is_cmethod and not self.is_called:
# error(self.pos, "C method can only be called")
pass
## Reference to C array turns into pointer to first element.
#while self.type.is_array:
# self.type = self.type.element_ptr_type()
if self.is_py_attr:
if not target:
self.is_temp = 1
self.result_ctype = py_object_type
def analyse_attribute(self, env):
# Look up attribute and set self.type and self.member.
self.is_py_attr = 0
self.member = self.attribute
if self.obj.type.is_string:
self.obj = self.obj.coerce_to_pyobject(env)
obj_type = self.obj.type
if obj_type.is_ptr or obj_type.is_array:
obj_type = obj_type.base_type
self.op = "->"
elif obj_type.is_extension_type:
self.op = "->"
else:
self.op = "."
if obj_type.has_attributes:
entry = None
if obj_type.attributes_known():
entry = obj_type.scope.lookup_here(self.attribute)
if entry and entry.is_member:
entry = None
else:
error(self.pos,
"Cannot select attribute of incomplete type '%s'"
% obj_type)
self.type = PyrexTypes.error_type
return
self.entry = entry
if entry:
if obj_type.is_extension_type and entry.name == "__weakref__":
error(self.pos, "Illegal use of special attribute __weakref__")
# methods need the normal attribute lookup
# because they do not have struct entries
if entry.is_variable or entry.is_cmethod:
self.type = entry.type
self.member = entry.cname
return
else:
# If it's not a variable or C method, it must be a Python
# method of an extension type, so we treat it like a Python
# attribute.
pass
# If we get here, the base object is not a struct/union/extension
# type, or it is an extension type and the attribute is either not
# declared or is declared as a Python method. Treat it as a Python
# attribute reference.
self.analyse_as_python_attribute(env)
def analyse_as_python_attribute(self, env):
obj_type = self.obj.type
self.member = self.attribute
if obj_type.is_pyobject:
self.type = py_object_type
self.is_py_attr = 1
self.interned_attr_cname = env.intern_identifier(self.attribute)
self.gil_check(env)
else:
if not obj_type.is_error:
error(self.pos,
"Object of type '%s' has no attribute '%s'" %
(obj_type, self.attribute))
gil_message = "Accessing Python attribute"
def is_simple(self):
if self.obj:
return self.result_in_temp() or self.obj.is_simple()
else:
return NameNode.is_simple(self)
def is_lvalue(self):
if self.obj:
return 1
else:
return NameNode.is_lvalue(self)
def is_ephemeral(self):
if self.obj:
return self.obj.is_ephemeral()
else:
return NameNode.is_ephemeral(self)
def calculate_result_code(self):
#print "AttributeNode.calculate_result_code:", self.member ###
#print "...obj node =", self.obj, "code", self.obj.result() ###
#print "...obj type", self.obj.type, "ctype", self.obj.ctype() ###
obj = self.obj
obj_code = obj.result_as(obj.type)
#print "...obj_code =", obj_code ###
if self.entry and self.entry.is_cmethod:
if obj.type.is_extension_type:
return "((struct %s *)%s%s%s)->%s" % (
obj.type.vtabstruct_cname, obj_code, self.op,
obj.type.vtabslot_cname, self.member)
else:
return self.member
else:
return "%s%s%s" % (obj_code, self.op, self.member)
def generate_result_code(self, code):
if self.is_py_attr:
code.putln(
'%s = PyObject_GetAttr(%s, %s); %s' % (
self.result(),
self.obj.py_result(),
self.interned_attr_cname,
code.error_goto_if_null(self.result(), self.pos)))
else:
# result_code contains what is needed, but we may need to insert
# a check and raise an exception
if (self.obj.type.is_extension_type
and self.needs_none_check
and code.globalstate.directives['nonecheck']):
self.put_nonecheck(code)
def generate_assignment_code(self, rhs, code):
self.obj.generate_evaluation_code(code)
if self.is_py_attr:
code.put_error_if_neg(self.pos,
'PyObject_SetAttr(%s, %s, %s)' % (
self.obj.py_result(),
self.interned_attr_cname,
rhs.py_result()))
rhs.generate_disposal_code(code)
else:
if (self.obj.type.is_extension_type
and self.needs_none_check
and code.globalstate.directives['nonecheck']):
self.put_nonecheck(code)
select_code = self.result()
if self.type.is_pyobject:
rhs.make_owned_reference(code)
code.put_decref(select_code, self.ctype())
code.putln(
"%s = %s;" % (
select_code,
rhs.result_as(self.ctype())))
#rhs.result()))
rhs.generate_post_assignment_code(code)
self.obj.generate_disposal_code(code)
def generate_deletion_code(self, code):
self.obj.generate_evaluation_code(code)
if self.is_py_attr:
code.put_error_if_neg(self.pos,
'PyObject_DelAttr(%s, %s)' % (
self.obj.py_result(),
self.interned_attr_cname))
else:
error(self.pos, "Cannot delete C attribute of extension type")
self.obj.generate_disposal_code(code)
def annotate(self, code):
if self.is_py_attr:
code.annotate(self.pos, AnnotationItem('py_attr', 'python attribute', size=len(self.attribute)))
else:
code.annotate(self.pos, AnnotationItem('c_attr', 'c attribute', size=len(self.attribute)))
def put_nonecheck(self, code):
code.globalstate.use_utility_code(raise_noneattr_error_utility_code)
code.putln("if (%s) {" % code.unlikely("%s == Py_None") % self.obj.result_as(PyrexTypes.py_object_type))
code.putln("__Pyx_RaiseNoneAttributeError(\"%s\");" % self.attribute.encode("UTF-8")) # todo: fix encoding
code.putln(code.error_goto(self.pos))
code.putln("}")
#-------------------------------------------------------------------
#
# Constructor nodes
#
#-------------------------------------------------------------------
class SequenceNode(ExprNode):
# Base class for list and tuple constructor nodes.
# Contains common code for performing sequence unpacking.
#
# args [ExprNode]
# iterator ExprNode
# unpacked_items [ExprNode] or None
# coerced_unpacked_items [ExprNode] or None
subexprs = ['args']
is_sequence_constructor = 1
unpacked_items = None
def compile_time_value_list(self, denv):
return [arg.compile_time_value(denv) for arg in self.args]
def analyse_target_declaration(self, env):
for arg in self.args:
arg.analyse_target_declaration(env)
def analyse_types(self, env, skip_children=False):
for i in range(len(self.args)):
arg = self.args[i]
if not skip_children: arg.analyse_types(env)
self.args[i] = arg.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
def analyse_target_types(self, env):
self.iterator = PyTempNode(self.pos, env)
self.unpacked_items = []
self.coerced_unpacked_items = []
for arg in self.args:
arg.analyse_target_types(env)
unpacked_item = PyTempNode(self.pos, env)
coerced_unpacked_item = unpacked_item.coerce_to(arg.type, env)
self.unpacked_items.append(unpacked_item)
self.coerced_unpacked_items.append(coerced_unpacked_item)
self.type = py_object_type
env.use_utility_code(unpacking_utility_code)
def allocate_target_temps(self, env, rhs):
self.iterator.allocate_temps(env)
for arg, node in zip(self.args, self.coerced_unpacked_items):
node.allocate_temps(env)
arg.allocate_target_temps(env, node)
#arg.release_target_temp(env)
#node.release_temp(env)
if rhs:
rhs.release_temp(env)
self.iterator.release_temp(env)
# def release_target_temp(self, env):
# #for arg in self.args:
# # arg.release_target_temp(env)
# #for node in self.coerced_unpacked_items:
# # node.release_temp(env)
# self.iterator.release_temp(env)
def generate_result_code(self, code):
self.generate_operation_code(code)
def generate_assignment_code(self, rhs, code):
code.putln(
"if (PyTuple_CheckExact(%s) && PyTuple_GET_SIZE(%s) == %s) {" % (
rhs.py_result(),
rhs.py_result(),
len(self.args)))
code.putln("PyObject* tuple = %s;" % rhs.py_result())
for i in range(len(self.args)):
item = self.unpacked_items[i]
code.putln(
"%s = PyTuple_GET_ITEM(tuple, %s);" % (
item.result(),
i))
code.put_incref(item.result(), item.ctype())
value_node = self.coerced_unpacked_items[i]
value_node.generate_evaluation_code(code)
self.args[i].generate_assignment_code(value_node, code)
rhs.generate_disposal_code(code)
code.putln("}")
code.putln("else {")
code.putln(
"%s = PyObject_GetIter(%s); %s" % (
self.iterator.result(),
rhs.py_result(),
code.error_goto_if_null(self.iterator.result(), self.pos)))
rhs.generate_disposal_code(code)
for i in range(len(self.args)):
item = self.unpacked_items[i]
unpack_code = "__Pyx_UnpackItem(%s, %d)" % (
self.iterator.py_result(), i)
code.putln(
"%s = %s; %s" % (
item.result(),
typecast(item.ctype(), py_object_type, unpack_code),
code.error_goto_if_null(item.result(), self.pos)))
value_node = self.coerced_unpacked_items[i]
value_node.generate_evaluation_code(code)
self.args[i].generate_assignment_code(value_node, code)
code.put_error_if_neg(self.pos,
"__Pyx_EndUnpack(%s)" % (
self.iterator.py_result()))
if debug_disposal_code:
print("UnpackNode.generate_assignment_code:")
print("...generating disposal code for %s" % self.iterator)
self.iterator.generate_disposal_code(code)
code.putln("}")
def annotate(self, code):
for arg in self.args:
arg.annotate(code)
if self.unpacked_items:
for arg in self.unpacked_items:
arg.annotate(code)
for arg in self.coerced_unpacked_items:
arg.annotate(code)
class TupleNode(SequenceNode):
# Tuple constructor.
gil_message = "Constructing Python tuple"
def analyse_types(self, env, skip_children=False):
if len(self.args) == 0:
self.is_temp = 0
self.is_literal = 1
else:
SequenceNode.analyse_types(self, env, skip_children)
self.type = tuple_type
def calculate_result_code(self):
if len(self.args) > 0:
error(self.pos, "Positive length tuples must be constructed.")
else:
return Naming.empty_tuple
def compile_time_value(self, denv):
values = self.compile_time_value_list(denv)
try:
return tuple(values)
except Exception, e:
self.compile_time_value_error(e)
def generate_operation_code(self, code):
if len(self.args) == 0:
# result_code is Naming.empty_tuple
return
code.putln(
"%s = PyTuple_New(%s); %s" % (
self.result(),
len(self.args),
code.error_goto_if_null(self.result(), self.pos)))
for i in range(len(self.args)):
arg = self.args[i]
if not arg.result_in_temp():
code.put_incref(arg.result(), arg.ctype())
code.putln(
"PyTuple_SET_ITEM(%s, %s, %s);" % (
self.result(),
i,
arg.py_result()))
def generate_subexpr_disposal_code(self, code):
# We call generate_post_assignment_code here instead
# of generate_disposal_code, because values were stored
# in the tuple using a reference-stealing operation.
for arg in self.args:
arg.generate_post_assignment_code(code)
class ListNode(SequenceNode):
# List constructor.
# obj_conversion_errors [PyrexError] used internally
# orignial_args [ExprNode] used internally
gil_message = "Constructing Python list"
def analyse_expressions(self, env):
ExprNode.analyse_expressions(self, env)
self.coerce_to_pyobject(env)
def analyse_types(self, env):
hold_errors()
self.original_args = list(self.args)
SequenceNode.analyse_types(self, env)
self.type = list_type
self.obj_conversion_errors = held_errors()
release_errors(ignore=True)
def coerce_to(self, dst_type, env):
if dst_type.is_pyobject:
for err in self.obj_conversion_errors:
report_error(err)
self.obj_conversion_errors = []
if not self.type.subtype_of(dst_type):
error(self.pos, "Cannot coerce list to type '%s'" % dst_type)
elif dst_type.is_ptr:
base_type = dst_type.base_type
self.type = PyrexTypes.CArrayType(base_type, len(self.args))
for i in range(len(self.original_args)):
arg = self.args[i]
if isinstance(arg, CoerceToPyTypeNode):
arg = arg.arg
self.args[i] = arg.coerce_to(base_type, env)
elif dst_type.is_struct:
if len(self.args) > len(dst_type.scope.var_entries):
error(self.pos, "Too may members for '%s'" % dst_type)
else:
if len(self.args) < len(dst_type.scope.var_entries):
warning(self.pos, "Too few members for '%s'" % dst_type, 1)
for i, (arg, member) in enumerate(zip(self.original_args, dst_type.scope.var_entries)):
if isinstance(arg, CoerceToPyTypeNode):
arg = arg.arg
self.args[i] = arg.coerce_to(member.type, env)
self.type = dst_type
else:
self.type = error_type
error(self.pos, "Cannot coerce list to type '%s'" % dst_type)
return self
def release_temp(self, env):
if self.type.is_array:
# To be valid C++, we must allocate the memory on the stack
# manually and be sure not to reuse it for something else.
pass
else:
SequenceNode.release_temp(self, env)
def compile_time_value(self, denv):
return self.compile_time_value_list(denv)
def generate_operation_code(self, code):
if self.type.is_pyobject:
for err in self.obj_conversion_errors:
report_error(err)
code.putln("%s = PyList_New(%s); %s" %
(self.result(),
len(self.args),
code.error_goto_if_null(self.result(), self.pos)))
for i in range(len(self.args)):
arg = self.args[i]
#if not arg.is_temp:
if not arg.result_in_temp():
code.put_incref(arg.result(), arg.ctype())
code.putln("PyList_SET_ITEM(%s, %s, %s);" %
(self.result(),
i,
arg.py_result()))
elif self.type.is_array:
for i, arg in enumerate(self.args):
code.putln("%s[%s] = %s;" % (
self.result(),
i,
arg.result()))
elif self.type.is_struct:
for arg, member in zip(self.args, self.type.scope.var_entries):
code.putln("%s.%s = %s;" % (
self.result(),
member.cname,
arg.result()))
else:
raise InternalError("List type never specified")
def generate_subexpr_disposal_code(self, code):
# We call generate_post_assignment_code here instead
# of generate_disposal_code, because values were stored
# in the list using a reference-stealing operation.
for arg in self.args:
arg.generate_post_assignment_code(code)
class ListComprehensionNode(SequenceNode):
subexprs = []
is_sequence_constructor = 0 # not unpackable
child_attrs = ["loop", "append"]
def analyse_types(self, env):
self.type = list_type
self.is_temp = 1
self.append.target = self # this is a CloneNode used in the PyList_Append in the inner loop
def allocate_temps(self, env, result = None):
if debug_temp_alloc:
print("%s Allocating temps" % self)
self.allocate_temp(env, result)
self.loop.analyse_declarations(env)
self.loop.analyse_expressions(env)
def generate_operation_code(self, code):
code.putln("%s = PyList_New(%s); %s" %
(self.result(),
0,
code.error_goto_if_null(self.result(), self.pos)))
self.loop.generate_execution_code(code)
def annotate(self, code):
self.loop.annotate(code)
class ListComprehensionAppendNode(ExprNode):
# Need to be careful to avoid infinite recursion:
# target must not be in child_attrs/subexprs
subexprs = ['expr']
def analyse_types(self, env):
self.expr.analyse_types(env)
if self.expr.type != py_object_type:
self.expr = self.expr.coerce_to_pyobject(env)
self.type = PyrexTypes.c_int_type
self.is_temp = 1
def generate_result_code(self, code):
code.putln("%s = PyList_Append(%s, (PyObject*)%s); %s" %
(self.result(),
self.target.result(),
self.expr.result(),
code.error_goto_if(self.result(), self.pos)))
class DictNode(ExprNode):
# Dictionary constructor.
#
# key_value_pairs [DictItemNode]
#
# obj_conversion_errors [PyrexError] used internally
subexprs = ['key_value_pairs']
def compile_time_value(self, denv):
pairs = [(item.key.compile_time_value(denv), item.value.compile_time_value(denv))
for item in self.key_value_pairs]
try:
return dict(pairs)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
hold_errors()
self.type = dict_type
for item in self.key_value_pairs:
item.analyse_types(env)
self.gil_check(env)
self.obj_conversion_errors = held_errors()
release_errors(ignore=True)
self.is_temp = 1
def coerce_to(self, dst_type, env):
if dst_type.is_pyobject:
self.release_errors()
if not self.type.subtype_of(dst_type):
error(self.pos, "Cannot interpret dict as type '%s'" % dst_type)
elif dst_type.is_struct_or_union:
self.type = dst_type
if not dst_type.is_struct and len(self.key_value_pairs) != 1:
error(self.pos, "Exactly one field must be specified to convert to union '%s'" % dst_type)
elif dst_type.is_struct and len(self.key_value_pairs) < len(dst_type.scope.var_entries):
warning(self.pos, "Not all members given for struct '%s'" % dst_type, 1)
for item in self.key_value_pairs:
if isinstance(item.key, CoerceToPyTypeNode):
item.key = item.key.arg
if not isinstance(item.key, (StringNode, IdentifierStringNode)):
error(item.key.pos, "Invalid struct field identifier")
item.key = IdentifierStringNode(item.key.pos, value="<error>")
else:
member = dst_type.scope.lookup_here(item.key.value)
if not member:
error(item.key.pos, "struct '%s' has no field '%s'" % (dst_type, item.key.value))
else:
value = item.value
if isinstance(value, CoerceToPyTypeNode):
value = value.arg
item.value = value.coerce_to(member.type, env)
else:
self.type = error_type
error(self.pos, "Cannot interpret dict as type '%s'" % dst_type)
return self
def release_errors(self):
for err in self.obj_conversion_errors:
report_error(err)
self.obj_conversion_errors = []
gil_message = "Constructing Python dict"
def allocate_temps(self, env, result = None):
# Custom method used here because key-value
# pairs are evaluated and used one at a time.
self.allocate_temp(env, result)
for item in self.key_value_pairs:
item.key.allocate_temps(env)
item.value.allocate_temps(env)
item.key.release_temp(env)
item.value.release_temp(env)
def generate_evaluation_code(self, code):
# Custom method used here because key-value
# pairs are evaluated and used one at a time.
if self.type.is_pyobject:
self.release_errors()
code.putln(
"%s = PyDict_New(); %s" % (
self.result(),
code.error_goto_if_null(self.result(), self.pos)))
for item in self.key_value_pairs:
item.generate_evaluation_code(code)
if self.type.is_pyobject:
code.put_error_if_neg(self.pos,
"PyDict_SetItem(%s, %s, %s)" % (
self.result(),
item.key.py_result(),
item.value.py_result()))
else:
code.putln("%s.%s = %s;" % (
self.result(),
item.key.value,
item.value.result()))
item.generate_disposal_code(code)
def annotate(self, code):
for item in self.key_value_pairs:
item.annotate(code)
class DictItemNode(ExprNode):
# Represents a single item in a DictNode
#
# key ExprNode
# value ExprNode
subexprs = ['key', 'value']
def analyse_types(self, env):
self.key.analyse_types(env)
self.value.analyse_types(env)
self.key = self.key.coerce_to_pyobject(env)
self.value = self.value.coerce_to_pyobject(env)
def generate_evaluation_code(self, code):
self.key.generate_evaluation_code(code)
self.value.generate_evaluation_code(code)
def generate_disposal_code(self, code):
self.key.generate_disposal_code(code)
self.value.generate_disposal_code(code)
def __iter__(self):
return iter([self.key, self.value])
class ClassNode(ExprNode):
# Helper class used in the implementation of Python
# class definitions. Constructs a class object given
# a name, tuple of bases and class dictionary.
#
# name EncodedString Name of the class
# cname string Class name as a Python string
# bases ExprNode Base class tuple
# dict ExprNode Class dict (not owned by this node)
# doc ExprNode or None Doc string
# module_name string Name of defining module
subexprs = ['bases', 'doc']
def analyse_types(self, env):
self.cname = env.intern_identifier(self.name)
self.bases.analyse_types(env)
if self.doc:
self.doc.analyse_types(env)
self.doc = self.doc.coerce_to_pyobject(env)
self.module_name = env.global_scope().qualified_name
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
env.use_utility_code(create_class_utility_code);
gil_message = "Constructing Python class"
def generate_result_code(self, code):
if self.doc:
code.put_error_if_neg(self.pos,
'PyDict_SetItemString(%s, "__doc__", %s)' % (
self.dict.py_result(),
self.doc.py_result()))
code.putln(
'%s = __Pyx_CreateClass(%s, %s, %s, "%s"); %s' % (
self.result(),
self.bases.py_result(),
self.dict.py_result(),
self.cname,
self.module_name,
code.error_goto_if_null(self.result(), self.pos)))
class UnboundMethodNode(ExprNode):
# Helper class used in the implementation of Python
# class definitions. Constructs an unbound method
# object from a class and a function.
#
# class_cname string C var holding the class object
# function ExprNode Function object
subexprs = ['function']
def analyse_types(self, env):
self.function.analyse_types(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing an unbound method"
def generate_result_code(self, code):
code.putln(
"%s = PyMethod_New(%s, 0, %s); %s" % (
self.result(),
self.function.py_result(),
self.class_cname,
code.error_goto_if_null(self.result(), self.pos)))
class PyCFunctionNode(AtomicExprNode):
# Helper class used in the implementation of Python
# class definitions. Constructs a PyCFunction object
# from a PyMethodDef struct.
#
# pymethdef_cname string PyMethodDef structure
def analyse_types(self, env):
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python function"
def generate_result_code(self, code):
code.putln(
"%s = PyCFunction_New(&%s, 0); %s" % (
self.result(),
self.pymethdef_cname,
code.error_goto_if_null(self.result(), self.pos)))
#-------------------------------------------------------------------
#
# Unary operator nodes
#
#-------------------------------------------------------------------
compile_time_unary_operators = {
'not': operator.not_,
'~': operator.inv,
'-': operator.neg,
'+': operator.pos,
}
class UnopNode(ExprNode):
# operator string
# operand ExprNode
#
# Processing during analyse_expressions phase:
#
# analyse_c_operation
# Called when the operand is not a pyobject.
# - Check operand type and coerce if needed.
# - Determine result type and result code fragment.
# - Allocate temporary for result if needed.
subexprs = ['operand']
def compile_time_value(self, denv):
func = compile_time_unary_operators.get(self.operator)
if not func:
error(self.pos,
"Unary '%s' not supported in compile-time expression"
% self.operator)
operand = self.operand.compile_time_value(denv)
try:
return func(operand)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
self.operand.analyse_types(env)
if self.is_py_operation():
self.coerce_operand_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
else:
self.analyse_c_operation(env)
def check_const(self):
self.operand.check_const()
def is_py_operation(self):
return self.operand.type.is_pyobject
def coerce_operand_to_pyobject(self, env):
self.operand = self.operand.coerce_to_pyobject(env)
def generate_result_code(self, code):
if self.operand.type.is_pyobject:
self.generate_py_operation_code(code)
else:
if self.is_temp:
self.generate_c_operation_code(code)
def generate_py_operation_code(self, code):
function = self.py_operation_function()
code.putln(
"%s = %s(%s); %s" % (
self.result(),
function,
self.operand.py_result(),
code.error_goto_if_null(self.result(), self.pos)))
def type_error(self):
if not self.operand.type.is_error:
error(self.pos, "Invalid operand type for '%s' (%s)" %
(self.operator, self.operand.type))
self.type = PyrexTypes.error_type
class NotNode(ExprNode):
# 'not' operator
#
# operand ExprNode
def compile_time_value(self, denv):
operand = self.operand.compile_time_value(denv)
try:
return not operand
except Exception, e:
self.compile_time_value_error(e)
subexprs = ['operand']
def analyse_types(self, env):
self.operand.analyse_types(env)
self.operand = self.operand.coerce_to_boolean(env)
self.type = PyrexTypes.c_bint_type
def calculate_result_code(self):
return "(!%s)" % self.operand.result()
def generate_result_code(self, code):
pass
class UnaryPlusNode(UnopNode):
# unary '+' operator
operator = '+'
def analyse_c_operation(self, env):
self.type = self.operand.type
def py_operation_function(self):
return "PyNumber_Positive"
def calculate_result_code(self):
return self.operand.result()
class UnaryMinusNode(UnopNode):
# unary '-' operator
operator = '-'
def analyse_c_operation(self, env):
if self.operand.type.is_numeric:
self.type = self.operand.type
else:
self.type_error()
def py_operation_function(self):
return "PyNumber_Negative"
def calculate_result_code(self):
return "(-%s)" % self.operand.result()
class TildeNode(UnopNode):
# unary '~' operator
def analyse_c_operation(self, env):
if self.operand.type.is_int:
self.type = self.operand.type
else:
self.type_error()
def py_operation_function(self):
return "PyNumber_Invert"
def calculate_result_code(self):
return "(~%s)" % self.operand.result()
class AmpersandNode(ExprNode):
# The C address-of operator.
#
# operand ExprNode
subexprs = ['operand']
def analyse_types(self, env):
self.operand.analyse_types(env)
argtype = self.operand.type
if not (argtype.is_cfunction or self.operand.is_lvalue()):
self.error("Taking address of non-lvalue")
return
if argtype.is_pyobject:
self.error("Cannot take address of Python variable")
return
self.type = PyrexTypes.c_ptr_type(argtype)
def check_const(self):
self.operand.check_const_addr()
def error(self, mess):
error(self.pos, mess)
self.type = PyrexTypes.error_type
self.result_code = "<error>"
def calculate_result_code(self):
return "(&%s)" % self.operand.result()
def generate_result_code(self, code):
pass
unop_node_classes = {
"+": UnaryPlusNode,
"-": UnaryMinusNode,
"~": TildeNode,
}
def unop_node(pos, operator, operand):
# Construct unnop node of appropriate class for
# given operator.
if isinstance(operand, IntNode) and operator == '-':
return IntNode(pos = operand.pos, value = str(-int(operand.value, 0)))
elif isinstance(operand, UnopNode) and operand.operator == operator:
warning(pos, "Python has no increment/decrement operator: %s%sx = %s(%sx) = x" % ((operator,)*4), 5)
return unop_node_classes[operator](pos,
operator = operator,
operand = operand)
class TypecastNode(ExprNode):
# C type cast
#
# operand ExprNode
# base_type CBaseTypeNode
# declarator CDeclaratorNode
#
# If used from a transform, one can if wanted specify the attribute
# "type" directly and leave base_type and declarator to None
subexprs = ['operand']
base_type = declarator = type = None
def analyse_types(self, env):
if self.type is None:
base_type = self.base_type.analyse(env)
_, self.type = self.declarator.analyse(base_type, env)
if self.type.is_cfunction:
error(self.pos,
"Cannot cast to a function type")
self.type = PyrexTypes.error_type
self.operand.analyse_types(env)
to_py = self.type.is_pyobject
from_py = self.operand.type.is_pyobject
if from_py and not to_py and self.operand.is_ephemeral() and not self.type.is_numeric:
error(self.pos, "Casting temporary Python object to non-numeric non-Python type")
if to_py and not from_py:
if (self.operand.type.to_py_function and
self.operand.type.create_convert_utility_code(env)):
self.result_ctype = py_object_type
self.operand = self.operand.coerce_to_pyobject(env)
else:
warning(self.pos, "No conversion from %s to %s, python object pointer used." % (self.operand.type, self.type))
self.operand = self.operand.coerce_to_simple(env)
elif from_py and not to_py:
if self.type.from_py_function:
self.operand = self.operand.coerce_to(self.type, env)
else:
warning(self.pos, "No conversion from %s to %s, python object pointer used." % (self.type, self.operand.type))
elif from_py and to_py:
if self.typecheck and self.type.is_extension_type:
self.operand = PyTypeTestNode(self.operand, self.type, env)
def check_const(self):
self.operand.check_const()
def calculate_result_code(self):
opnd = self.operand
return self.type.cast_code(opnd.result())
def result_as(self, type):
if self.type.is_pyobject and not self.is_temp:
# Optimise away some unnecessary casting
return self.operand.result_as(type)
else:
return ExprNode.result_as(self, type)
def generate_result_code(self, code):
if self.is_temp:
code.putln(
"%s = (PyObject *)%s;" % (
self.result(),
self.operand.result()))
code.put_incref(self.result(), self.ctype())
class SizeofNode(ExprNode):
# Abstract base class for sizeof(x) expression nodes.
type = PyrexTypes.c_int_type
def check_const(self):
pass
def generate_result_code(self, code):
pass
class SizeofTypeNode(SizeofNode):
# C sizeof function applied to a type
#
# base_type CBaseTypeNode
# declarator CDeclaratorNode
subexprs = []
arg_type = None
def analyse_types(self, env):
# we may have incorrectly interpreted a dotted name as a type rather than an attribute
# this could be better handled by more uniformly treating types as runtime-available objects
if 0 and self.base_type.module_path:
path = self.base_type.module_path
obj = env.lookup(path[0])
if obj.as_module is None:
operand = NameNode(pos=self.pos, name=path[0])
for attr in path[1:]:
operand = AttributeNode(pos=self.pos, obj=operand, attribute=attr)
operand = AttributeNode(pos=self.pos, obj=operand, attribute=self.base_type.name)
self.operand = operand
self.__class__ = SizeofVarNode
self.analyse_types(env)
return
if self.arg_type is None:
base_type = self.base_type.analyse(env)
_, arg_type = self.declarator.analyse(base_type, env)
self.arg_type = arg_type
self.check_type()
def check_type(self):
arg_type = self.arg_type
if arg_type.is_pyobject and not arg_type.is_extension_type:
error(self.pos, "Cannot take sizeof Python object")
elif arg_type.is_void:
error(self.pos, "Cannot take sizeof void")
elif not arg_type.is_complete():
error(self.pos, "Cannot take sizeof incomplete type '%s'" % arg_type)
def calculate_result_code(self):
if self.arg_type.is_extension_type:
# the size of the pointer is boring
# we want the size of the actual struct
arg_code = self.arg_type.declaration_code("", deref=1)
else:
arg_code = self.arg_type.declaration_code("")
return "(sizeof(%s))" % arg_code
class SizeofVarNode(SizeofNode):
# C sizeof function applied to a variable
#
# operand ExprNode
subexprs = ['operand']
def analyse_types(self, env):
# We may actually be looking at a type rather than a variable...
# If we are, traditional analysis would fail...
operand_as_type = self.operand.analyse_as_type(env)
if operand_as_type:
self.arg_type = operand_as_type
self.__class__ = SizeofTypeNode
self.check_type()
else:
self.operand.analyse_types(env)
def calculate_result_code(self):
return "(sizeof(%s))" % self.operand.result()
def generate_result_code(self, code):
pass
#-------------------------------------------------------------------
#
# Binary operator nodes
#
#-------------------------------------------------------------------
def _not_in(x, seq):
return x not in seq
compile_time_binary_operators = {
'<': operator.lt,
'<=': operator.le,
'==': operator.eq,
'!=': operator.ne,
'>=': operator.ge,
'>': operator.gt,
'is': operator.is_,
'is_not': operator.is_not,
'+': operator.add,
'&': operator.and_,
'/': operator.div,
'//': operator.floordiv,
'<<': operator.lshift,
'%': operator.mod,
'*': operator.mul,
'|': operator.or_,
'**': operator.pow,
'>>': operator.rshift,
'-': operator.sub,
#'/': operator.truediv,
'^': operator.xor,
'in': operator.contains,
'not_in': _not_in,
}
def get_compile_time_binop(node):
func = compile_time_binary_operators.get(node.operator)
if not func:
error(node.pos,
"Binary '%s' not supported in compile-time expression"
% node.operator)
return func
class BinopNode(NewTempExprNode):
# operator string
# operand1 ExprNode
# operand2 ExprNode
#
# Processing during analyse_expressions phase:
#
# analyse_c_operation
# Called when neither operand is a pyobject.
# - Check operand types and coerce if needed.
# - Determine result type and result code fragment.
# - Allocate temporary for result if needed.
subexprs = ['operand1', 'operand2']
def compile_time_value(self, denv):
func = get_compile_time_binop(self)
operand1 = self.operand1.compile_time_value(denv)
operand2 = self.operand2.compile_time_value(denv)
try:
return func(operand1, operand2)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
self.operand1.analyse_types(env)
self.operand2.analyse_types(env)
if self.is_py_operation():
self.coerce_operands_to_pyobjects(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
if Options.incref_local_binop and self.operand1.type.is_pyobject:
self.operand1 = self.operand1.coerce_to_temp(env)
else:
self.analyse_c_operation(env)
def is_py_operation(self):
return (self.operand1.type.is_pyobject
or self.operand2.type.is_pyobject)
def coerce_operands_to_pyobjects(self, env):
self.operand1 = self.operand1.coerce_to_pyobject(env)
self.operand2 = self.operand2.coerce_to_pyobject(env)
def check_const(self):
self.operand1.check_const()
self.operand2.check_const()
def generate_result_code(self, code):
#print "BinopNode.generate_result_code:", self.operand1, self.operand2 ###
if self.operand1.type.is_pyobject:
function = self.py_operation_function()
if function == "PyNumber_Power":
extra_args = ", Py_None"
else:
extra_args = ""
code.putln(
"%s = %s(%s, %s%s); %s" % (
self.result(),
function,
self.operand1.py_result(),
self.operand2.py_result(),
extra_args,
code.error_goto_if_null(self.result(), self.pos)))
else:
if self.is_temp:
self.generate_c_operation_code(code)
def type_error(self):
if not (self.operand1.type.is_error
or self.operand2.type.is_error):
error(self.pos, "Invalid operand types for '%s' (%s; %s)" %
(self.operator, self.operand1.type,
self.operand2.type))
self.type = PyrexTypes.error_type
class NumBinopNode(BinopNode):
# Binary operation taking numeric arguments.
def analyse_c_operation(self, env):
type1 = self.operand1.type
type2 = self.operand2.type
if self.operator == "**" and type1.is_int and type2.is_int:
error(self.pos, "** with two C int types is ambiguous")
self.type = error_type
return
self.type = self.compute_c_result_type(type1, type2)
if not self.type:
self.type_error()
def compute_c_result_type(self, type1, type2):
if self.c_types_okay(type1, type2):
return PyrexTypes.widest_numeric_type(type1, type2)
else:
return None
def c_types_okay(self, type1, type2):
#print "NumBinopNode.c_types_okay:", type1, type2 ###
return (type1.is_numeric or type1.is_enum) \
and (type2.is_numeric or type2.is_enum)
def calculate_result_code(self):
return "(%s %s %s)" % (
self.operand1.result(),
self.operator,
self.operand2.result())
def py_operation_function(self):
return self.py_functions[self.operator]
py_functions = {
"|": "PyNumber_Or",
"^": "PyNumber_Xor",
"&": "PyNumber_And",
"<<": "PyNumber_Lshift",
">>": "PyNumber_Rshift",
"+": "PyNumber_Add",
"-": "PyNumber_Subtract",
"*": "PyNumber_Multiply",
"/": "__Pyx_PyNumber_Divide",
"//": "PyNumber_FloorDivide",
"%": "PyNumber_Remainder",
"**": "PyNumber_Power"
}
class IntBinopNode(NumBinopNode):
# Binary operation taking integer arguments.
def c_types_okay(self, type1, type2):
#print "IntBinopNode.c_types_okay:", type1, type2 ###
return (type1.is_int or type1.is_enum) \
and (type2.is_int or type2.is_enum)
class AddNode(NumBinopNode):
# '+' operator.
def is_py_operation(self):
if self.operand1.type.is_string \
and self.operand2.type.is_string:
return 1
else:
return NumBinopNode.is_py_operation(self)
def compute_c_result_type(self, type1, type2):
#print "AddNode.compute_c_result_type:", type1, self.operator, type2 ###
if (type1.is_ptr or type1.is_array) and (type2.is_int or type2.is_enum):
return type1
elif (type2.is_ptr or type2.is_array) and (type1.is_int or type1.is_enum):
return type2
else:
return NumBinopNode.compute_c_result_type(
self, type1, type2)
class SubNode(NumBinopNode):
# '-' operator.
def compute_c_result_type(self, type1, type2):
if (type1.is_ptr or type1.is_array) and (type2.is_int or type2.is_enum):
return type1
elif (type1.is_ptr or type1.is_array) and (type2.is_ptr or type2.is_array):
return PyrexTypes.c_int_type
else:
return NumBinopNode.compute_c_result_type(
self, type1, type2)
class MulNode(NumBinopNode):
# '*' operator.
def is_py_operation(self):
type1 = self.operand1.type
type2 = self.operand2.type
if (type1.is_string and type2.is_int) \
or (type2.is_string and type1.is_int):
return 1
else:
return NumBinopNode.is_py_operation(self)
class FloorDivNode(NumBinopNode):
# '//' operator.
def calculate_result_code(self):
return "(%s %s %s)" % (
self.operand1.result(),
"/", # c division is by default floor-div
self.operand2.result())
class ModNode(NumBinopNode):
# '%' operator.
def is_py_operation(self):
return (self.operand1.type.is_string
or self.operand2.type.is_string
or NumBinopNode.is_py_operation(self))
def calculate_result_code(self):
if self.operand1.type.is_float or self.operand2.type.is_float:
return "fmod(%s, %s)" % (
self.operand1.result(),
self.operand2.result())
else:
return "(%s %% %s)" % (
self.operand1.result(),
self.operand2.result())
class PowNode(NumBinopNode):
# '**' operator.
def compute_c_result_type(self, type1, type2):
if self.c_types_okay(type1, type2):
return PyrexTypes.c_double_type
else:
return None
def c_types_okay(self, type1, type2):
return (type1.is_float or type2.is_float) and \
NumBinopNode.c_types_okay(self, type1, type2)
def type_error(self):
if not (self.operand1.type.is_error or self.operand2.type.is_error):
if self.operand1.type.is_int and self.operand2.type.is_int:
error(self.pos, "C has no integer powering, use python ints or floats instead '%s' (%s; %s)" %
(self.operator, self.operand1.type, self.operand2.type))
else:
NumBinopNode.type_error(self)
self.type = PyrexTypes.error_type
def calculate_result_code(self):
return "pow(%s, %s)" % (
self.operand1.result(), self.operand2.result())
class BoolBinopNode(ExprNode):
# Short-circuiting boolean operation.
#
# operator string
# operand1 ExprNode
# operand2 ExprNode
# temp_bool ExprNode used internally
temp_bool = None
subexprs = ['operand1', 'operand2', 'temp_bool']
def compile_time_value(self, denv):
if self.operator == 'and':
return self.operand1.compile_time_value(denv) \
and self.operand2.compile_time_value(denv)
else:
return self.operand1.compile_time_value(denv) \
or self.operand2.compile_time_value(denv)
def coerce_to_boolean(self, env):
self.operand1 = self.operand1.coerce_to_boolean(env)
self.operand2 = self.operand2.coerce_to_boolean(env)
self.type = PyrexTypes.c_bint_type
return self
def analyse_types(self, env):
self.operand1.analyse_types(env)
self.operand2.analyse_types(env)
if self.operand1.type.is_pyobject or \
self.operand2.type.is_pyobject:
self.operand1 = self.operand1.coerce_to_pyobject(env)
self.operand2 = self.operand2.coerce_to_pyobject(env)
self.temp_bool = TempNode(self.pos, PyrexTypes.c_bint_type, env)
self.type = py_object_type
self.gil_check(env)
else:
self.operand1 = self.operand1.coerce_to_boolean(env)
self.operand2 = self.operand2.coerce_to_boolean(env)
self.type = PyrexTypes.c_bint_type
# For what we're about to do, it's vital that
# both operands be temp nodes.
self.operand1 = self.operand1.coerce_to_temp(env) #CTT
self.operand2 = self.operand2.coerce_to_temp(env)
self.is_temp = 1
gil_message = "Truth-testing Python object"
def allocate_temps(self, env, result_code = None):
# We don't need both operands at the same time, and
# one of the operands will also be our result. So we
# use an allocation strategy here which results in
# this node and both its operands sharing the same
# result variable. This allows us to avoid some
# assignments and increfs/decrefs that would otherwise
# be necessary.
self.allocate_temp(env, result_code)
self.operand1.allocate_temps(env, self.result())
if self.temp_bool:
self.temp_bool.allocate_temp(env)
self.temp_bool.release_temp(env)
self.operand2.allocate_temps(env, self.result())
# We haven't called release_temp on either operand,
# because although they are temp nodes, they don't own
# their result variable. And because they are temp
# nodes, any temps in their subnodes will have been
# released before their allocate_temps returned.
# Therefore, they contain no temp vars that need to
# be released.
def check_const(self):
self.operand1.check_const()
self.operand2.check_const()
def calculate_result_code(self):
return "(%s %s %s)" % (
self.operand1.result(),
self.py_to_c_op[self.operator],
self.operand2.result())
py_to_c_op = {'and': "&&", 'or': "||"}
def generate_evaluation_code(self, code):
self.operand1.generate_evaluation_code(code)
test_result = self.generate_operand1_test(code)
if self.operator == 'and':
sense = ""
else:
sense = "!"
code.putln(
"if (%s%s) {" % (
sense,
test_result))
self.operand1.generate_disposal_code(code)
self.operand2.generate_evaluation_code(code)
code.putln(
"}")
def generate_operand1_test(self, code):
# Generate code to test the truth of the first operand.
if self.type.is_pyobject:
test_result = self.temp_bool.result()
code.putln(
"%s = __Pyx_PyObject_IsTrue(%s); %s" % (
test_result,
self.operand1.py_result(),
code.error_goto_if_neg(test_result, self.pos)))
else:
test_result = self.operand1.result()
return test_result
class CondExprNode(ExprNode):
# Short-circuiting conditional expression.
#
# test ExprNode
# true_val ExprNode
# false_val ExprNode
temp_bool = None
true_val = None
false_val = None
subexprs = ['test', 'true_val', 'false_val']
def analyse_types(self, env):
self.test.analyse_types(env)
self.test = self.test.coerce_to_boolean(env)
self.true_val.analyse_types(env)
self.false_val.analyse_types(env)
self.type = self.compute_result_type(self.true_val.type, self.false_val.type)
if self.true_val.type.is_pyobject or self.false_val.type.is_pyobject:
self.true_val = self.true_val.coerce_to(self.type, env)
self.false_val = self.false_val.coerce_to(self.type, env)
# must be tmp variables so they can share a result
self.true_val = self.true_val.coerce_to_temp(env)
self.false_val = self.false_val.coerce_to_temp(env)
self.is_temp = 1
if self.type == PyrexTypes.error_type:
self.type_error()
def allocate_temps(self, env, result_code = None):
# We only ever evaluate one side, and this is
# after evaluating the truth value, so we may
# use an allocation strategy here which results in
# this node and both its operands sharing the same
# result variable. This allows us to avoid some
# assignments and increfs/decrefs that would otherwise
# be necessary.
self.allocate_temp(env, result_code)
self.test.allocate_temps(env, result_code)
self.true_val.allocate_temps(env, self.result())
self.false_val.allocate_temps(env, self.result())
# We haven't called release_temp on either value,
# because although they are temp nodes, they don't own
# their result variable. And because they are temp
# nodes, any temps in their subnodes will have been
# released before their allocate_temps returned.
# Therefore, they contain no temp vars that need to
# be released.
def compute_result_type(self, type1, type2):
if type1 == type2:
return type1
elif type1.is_numeric and type2.is_numeric:
return PyrexTypes.widest_numeric_type(type1, type2)
elif type1.is_extension_type and type1.subtype_of_resolved_type(type2):
return type2
elif type2.is_extension_type and type2.subtype_of_resolved_type(type1):
return type1
elif type1.is_pyobject or type2.is_pyobject:
return py_object_type
elif type1.assignable_from(type2):
return type1
elif type2.assignable_from(type1):
return type2
else:
return PyrexTypes.error_type
def type_error(self):
if not (self.true_val.type.is_error or self.false_val.type.is_error):
error(self.pos, "Incompatable types in conditional expression (%s; %s)" %
(self.true_val.type, self.false_val.type))
self.type = PyrexTypes.error_type
def check_const(self):
self.test.check_const()
self.true_val.check_const()
self.false_val.check_const()
def generate_evaluation_code(self, code):
self.test.generate_evaluation_code(code)
code.putln("if (%s) {" % self.test.result() )
self.true_val.generate_evaluation_code(code)
code.putln("} else {")
self.false_val.generate_evaluation_code(code)
code.putln("}")
self.test.generate_disposal_code(code)
richcmp_constants = {
"<" : "Py_LT",
"<=": "Py_LE",
"==": "Py_EQ",
"!=": "Py_NE",
"<>": "Py_NE",
">" : "Py_GT",
">=": "Py_GE",
}
class CmpNode:
# Mixin class containing code common to PrimaryCmpNodes
# and CascadedCmpNodes.
def cascaded_compile_time_value(self, operand1, denv):
func = get_compile_time_binop(self)
operand2 = self.operand2.compile_time_value(denv)
try:
result = func(operand1, operand2)
except Exception, e:
self.compile_time_value_error(e)
result = None
if result:
cascade = self.cascade
if cascade:
result = result and cascade.compile_time_value(operand2, denv)
return result
def is_python_comparison(self):
return (self.has_python_operands()
or (self.cascade and self.cascade.is_python_comparison())
or self.operator in ('in', 'not_in'))
def is_python_result(self):
return ((self.has_python_operands() and self.operator not in ('is', 'is_not', 'in', 'not_in'))
or (self.cascade and self.cascade.is_python_result()))
def check_types(self, env, operand1, op, operand2):
if not self.types_okay(operand1, op, operand2):
error(self.pos, "Invalid types for '%s' (%s, %s)" %
(self.operator, operand1.type, operand2.type))
def types_okay(self, operand1, op, operand2):
type1 = operand1.type
type2 = operand2.type
if type1.is_error or type2.is_error:
return 1
if type1.is_pyobject: # type2 will be, too
return 1
elif type1.is_ptr or type1.is_array:
return type1.is_null_ptr or type2.is_null_ptr \
or ((type2.is_ptr or type2.is_array)
and type1.base_type.same_as(type2.base_type))
elif ((type1.is_numeric and type2.is_numeric
or type1.is_enum and (type1 is type2 or type2.is_int)
or type1.is_int and type2.is_enum)
and op not in ('is', 'is_not')):
return 1
else:
return type1.is_cfunction and type1.is_cfunction and type1 == type2
def generate_operation_code(self, code, result_code,
operand1, op , operand2):
if self.type is PyrexTypes.py_object_type:
coerce_result = "__Pyx_PyBool_FromLong"
else:
coerce_result = ""
if 'not' in op: negation = "!"
else: negation = ""
if op == 'in' or op == 'not_in':
code.putln(
"%s = %s(%sPySequence_Contains(%s, %s)); %s" % (
result_code,
coerce_result,
negation,
operand2.py_result(),
operand1.py_result(),
code.error_goto_if_neg(result_code, self.pos)))
elif (operand1.type.is_pyobject
and op not in ('is', 'is_not')):
code.putln("%s = PyObject_RichCompare(%s, %s, %s); %s" % (
result_code,
operand1.py_result(),
operand2.py_result(),
richcmp_constants[op],
code.error_goto_if_null(result_code, self.pos)))
else:
type1 = operand1.type
type2 = operand2.type
if (type1.is_extension_type or type2.is_extension_type) \
and not type1.same_as(type2):
common_type = py_object_type
elif type1.is_numeric:
common_type = PyrexTypes.widest_numeric_type(type1, type2)
else:
common_type = type1
code1 = operand1.result_as(common_type)
code2 = operand2.result_as(common_type)
code.putln("%s = %s(%s %s %s);" % (
result_code,
coerce_result,
code1,
self.c_operator(op),
code2))
def c_operator(self, op):
if op == 'is':
return "=="
elif op == 'is_not':
return "!="
else:
return op
class PrimaryCmpNode(ExprNode, CmpNode):
# Non-cascaded comparison or first comparison of
# a cascaded sequence.
#
# operator string
# operand1 ExprNode
# operand2 ExprNode
# cascade CascadedCmpNode
# We don't use the subexprs mechanism, because
# things here are too complicated for it to handle.
# Instead, we override all the framework methods
# which use it.
child_attrs = ['operand1', 'operand2', 'cascade']
cascade = None
def compile_time_value(self, denv):
operand1 = self.operand1.compile_time_value(denv)
return self.cascaded_compile_time_value(operand1, denv)
def analyse_types(self, env):
self.operand1.analyse_types(env)
self.operand2.analyse_types(env)
if self.cascade:
self.cascade.analyse_types(env, self.operand2)
self.is_pycmp = self.is_python_comparison()
if self.is_pycmp:
self.coerce_operands_to_pyobjects(env)
if self.has_int_operands():
self.coerce_chars_to_ints(env)
if self.cascade:
self.operand2 = self.operand2.coerce_to_simple(env)
self.cascade.coerce_cascaded_operands_to_temp(env)
self.check_operand_types(env)
if self.is_python_result():
self.type = PyrexTypes.py_object_type
else:
self.type = PyrexTypes.c_bint_type
cdr = self.cascade
while cdr:
cdr.type = self.type
cdr = cdr.cascade
if self.is_pycmp or self.cascade:
self.is_temp = 1
def check_operand_types(self, env):
self.check_types(env,
self.operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.check_operand_types(env, self.operand2)
def has_python_operands(self):
return (self.operand1.type.is_pyobject
or self.operand2.type.is_pyobject)
def coerce_operands_to_pyobjects(self, env):
self.operand1 = self.operand1.coerce_to_pyobject(env)
self.operand2 = self.operand2.coerce_to_pyobject(env)
if self.cascade:
self.cascade.coerce_operands_to_pyobjects(env)
def has_int_operands(self):
return (self.operand1.type.is_int or self.operand2.type.is_int) \
or (self.cascade and self.cascade.has_int_operands())
def coerce_chars_to_ints(self, env):
# coerce literal single-char strings to c chars
if self.operand1.type.is_string and isinstance(self.operand1, StringNode):
self.operand1 = self.operand1.coerce_to(PyrexTypes.c_uchar_type, env)
if self.operand2.type.is_string and isinstance(self.operand2, StringNode):
self.operand2 = self.operand2.coerce_to(PyrexTypes.c_uchar_type, env)
if self.cascade:
self.cascade.coerce_chars_to_ints(env)
def allocate_subexpr_temps(self, env):
self.operand1.allocate_temps(env)
self.operand2.allocate_temps(env)
if self.cascade:
self.cascade.allocate_subexpr_temps(env)
def release_subexpr_temps(self, env):
self.operand1.release_temp(env)
self.operand2.release_temp(env)
if self.cascade:
self.cascade.release_subexpr_temps(env)
def check_const(self):
self.operand1.check_const()
self.operand2.check_const()
if self.cascade:
self.not_const()
def calculate_result_code(self):
return "(%s %s %s)" % (
self.operand1.result(),
self.c_operator(self.operator),
self.operand2.result())
def generate_evaluation_code(self, code):
self.operand1.generate_evaluation_code(code)
self.operand2.generate_evaluation_code(code)
if self.is_temp:
self.generate_operation_code(code, self.result(),
self.operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.generate_evaluation_code(code,
self.result(), self.operand2)
self.operand1.generate_disposal_code(code)
self.operand2.generate_disposal_code(code)
def generate_subexpr_disposal_code(self, code):
# If this is called, it is a non-cascaded cmp,
# so only need to dispose of the two main operands.
self.operand1.generate_disposal_code(code)
self.operand2.generate_disposal_code(code)
def annotate(self, code):
self.operand1.annotate(code)
self.operand2.annotate(code)
if self.cascade:
self.cascade.annotate(code)
class CascadedCmpNode(Node, CmpNode):
# A CascadedCmpNode is not a complete expression node. It
# hangs off the side of another comparison node, shares
# its left operand with that node, and shares its result
# with the PrimaryCmpNode at the head of the chain.
#
# operator string
# operand2 ExprNode
# cascade CascadedCmpNode
child_attrs = ['operand2', 'cascade']
cascade = None
def analyse_types(self, env, operand1):
self.operand2.analyse_types(env)
if self.cascade:
self.cascade.analyse_types(env, self.operand2)
def check_operand_types(self, env, operand1):
self.check_types(env,
operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.check_operand_types(env, self.operand2)
def has_python_operands(self):
return self.operand2.type.is_pyobject
def coerce_operands_to_pyobjects(self, env):
self.operand2 = self.operand2.coerce_to_pyobject(env)
if self.cascade:
self.cascade.coerce_operands_to_pyobjects(env)
def has_int_operands(self):
return self.operand2.type.is_int
def coerce_chars_to_ints(self, env):
if self.operand2.type.is_string and isinstance(self.operand2, StringNode):
self.operand2 = self.operand2.coerce_to(PyrexTypes.c_uchar_type, env)
def coerce_cascaded_operands_to_temp(self, env):
if self.cascade:
#self.operand2 = self.operand2.coerce_to_temp(env) #CTT
self.operand2 = self.operand2.coerce_to_simple(env)
self.cascade.coerce_cascaded_operands_to_temp(env)
def allocate_subexpr_temps(self, env):
self.operand2.allocate_temps(env)
if self.cascade:
self.cascade.allocate_subexpr_temps(env)
def release_subexpr_temps(self, env):
self.operand2.release_temp(env)
if self.cascade:
self.cascade.release_subexpr_temps(env)
def generate_evaluation_code(self, code, result, operand1):
if self.type.is_pyobject:
code.putln("if (__Pyx_PyObject_IsTrue(%s)) {" % result)
else:
code.putln("if (%s) {" % result)
self.operand2.generate_evaluation_code(code)
self.generate_operation_code(code, result,
operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.generate_evaluation_code(
code, result, self.operand2)
# Cascaded cmp result is always temp
self.operand2.generate_disposal_code(code)
code.putln("}")
def annotate(self, code):
self.operand2.annotate(code)
if self.cascade:
self.cascade.annotate(code)
binop_node_classes = {
"or": BoolBinopNode,
"and": BoolBinopNode,
"|": IntBinopNode,
"^": IntBinopNode,
"&": IntBinopNode,
"<<": IntBinopNode,
">>": IntBinopNode,
"+": AddNode,
"-": SubNode,
"*": MulNode,
"/": NumBinopNode,
"//": FloorDivNode,
"%": ModNode,
"**": PowNode
}
def binop_node(pos, operator, operand1, operand2):
# Construct binop node of appropriate class for
# given operator.
return binop_node_classes[operator](pos,
operator = operator,
operand1 = operand1,
operand2 = operand2)
#-------------------------------------------------------------------
#
# Coercion nodes
#
# Coercion nodes are special in that they are created during
# the analyse_types phase of parse tree processing.
# Their __init__ methods consequently incorporate some aspects
# of that phase.
#
#-------------------------------------------------------------------
class CoercionNode(ExprNode):
# Abstract base class for coercion nodes.
#
# arg ExprNode node being coerced
subexprs = ['arg']
def __init__(self, arg):
self.pos = arg.pos
self.arg = arg
if debug_coercion:
print("%s Coercing %s" % (self, self.arg))
def annotate(self, code):
self.arg.annotate(code)
if self.arg.type != self.type:
file, line, col = self.pos
code.annotate((file, line, col-1), AnnotationItem(style='coerce', tag='coerce', text='[%s] to [%s]' % (self.arg.type, self.type)))
class CastNode(CoercionNode):
# Wrap a node in a C type cast.
def __init__(self, arg, new_type):
CoercionNode.__init__(self, arg)
self.type = new_type
def calculate_result_code(self):
return self.arg.result_as(self.type)
def generate_result_code(self, code):
self.arg.generate_result_code(code)
class PyTypeTestNode(CoercionNode):
# This node is used to check that a generic Python
# object is an instance of a particular extension type.
# This node borrows the result of its argument node.
def __init__(self, arg, dst_type, env):
# The arg is know to be a Python object, and
# the dst_type is known to be an extension type.
assert dst_type.is_extension_type or dst_type.is_builtin_type, "PyTypeTest on non extension type"
CoercionNode.__init__(self, arg)
self.type = dst_type
self.gil_check(env)
self.result_ctype = arg.ctype()
if not dst_type.is_builtin_type:
env.use_utility_code(type_test_utility_code)
gil_message = "Python type test"
def analyse_types(self, env):
pass
def result_in_temp(self):
return self.arg.result_in_temp()
def is_ephemeral(self):
return self.arg.is_ephemeral()
def calculate_result_code(self):
return self.arg.result()
def generate_result_code(self, code):
if self.type.typeobj_is_available():
code.putln(
"if (!(%s)) %s" % (
self.type.type_test_code(self.arg.py_result()),
code.error_goto(self.pos)))
else:
error(self.pos, "Cannot test type of extern C class "
"without type object name specification")
def generate_post_assignment_code(self, code):
self.arg.generate_post_assignment_code(code)
class CoerceToPyTypeNode(CoercionNode):
# This node is used to convert a C data type
# to a Python object.
def __init__(self, arg, env):
CoercionNode.__init__(self, arg)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
if not arg.type.to_py_function or not arg.type.create_convert_utility_code(env):
error(arg.pos,
"Cannot convert '%s' to Python object" % arg.type)
gil_message = "Converting to Python object"
def coerce_to_boolean(self, env):
return self.arg.coerce_to_boolean(env).coerce_to_temp(env)
def analyse_types(self, env):
# The arg is always already analysed
pass
def generate_result_code(self, code):
function = self.arg.type.to_py_function
code.putln('%s = %s(%s); %s' % (
self.result(),
function,
self.arg.result(),
code.error_goto_if_null(self.result(), self.pos)))
class CoerceFromPyTypeNode(CoercionNode):
# This node is used to convert a Python object
# to a C data type.
def __init__(self, result_type, arg, env):
CoercionNode.__init__(self, arg)
self.type = result_type
self.is_temp = 1
if not result_type.from_py_function:
error(arg.pos,
"Cannot convert Python object to '%s'" % result_type)
if self.type.is_string and self.arg.is_ephemeral():
error(arg.pos,
"Obtaining char * from temporary Python value")
def analyse_types(self, env):
# The arg is always already analysed
pass
def generate_result_code(self, code):
function = self.type.from_py_function
operand = self.arg.py_result()
rhs = "%s(%s)" % (function, operand)
if self.type.is_enum:
rhs = typecast(self.type, c_long_type, rhs)
code.putln('%s = %s; %s' % (
self.result(),
rhs,
code.error_goto_if(self.type.error_condition(self.result()), self.pos)))
class CoerceToBooleanNode(CoercionNode):
# This node is used when a result needs to be used
# in a boolean context.
def __init__(self, arg, env):
CoercionNode.__init__(self, arg)
self.type = PyrexTypes.c_bint_type
if arg.type.is_pyobject:
if env.nogil:
self.gil_error()
self.is_temp = 1
gil_message = "Truth-testing Python object"
def check_const(self):
if self.is_temp:
self.not_const()
self.arg.check_const()
def calculate_result_code(self):
return "(%s != 0)" % self.arg.result()
def generate_result_code(self, code):
if self.arg.type.is_pyobject:
code.putln(
"%s = __Pyx_PyObject_IsTrue(%s); %s" % (
self.result(),
self.arg.py_result(),
code.error_goto_if_neg(self.result(), self.pos)))
class CoerceToTempNode(CoercionNode):
# This node is used to force the result of another node
# to be stored in a temporary. It is only used if the
# argument node's result is not already in a temporary.
def __init__(self, arg, env):
CoercionNode.__init__(self, arg)
self.type = self.arg.type
self.is_temp = 1
if self.type.is_pyobject:
self.gil_check(env)
self.result_ctype = py_object_type
gil_message = "Creating temporary Python reference"
def analyse_types(self, env):
# The arg is always already analysed
pass
def coerce_to_boolean(self, env):
self.arg = self.arg.coerce_to_boolean(env)
self.type = self.arg.type
self.result_ctype = self.type
return self
def generate_result_code(self, code):
#self.arg.generate_evaluation_code(code) # Already done
# by generic generate_subexpr_evaluation_code!
code.putln("%s = %s;" % (
self.result(), self.arg.result_as(self.ctype())))
if self.type.is_pyobject:
code.put_incref(self.result(), self.ctype())
class CloneNode(CoercionNode):
# This node is employed when the result of another node needs
# to be used multiple times. The argument node's result must
# be in a temporary. This node "borrows" the result from the
# argument node, and does not generate any evaluation or
# disposal code for it. The original owner of the argument
# node is responsible for doing those things.
subexprs = [] # Arg is not considered a subexpr
def __init__(self, arg):
CoercionNode.__init__(self, arg)
if hasattr(arg, 'type'):
self.type = arg.type
self.result_ctype = arg.result_ctype
if hasattr(arg, 'entry'):
self.entry = arg.entry
def result(self):
return self.arg.result()
def analyse_types(self, env):
self.type = self.arg.type
self.result_ctype = self.arg.result_ctype
self.is_temp = 1
if hasattr(self.arg, 'entry'):
self.entry = self.arg.entry
def generate_evaluation_code(self, code):
pass
def generate_result_code(self, code):
pass
def generate_disposal_code(self, code):
pass
def allocate_temps(self, env):
pass
def release_temp(self, env):
pass
class PersistentNode(ExprNode):
# A PersistentNode is like a CloneNode except it handles the temporary
# allocation itself by keeping track of the number of times it has been
# used.
subexprs = ["arg"]
temp_counter = 0
generate_counter = 0
analyse_counter = 0
result_code = None
def __init__(self, arg, uses):
self.pos = arg.pos
self.arg = arg
self.uses = uses
def analyse_types(self, env):
if self.analyse_counter == 0:
self.arg.analyse_types(env)
self.type = self.arg.type
self.result_ctype = self.arg.result_ctype
self.is_temp = 1
self.analyse_counter += 1
def calculate_result_code(self):
return self.result()
def generate_evaluation_code(self, code):
if self.generate_counter == 0:
self.arg.generate_evaluation_code(code)
code.putln("%s = %s;" % (
self.result(), self.arg.result_as(self.ctype())))
if self.type.is_pyobject:
code.put_incref(self.result(), self.ctype())
self.arg.generate_disposal_code(code)
self.generate_counter += 1
def generate_disposal_code(self, code):
if self.generate_counter == self.uses:
if self.type.is_pyobject:
code.put_decref_clear(self.result(), self.ctype())
def allocate_temps(self, env, result=None):
if self.temp_counter == 0:
self.arg.allocate_temps(env)
self.allocate_temp(env, result)
self.arg.release_temp(env)
self.temp_counter += 1
def allocate_temp(self, env, result=None):
if result is None:
self.result_code = env.allocate_temp(self.type)
else:
self.result_code = result
def release_temp(self, env):
if self.temp_counter == self.uses:
env.release_temp(self.result())
#------------------------------------------------------------------------------------
#
# Runtime support code
#
#------------------------------------------------------------------------------------
get_name_interned_utility_code = UtilityCode(
proto = """
static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name); /*proto*/
""",
impl = """
static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name) {
PyObject *result;
result = PyObject_GetAttr(dict, name);
if (!result)
PyErr_SetObject(PyExc_NameError, name);
return result;
}
""")
#------------------------------------------------------------------------------------
import_utility_code = UtilityCode(
proto = """
static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list); /*proto*/
""",
impl = """
static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list) {
PyObject *__import__ = 0;
PyObject *empty_list = 0;
PyObject *module = 0;
PyObject *global_dict = 0;
PyObject *empty_dict = 0;
PyObject *list;
__import__ = PyObject_GetAttrString(%(BUILTINS)s, "__import__");
if (!__import__)
goto bad;
if (from_list)
list = from_list;
else {
empty_list = PyList_New(0);
if (!empty_list)
goto bad;
list = empty_list;
}
global_dict = PyModule_GetDict(%(GLOBALS)s);
if (!global_dict)
goto bad;
empty_dict = PyDict_New();
if (!empty_dict)
goto bad;
module = PyObject_CallFunction(__import__, "OOOO",
name, global_dict, empty_dict, list);
bad:
Py_XDECREF(empty_list);
Py_XDECREF(__import__);
Py_XDECREF(empty_dict);
return module;
}
""" % {
"BUILTINS": Naming.builtins_cname,
"GLOBALS": Naming.module_cname,
})
#------------------------------------------------------------------------------------
get_exception_utility_code = UtilityCode(
proto = """
static PyObject *__Pyx_GetExcValue(void); /*proto*/
""",
impl = """
static PyObject *__Pyx_GetExcValue(void) {
PyObject *type = 0, *value = 0, *tb = 0;
PyObject *tmp_type, *tmp_value, *tmp_tb;
PyObject *result = 0;
PyThreadState *tstate = PyThreadState_Get();
PyErr_Fetch(&type, &value, &tb);
PyErr_NormalizeException(&type, &value, &tb);
if (PyErr_Occurred())
goto bad;
if (!value) {
value = Py_None;
Py_INCREF(value);
}
tmp_type = tstate->exc_type;
tmp_value = tstate->exc_value;
tmp_tb = tstate->exc_traceback;
tstate->exc_type = type;
tstate->exc_value = value;
tstate->exc_traceback = tb;
/* Make sure tstate is in a consistent state when we XDECREF
these objects (XDECREF may run arbitrary code). */
Py_XDECREF(tmp_type);
Py_XDECREF(tmp_value);
Py_XDECREF(tmp_tb);
result = value;
Py_XINCREF(result);
type = 0;
value = 0;
tb = 0;
bad:
Py_XDECREF(type);
Py_XDECREF(value);
Py_XDECREF(tb);
return result;
}
""")
#------------------------------------------------------------------------------------
unpacking_utility_code = UtilityCode(
proto = """
static PyObject *__Pyx_UnpackItem(PyObject *, Py_ssize_t index); /*proto*/
static int __Pyx_EndUnpack(PyObject *); /*proto*/
""",
impl = """
static PyObject *__Pyx_UnpackItem(PyObject *iter, Py_ssize_t index) {
PyObject *item;
if (!(item = PyIter_Next(iter))) {
if (!PyErr_Occurred()) {
PyErr_Format(PyExc_ValueError,
#if PY_VERSION_HEX < 0x02050000
"need more than %d values to unpack", (int)index);
#else
"need more than %zd values to unpack", index);
#endif
}
}
return item;
}
static int __Pyx_EndUnpack(PyObject *iter) {
PyObject *item;
if ((item = PyIter_Next(iter))) {
Py_DECREF(item);
PyErr_SetString(PyExc_ValueError, "too many values to unpack");
return -1;
}
else if (!PyErr_Occurred())
return 0;
else
return -1;
}
""")
#------------------------------------------------------------------------------------
type_test_utility_code = UtilityCode(
proto = """
static int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /*proto*/
""",
impl = """
static int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) {
if (!type) {
PyErr_Format(PyExc_SystemError, "Missing type object");
return 0;
}
if (obj == Py_None || PyObject_TypeCheck(obj, type))
return 1;
PyErr_Format(PyExc_TypeError, "Cannot convert %s to %s",
Py_TYPE(obj)->tp_name, type->tp_name);
return 0;
}
""")
#------------------------------------------------------------------------------------
create_class_utility_code = UtilityCode(
proto = """
static PyObject *__Pyx_CreateClass(PyObject *bases, PyObject *dict, PyObject *name, char *modname); /*proto*/
""",
impl = """
static PyObject *__Pyx_CreateClass(
PyObject *bases, PyObject *dict, PyObject *name, char *modname)
{
PyObject *py_modname;
PyObject *result = 0;
#if PY_MAJOR_VERSION < 3
py_modname = PyString_FromString(modname);
#else
py_modname = PyUnicode_FromString(modname);
#endif
if (!py_modname)
goto bad;
if (PyDict_SetItemString(dict, "__module__", py_modname) < 0)
goto bad;
#if PY_MAJOR_VERSION < 3
result = PyClass_New(bases, dict, name);
#else
result = PyObject_CallFunctionObjArgs((PyObject *)&PyType_Type, name, bases, dict, NULL);
#endif
bad:
Py_XDECREF(py_modname);
return result;
}
""")
#------------------------------------------------------------------------------------
cpp_exception_utility_code = UtilityCode(
proto = """
#ifndef __Pyx_CppExn2PyErr
static void __Pyx_CppExn2PyErr() {
try {
if (PyErr_Occurred())
; // let the latest Python exn pass through and ignore the current one
else
throw;
} catch (const std::out_of_range& exn) {
// catch out_of_range explicitly so the proper Python exn may be raised
PyErr_SetString(PyExc_IndexError, exn.what());
} catch (const std::exception& exn) {
PyErr_SetString(PyExc_RuntimeError, exn.what());
}
catch (...)
{
PyErr_SetString(PyExc_RuntimeError, "Unknown exception");
}
}
#endif
""",
impl = ""
)
#------------------------------------------------------------------------------------
append_utility_code = UtilityCode(
proto = """
static INLINE PyObject* __Pyx_PyObject_Append(PyObject* L, PyObject* x) {
if (likely(PyList_CheckExact(L))) {
if (PyList_Append(L, x) < 0) return NULL;
Py_INCREF(Py_None);
return Py_None; // this is just to have an accurate signature
}
else {
return PyObject_CallMethod(L, "append", "(O)", x);
}
}
""",
impl = ""
)
#------------------------------------------------------------------------------------
# If the is_unsigned flag is set, we need to do some extra work to make
# sure the index doesn't become negative.
getitem_int_utility_code = UtilityCode(
proto = """
static INLINE PyObject *__Pyx_GetItemInt(PyObject *o, Py_ssize_t i, int is_unsigned) {
PyObject *r;
if (PyList_CheckExact(o) && 0 <= i && i < PyList_GET_SIZE(o)) {
r = PyList_GET_ITEM(o, i);
Py_INCREF(r);
}
else if (PyTuple_CheckExact(o) && 0 <= i && i < PyTuple_GET_SIZE(o)) {
r = PyTuple_GET_ITEM(o, i);
Py_INCREF(r);
}
else if (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_item && (likely(i >= 0) || !is_unsigned))
r = PySequence_GetItem(o, i);
else {
PyObject *j = (likely(i >= 0) || !is_unsigned) ? PyInt_FromLong(i) : PyLong_FromUnsignedLongLong((sizeof(unsigned long long) > sizeof(Py_ssize_t) ? (1ULL << (sizeof(Py_ssize_t)*8)) : 0) + i);
if (!j)
return 0;
r = PyObject_GetItem(o, j);
Py_DECREF(j);
}
return r;
}
""",
impl = """
""")
#------------------------------------------------------------------------------------
setitem_int_utility_code = UtilityCode(
proto = """
static INLINE int __Pyx_SetItemInt(PyObject *o, Py_ssize_t i, PyObject *v, int is_unsigned) {
int r;
if (PyList_CheckExact(o) && 0 <= i && i < PyList_GET_SIZE(o)) {
Py_DECREF(PyList_GET_ITEM(o, i));
Py_INCREF(v);
PyList_SET_ITEM(o, i, v);
return 1;
}
else if (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_ass_item && (likely(i >= 0) || !is_unsigned))
r = PySequence_SetItem(o, i, v);
else {
PyObject *j = (likely(i >= 0) || !is_unsigned) ? PyInt_FromLong(i) : PyLong_FromUnsignedLongLong((sizeof(unsigned long long) > sizeof(Py_ssize_t) ? (1ULL << (sizeof(Py_ssize_t)*8)) : 0) + i);
if (!j)
return -1;
r = PyObject_SetItem(o, j, v);
Py_DECREF(j);
}
return r;
}
""",
impl = """
""")
#------------------------------------------------------------------------------------
delitem_int_utility_code = UtilityCode(
proto = """
static INLINE int __Pyx_DelItemInt(PyObject *o, Py_ssize_t i, int is_unsigned) {
int r;
if (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_ass_item && (likely(i >= 0) || !is_unsigned))
r = PySequence_DelItem(o, i);
else {
PyObject *j = (likely(i >= 0) || !is_unsigned) ? PyInt_FromLong(i) : PyLong_FromUnsignedLongLong((sizeof(unsigned long long) > sizeof(Py_ssize_t) ? (1ULL << (sizeof(Py_ssize_t)*8)) : 0) + i);
if (!j)
return -1;
r = PyObject_DelItem(o, j);
Py_DECREF(j);
}
return r;
}
""",
impl = """
""")
#------------------------------------------------------------------------------------
raise_noneattr_error_utility_code = UtilityCode(
proto = """
static INLINE void __Pyx_RaiseNoneAttributeError(char* attrname);
""",
impl = """
static INLINE void __Pyx_RaiseNoneAttributeError(char* attrname) {
PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", attrname);
}
""")
raise_noneindex_error_utility_code = UtilityCode(
proto = """
static INLINE void __Pyx_RaiseNoneIndexingError();
""",
impl = """
static INLINE void __Pyx_RaiseNoneIndexingError() {
PyErr_SetString(PyExc_TypeError, "'NoneType' object is unsubscriptable");
}
""")
|