summaryrefslogtreecommitdiff
path: root/Cython/Compiler/Nodes.py
blob: 6eb0e62fa01b8d8c5eae70986294517999d86f22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
#
#   Parse tree nodes
#

import cython
cython.declare(sys=object, os=object, time=object, copy=object,
               Builtin=object, error=object, warning=object, Naming=object, PyrexTypes=object,
               py_object_type=object, ModuleScope=object, LocalScope=object, ClosureScope=object, \
               StructOrUnionScope=object, PyClassScope=object, CClassScope=object,
               CppClassScope=object, UtilityCode=object, EncodedString=object,
               absolute_path_length=cython.Py_ssize_t)

import sys, os, time, copy

import Builtin
from Errors import error, warning, InternalError, CompileError
import Naming
import PyrexTypes
import TypeSlots
from PyrexTypes import py_object_type, error_type, CTypedefType, CFuncType, cython_memoryview_ptr_type
from Symtab import ModuleScope, LocalScope, ClosureScope, \
    StructOrUnionScope, PyClassScope, CClassScope, CppClassScope
from Cython.Utils import open_new_file, replace_suffix
from Code import UtilityCode, ClosureTempAllocator
from StringEncoding import EncodedString, escape_byte_string, split_string_literal
import Options
import DebugFlags
from itertools import chain

absolute_path_length = 0

def relative_position(pos):
    """
    We embed the relative filename in the generated C file, since we
    don't want to have to regnerate and compile all the source code
    whenever the Python install directory moves (which could happen,
    e.g,. when distributing binaries.)

    INPUT:
        a position tuple -- (absolute filename, line number column position)

    OUTPUT:
        relative filename
        line number

    AUTHOR: William Stein
    """
    global absolute_path_length
    if absolute_path_length==0:
        absolute_path_length = len(os.path.abspath(os.getcwd()))
    return (pos[0].get_filenametable_entry()[absolute_path_length+1:], pos[1])

def embed_position(pos, docstring):
    if not Options.embed_pos_in_docstring:
        return docstring
    pos_line = u'File: %s (starting at line %s)' % relative_position(pos)
    if docstring is None:
        # unicode string
        return EncodedString(pos_line)

    # make sure we can encode the filename in the docstring encoding
    # otherwise make the docstring a unicode string
    encoding = docstring.encoding
    if encoding is not None:
        try:
            encoded_bytes = pos_line.encode(encoding)
        except UnicodeEncodeError:
            encoding = None

    if not docstring:
        # reuse the string encoding of the original docstring
        doc = EncodedString(pos_line)
    else:
        doc = EncodedString(pos_line + u'\n' + docstring)
    doc.encoding = encoding
    return doc


from Code import CCodeWriter
from types import FunctionType

def write_func_call(func):
    def f(*args, **kwds):
        if len(args) > 1 and isinstance(args[1], CCodeWriter):
            # here we annotate the code with this function call
            # but only if new code is generated
            node, code = args[:2]
            marker = '                    /* %s -> %s.%s %s */' % (
                    ' ' * code.call_level,
                    node.__class__.__name__,
                    func.__name__,
                    node.pos[1:])
            pristine = code.buffer.stream.tell()
            code.putln(marker)
            start = code.buffer.stream.tell()
            code.call_level += 4
            res = func(*args, **kwds)
            code.call_level -= 4
            if start == code.buffer.stream.tell():
                code.buffer.stream.seek(pristine)
            else:
                marker = marker.replace('->', '<-')
                code.putln(marker)
            return res
        else:
            return func(*args, **kwds)
    return f

class VerboseCodeWriter(type):
    # Set this as a metaclass to trace function calls in code.
    # This slows down code generation and makes much larger files.
    def __new__(cls, name, bases, attrs):
        attrs = dict(attrs)
        for mname, m in attrs.items():
            if isinstance(m, FunctionType):
                attrs[mname] = write_func_call(m)
        return super(VerboseCodeWriter, cls).__new__(cls, name, bases, attrs)


class Node(object):
    #  pos         (string, int, int)   Source file position
    #  is_name     boolean              Is a NameNode
    #  is_literal  boolean              Is a ConstNode

    if DebugFlags.debug_trace_code_generation:
        __metaclass__ = VerboseCodeWriter

    is_name = 0
    is_literal = 0
    is_terminator = 0
    temps = None

    # All descandants should set child_attrs to a list of the attributes
    # containing nodes considered "children" in the tree. Each such attribute
    # can either contain a single node or a list of nodes. See Visitor.py.
    child_attrs = None

    cf_state = None


    def __init__(self, pos, **kw):
        self.pos = pos
        self.__dict__.update(kw)

    gil_message = "Operation"

    nogil_check = None

    def gil_error(self, env=None):
        error(self.pos, "%s not allowed without gil" % self.gil_message)

    cpp_message = "Operation"

    def cpp_check(self, env):
        if not env.is_cpp():
            self.cpp_error()

    def cpp_error(self):
        error(self.pos, "%s only allowed in c++" % self.cpp_message)

    def clone_node(self):
        """Clone the node. This is defined as a shallow copy, except for member lists
           amongst the child attributes (from get_child_accessors) which are also
           copied. Lists containing child nodes are thus seen as a way for the node
           to hold multiple children directly; the list is not treated as a seperate
           level in the tree."""
        result = copy.copy(self)
        for attrname in result.child_attrs:
            value = getattr(result, attrname)
            if isinstance(value, list):
                setattr(result, attrname, [x for x in value])
        return result


    #
    #  There are 3 phases of parse tree processing, applied in order to
    #  all the statements in a given scope-block:
    #
    #  (0) analyse_declarations
    #        Make symbol table entries for all declarations at the current
    #        level, both explicit (def, cdef, etc.) and implicit (assignment
    #        to an otherwise undeclared name).
    #
    #  (1) analyse_expressions
    #         Determine the result types of expressions and fill in the
    #         'type' attribute of each ExprNode. Insert coercion nodes into the
    #         tree where needed to convert to and from Python objects.
    #         Allocate temporary locals for intermediate results. Fill
    #         in the 'result_code' attribute of each ExprNode with a C code
    #         fragment.
    #
    #  (2) generate_code
    #         Emit C code for all declarations, statements and expressions.
    #         Recursively applies the 3 processing phases to the bodies of
    #         functions.
    #

    def analyse_declarations(self, env):
        pass

    def analyse_expressions(self, env):
        raise InternalError("analyse_expressions not implemented for %s" % \
            self.__class__.__name__)

    def generate_code(self, code):
        raise InternalError("generate_code not implemented for %s" % \
            self.__class__.__name__)

    def annotate(self, code):
        # mro does the wrong thing
        if isinstance(self, BlockNode):
            self.body.annotate(code)

    def end_pos(self):
        try:
            return self._end_pos
        except AttributeError:
            pos = self.pos
            if not self.child_attrs:
                self._end_pos = pos
                return pos
            for attr in self.child_attrs:
                child = getattr(self, attr)
                # Sometimes lists, sometimes nodes
                if child is None:
                    pass
                elif isinstance(child, list):
                    for c in child:
                        pos = max(pos, c.end_pos())
                else:
                    pos = max(pos, child.end_pos())
            self._end_pos = pos
            return pos

    def dump(self, level=0, filter_out=("pos",), cutoff=100, encountered=None):
        if cutoff == 0:
            return "<...nesting level cutoff...>"
        if encountered is None:
            encountered = set()
        if id(self) in encountered:
            return "<%s (0x%x) -- already output>" % (self.__class__.__name__, id(self))
        encountered.add(id(self))

        def dump_child(x, level):
            if isinstance(x, Node):
                return x.dump(level, filter_out, cutoff-1, encountered)
            elif isinstance(x, list):
                return "[%s]" % ", ".join([dump_child(item, level) for item in x])
            else:
                return repr(x)


        attrs = [(key, value) for key, value in self.__dict__.items() if key not in filter_out]
        if len(attrs) == 0:
            return "<%s (0x%x)>" % (self.__class__.__name__, id(self))
        else:
            indent = "  " * level
            res = "<%s (0x%x)\n" % (self.__class__.__name__, id(self))
            for key, value in attrs:
                res += "%s  %s: %s\n" % (indent, key, dump_child(value, level + 1))
            res += "%s>" % indent
            return res

class CompilerDirectivesNode(Node):
    """
    Sets compiler directives for the children nodes
    """
    #  directives     {string:value}  A dictionary holding the right value for
    #                                 *all* possible directives.
    #  body           Node
    child_attrs = ["body"]

    def analyse_declarations(self, env):
        old = env.directives
        env.directives = self.directives
        self.body.analyse_declarations(env)
        env.directives = old

    def analyse_expressions(self, env):
        old = env.directives
        env.directives = self.directives
        self.body.analyse_expressions(env)
        env.directives = old

    def generate_function_definitions(self, env, code):
        env_old = env.directives
        code_old = code.globalstate.directives
        code.globalstate.directives = self.directives
        self.body.generate_function_definitions(env, code)
        env.directives = env_old
        code.globalstate.directives = code_old

    def generate_execution_code(self, code):
        old = code.globalstate.directives
        code.globalstate.directives = self.directives
        self.body.generate_execution_code(code)
        code.globalstate.directives = old

    def annotate(self, code):
        old = code.globalstate.directives
        code.globalstate.directives = self.directives
        self.body.annotate(code)
        code.globalstate.directives = old

class BlockNode(object):
    #  Mixin class for nodes representing a declaration block.

    def generate_cached_builtins_decls(self, env, code):
        entries = env.global_scope().undeclared_cached_builtins
        for entry in entries:
            code.globalstate.add_cached_builtin_decl(entry)
        del entries[:]

    def generate_lambda_definitions(self, env, code):
        for node in env.lambda_defs:
            node.generate_function_definitions(env, code)

class StatListNode(Node):
    # stats     a list of StatNode

    child_attrs = ["stats"]

    def create_analysed(pos, env, *args, **kw):
        node = StatListNode(pos, *args, **kw)
        return node # No node-specific analysis necesarry
    create_analysed = staticmethod(create_analysed)

    def analyse_declarations(self, env):
        #print "StatListNode.analyse_declarations" ###
        for stat in self.stats:
            stat.analyse_declarations(env)

    def analyse_expressions(self, env):
        #print "StatListNode.analyse_expressions" ###
        for stat in self.stats:
            stat.analyse_expressions(env)

    def generate_function_definitions(self, env, code):
        #print "StatListNode.generate_function_definitions" ###
        for stat in self.stats:
            stat.generate_function_definitions(env, code)

    def generate_execution_code(self, code):
        #print "StatListNode.generate_execution_code" ###
        for stat in self.stats:
            code.mark_pos(stat.pos)
            stat.generate_execution_code(code)

    def annotate(self, code):
        for stat in self.stats:
            stat.annotate(code)


class StatNode(Node):
    #
    #  Code generation for statements is split into the following subphases:
    #
    #  (1) generate_function_definitions
    #        Emit C code for the definitions of any structs,
    #        unions, enums and functions defined in the current
    #        scope-block.
    #
    #  (2) generate_execution_code
    #        Emit C code for executable statements.
    #

    def generate_function_definitions(self, env, code):
        pass

    def generate_execution_code(self, code):
        raise InternalError("generate_execution_code not implemented for %s" % \
            self.__class__.__name__)


class CDefExternNode(StatNode):
    #  include_file   string or None
    #  body           StatNode

    child_attrs = ["body"]

    def analyse_declarations(self, env):
        if self.include_file:
            env.add_include_file(self.include_file)
        old_cinclude_flag = env.in_cinclude
        env.in_cinclude = 1
        self.body.analyse_declarations(env)
        env.in_cinclude = old_cinclude_flag

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        pass

    def annotate(self, code):
        self.body.annotate(code)


class CDeclaratorNode(Node):
    # Part of a C declaration.
    #
    # Processing during analyse_declarations phase:
    #
    #   analyse
    #      Returns (name, type) pair where name is the
    #      CNameDeclaratorNode of the name being declared
    #      and type is the type it is being declared as.
    #
    #  calling_convention  string   Calling convention of CFuncDeclaratorNode
    #                               for which this is a base

    child_attrs = []

    calling_convention = ""


class CNameDeclaratorNode(CDeclaratorNode):
    #  name    string             The Cython name being declared
    #  cname   string or None     C name, if specified
    #  default ExprNode or None   the value assigned on declaration

    child_attrs = ['default']

    default = None

    def analyse(self, base_type, env, nonempty = 0):
        if nonempty and self.name == '':
            # May have mistaken the name for the type.
            if base_type.is_ptr or base_type.is_array or base_type.is_buffer:
                error(self.pos, "Missing argument name")
            elif base_type.is_void:
                error(self.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
            else:
                self.name = base_type.declaration_code("", for_display=1, pyrex=1)
                base_type = py_object_type
        self.type = base_type
        return self, base_type

class CPtrDeclaratorNode(CDeclaratorNode):
    # base     CDeclaratorNode

    child_attrs = ["base"]

    def analyse(self, base_type, env, nonempty = 0):
        if base_type.is_pyobject:
            error(self.pos,
                "Pointer base type cannot be a Python object")
        ptr_type = PyrexTypes.c_ptr_type(base_type)
        return self.base.analyse(ptr_type, env, nonempty = nonempty)

class CReferenceDeclaratorNode(CDeclaratorNode):
    # base     CDeclaratorNode

    child_attrs = ["base"]

    def analyse(self, base_type, env, nonempty = 0):
        if base_type.is_pyobject:
            error(self.pos,
                  "Reference base type cannot be a Python object")
        ref_type = PyrexTypes.c_ref_type(base_type)
        return self.base.analyse(ref_type, env, nonempty = nonempty)

class CArrayDeclaratorNode(CDeclaratorNode):
    # base        CDeclaratorNode
    # dimension   ExprNode

    child_attrs = ["base", "dimension"]

    def analyse(self, base_type, env, nonempty = 0):
        if base_type.is_cpp_class:
            from ExprNodes import TupleNode
            if isinstance(self.dimension, TupleNode):
                args = self.dimension.args
            else:
                args = self.dimension,
            values = [v.analyse_as_type(env) for v in args]
            if None in values:
                ix = values.index(None)
                error(args[ix].pos, "Template parameter not a type.")
                return error_type
            base_type = base_type.specialize_here(self.pos, values)
            return self.base.analyse(base_type, env, nonempty = nonempty)
        if self.dimension:
            self.dimension.analyse_const_expression(env)
            if not self.dimension.type.is_int:
                error(self.dimension.pos, "Array dimension not integer")
            size = self.dimension.get_constant_c_result_code()
            if size is not None:
                try:
                    size = int(size)
                except ValueError:
                    # runtime constant?
                    pass
        else:
            size = None
        if not base_type.is_complete():
            error(self.pos,
                "Array element type '%s' is incomplete" % base_type)
        if base_type.is_pyobject:
            error(self.pos,
                "Array element cannot be a Python object")
        if base_type.is_cfunction:
            error(self.pos,
                "Array element cannot be a function")
        array_type = PyrexTypes.c_array_type(base_type, size)
        return self.base.analyse(array_type, env, nonempty = nonempty)


class CFuncDeclaratorNode(CDeclaratorNode):
    # base             CDeclaratorNode
    # args             [CArgDeclNode]
    # has_varargs      boolean
    # exception_value  ConstNode
    # exception_check  boolean    True if PyErr_Occurred check needed
    # nogil            boolean    Can be called without gil
    # with_gil         boolean    Acquire gil around function body

    child_attrs = ["base", "args", "exception_value"]

    overridable = 0
    optional_arg_count = 0

    def analyse(self, return_type, env, nonempty = 0, directive_locals = {}):
        if nonempty:
            nonempty -= 1
        func_type_args = []
        for i, arg_node in enumerate(self.args):
            name_declarator, type = arg_node.analyse(env, nonempty = nonempty,
                                                     is_self_arg = (i == 0 and env.is_c_class_scope))
            name = name_declarator.name
            if name in directive_locals:
                type_node = directive_locals[name]
                other_type = type_node.analyse_as_type(env)
                if other_type is None:
                    error(type_node.pos, "Not a type")
                elif (type is not PyrexTypes.py_object_type
                      and not type.same_as(other_type)):
                    error(self.base.pos, "Signature does not agree with previous declaration")
                    error(type_node.pos, "Previous declaration here")
                else:
                    type = other_type
            if name_declarator.cname:
                error(self.pos,
                    "Function argument cannot have C name specification")
            if i==0 and env.is_c_class_scope and type.is_unspecified:
                # fix the type of self
                type = env.parent_type
            # Turn *[] argument into **
            if type.is_array:
                type = PyrexTypes.c_ptr_type(type.base_type)
            # Catch attempted C-style func(void) decl
            if type.is_void:
                error(arg_node.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
            func_type_args.append(
                PyrexTypes.CFuncTypeArg(name, type, arg_node.pos))
            if arg_node.default:
                self.optional_arg_count += 1
            elif self.optional_arg_count:
                error(self.pos, "Non-default argument follows default argument")

        if self.optional_arg_count:
            scope = StructOrUnionScope()
            arg_count_member = '%sn' % Naming.pyrex_prefix
            scope.declare_var(arg_count_member, PyrexTypes.c_int_type, self.pos)
            for arg in func_type_args[len(func_type_args)-self.optional_arg_count:]:
                scope.declare_var(arg.name, arg.type, arg.pos, allow_pyobject = 1)
            struct_cname = env.mangle(Naming.opt_arg_prefix, self.base.name)
            self.op_args_struct = env.global_scope().declare_struct_or_union(name = struct_cname,
                                        kind = 'struct',
                                        scope = scope,
                                        typedef_flag = 0,
                                        pos = self.pos,
                                        cname = struct_cname)
            self.op_args_struct.defined_in_pxd = 1
            self.op_args_struct.used = 1

        exc_val = None
        exc_check = 0
        if self.exception_check == '+':
            env.add_include_file('ios')         # for std::ios_base::failure
            env.add_include_file('new')         # for std::bad_alloc
            env.add_include_file('stdexcept')
            env.add_include_file('typeinfo')    # for std::bad_cast
        if return_type.is_pyobject \
            and (self.exception_value or self.exception_check) \
            and self.exception_check != '+':
                error(self.pos,
                    "Exception clause not allowed for function returning Python object")
        else:
            if self.exception_value:
                self.exception_value.analyse_const_expression(env)
                if self.exception_check == '+':
                    self.exception_value.analyse_types(env)
                    exc_val_type = self.exception_value.type
                    if not exc_val_type.is_error and \
                          not exc_val_type.is_pyobject and \
                          not (exc_val_type.is_cfunction and not exc_val_type.return_type.is_pyobject and len(exc_val_type.args)==0):
                        error(self.exception_value.pos,
                            "Exception value must be a Python exception or cdef function with no arguments.")
                    exc_val = self.exception_value
                else:
                    self.exception_value = self.exception_value.coerce_to(return_type, env)
                    if self.exception_value.analyse_const_expression(env):
                        exc_val = self.exception_value.get_constant_c_result_code()
                        if exc_val is None:
                            raise InternalError("get_constant_c_result_code not implemented for %s" %
                                self.exception_value.__class__.__name__)
                        if not return_type.assignable_from(self.exception_value.type):
                            error(self.exception_value.pos,
                                  "Exception value incompatible with function return type")
            exc_check = self.exception_check
        if return_type.is_cfunction:
            error(self.pos,
                "Function cannot return a function")
        func_type = PyrexTypes.CFuncType(
            return_type, func_type_args, self.has_varargs,
            optional_arg_count = self.optional_arg_count,
            exception_value = exc_val, exception_check = exc_check,
            calling_convention = self.base.calling_convention,
            nogil = self.nogil, with_gil = self.with_gil, is_overridable = self.overridable)
        if self.optional_arg_count:
            func_type.op_arg_struct = PyrexTypes.c_ptr_type(self.op_args_struct.type)
        callspec = env.directives['callspec']
        if callspec:
            current = func_type.calling_convention
            if current and current != callspec:
                error(self.pos, "cannot have both '%s' and '%s' "
                      "calling conventions" % (current, callspec))
            func_type.calling_convention = callspec
        return self.base.analyse(func_type, env)


class CArgDeclNode(Node):
    # Item in a function declaration argument list.
    #
    # base_type      CBaseTypeNode
    # declarator     CDeclaratorNode
    # not_none       boolean            Tagged with 'not None'
    # or_none        boolean            Tagged with 'or None'
    # accept_none    boolean            Resolved boolean for not_none/or_none
    # default        ExprNode or None
    # default_value  PyObjectConst      constant for default value
    # annotation     ExprNode or None   Py3 function arg annotation
    # is_self_arg    boolean            Is the "self" arg of an extension type method
    # is_type_arg    boolean            Is the "class" arg of an extension type classmethod
    # is_kw_only     boolean            Is a keyword-only argument

    child_attrs = ["base_type", "declarator", "default"]

    is_self_arg = 0
    is_type_arg = 0
    is_generic = 1
    kw_only = 0
    not_none = 0
    or_none = 0
    type = None
    name_declarator = None
    default_value = None
    annotation = None

    def analyse(self, env, nonempty = 0, is_self_arg = False):
        if is_self_arg:
            self.base_type.is_self_arg = self.is_self_arg = True
        if self.type is None:
            # The parser may missinterpret names as types...
            # We fix that here.
            if isinstance(self.declarator, CNameDeclaratorNode) and self.declarator.name == '':
                if nonempty:
                    self.declarator.name = self.base_type.name
                    self.base_type.name = None
                    self.base_type.is_basic_c_type = False
                could_be_name = True
            else:
                could_be_name = False
            base_type = self.base_type.analyse(env, could_be_name = could_be_name)
            if hasattr(self.base_type, 'arg_name') and self.base_type.arg_name:
                self.declarator.name = self.base_type.arg_name
            # The parser is unable to resolve the ambiguity of [] as part of the
            # type (e.g. in buffers) or empty declarator (as with arrays).
            # This is only arises for empty multi-dimensional arrays.
            if (base_type.is_array
                    and isinstance(self.base_type, TemplatedTypeNode)
                    and isinstance(self.declarator, CArrayDeclaratorNode)):
                declarator = self.declarator
                while isinstance(declarator.base, CArrayDeclaratorNode):
                    declarator = declarator.base
                declarator.base = self.base_type.array_declarator
                base_type = base_type.base_type
            return self.declarator.analyse(base_type, env, nonempty = nonempty)
        else:
            return self.name_declarator, self.type

    def calculate_default_value_code(self, code):
        if self.default_value is None:
            if self.default:
                if self.default.is_literal:
                    # will not output any code, just assign the result_code
                    self.default.generate_evaluation_code(code)
                    return self.type.cast_code(self.default.result())
                self.default_value = code.get_argument_default_const(self.type)
        return self.default_value

    def annotate(self, code):
        if self.default:
            self.default.annotate(code)


class CBaseTypeNode(Node):
    # Abstract base class for C base type nodes.
    #
    # Processing during analyse_declarations phase:
    #
    #   analyse
    #     Returns the type.

    pass

    def analyse_as_type(self, env):
        return self.analyse(env)

class CAnalysedBaseTypeNode(Node):
    # type            type

    child_attrs = []

    def analyse(self, env, could_be_name = False):
        return self.type

class CSimpleBaseTypeNode(CBaseTypeNode):
    # name             string
    # module_path      [string]     Qualifying name components
    # is_basic_c_type  boolean
    # signed           boolean
    # longness         integer
    # complex          boolean
    # is_self_arg      boolean      Is self argument of C method
    # ##is_type_arg      boolean      Is type argument of class method

    child_attrs = []
    arg_name = None   # in case the argument name was interpreted as a type
    module_path = []
    is_basic_c_type = False
    complex = False

    def analyse(self, env, could_be_name = False):
        # Return type descriptor.
        #print "CSimpleBaseTypeNode.analyse: is_self_arg =", self.is_self_arg ###
        type = None
        if self.is_basic_c_type:
            type = PyrexTypes.simple_c_type(self.signed, self.longness, self.name)
            if not type:
                error(self.pos, "Unrecognised type modifier combination")
        elif self.name == "object" and not self.module_path:
            type = py_object_type
        elif self.name is None:
            if self.is_self_arg and env.is_c_class_scope:
                #print "CSimpleBaseTypeNode.analyse: defaulting to parent type" ###
                type = env.parent_type
            ## elif self.is_type_arg and env.is_c_class_scope:
            ##     type = Builtin.type_type
            else:
                type = py_object_type
        else:
            if self.module_path:
                scope = env.find_imported_module(self.module_path, self.pos)
            else:
                scope = env
            if scope:
                if scope.is_c_class_scope:
                    scope = scope.global_scope()
                entry = scope.lookup(self.name)
                if entry and entry.is_type:
                    type = entry.type
                elif could_be_name:
                    if self.is_self_arg and env.is_c_class_scope:
                        type = env.parent_type
                    ## elif self.is_type_arg and env.is_c_class_scope:
                    ##     type = Builtin.type_type
                    else:
                        type = py_object_type
                    self.arg_name = self.name
                else:
                    if self.templates:
                        if not self.name in self.templates:
                            error(self.pos, "'%s' is not a type identifier" % self.name)
                        type = PyrexTypes.TemplatePlaceholderType(self.name)
                    else:
                        error(self.pos, "'%s' is not a type identifier" % self.name)
        if self.complex:
            if not type.is_numeric or type.is_complex:
                error(self.pos, "can only complexify c numeric types")
            type = PyrexTypes.CComplexType(type)
            type.create_declaration_utility_code(env)
        elif type is Builtin.complex_type:
            # Special case: optimise builtin complex type into C's
            # double complex.  The parser cannot do this (as for the
            # normal scalar types) as the user may have redeclared the
            # 'complex' type.  Testing for the exact type here works.
            type = PyrexTypes.c_double_complex_type
            type.create_declaration_utility_code(env)
            self.complex = True
        if type:
            return type
        else:
            return PyrexTypes.error_type

class MemoryViewSliceTypeNode(CBaseTypeNode):

    child_attrs = ['base_type_node', 'axes']

    def analyse(self, env, could_be_name = False):

        base_type = self.base_type_node.analyse(env)
        if base_type.is_error: return base_type

        import MemoryView

        try:
            axes_specs = MemoryView.get_axes_specs(env, self.axes)
        except CompileError, e:
            error(e.position, e.message_only)
            self.type = PyrexTypes.ErrorType()
            return self.type

        self.type = PyrexTypes.MemoryViewSliceType(base_type, axes_specs)
        MemoryView.use_memview_util_code(env)
        MemoryView.use_cython_array(env)
        MemoryView.use_memview_util_code(env)
        env.use_utility_code(MemoryView.memviewslice_declare_code)
        return self.type

class CNestedBaseTypeNode(CBaseTypeNode):
    # For C++ classes that live inside other C++ classes.

    # name             string
    # base_type        CBaseTypeNode
    child_attrs = ['base_type']
    def analyse(self, env, could_be_name = None):
        base_type = self.base_type.analyse(env)
        if base_type is PyrexTypes.error_type:
            return PyrexTypes.error_type
        if not base_type.is_cpp_class:
            error(self.pos, "'%s' is not a valid type scope" % base_type)
            return PyrexTypes.error_type
        type_entry = base_type.scope.lookup_here(self.name)
        if not type_entry or not type_entry.is_type:
            error(self.pos, "'%s.%s' is not a type identifier" % (base_type, self.name))
            return PyrexTypes.error_type
        return type_entry.type


class TemplatedTypeNode(CBaseTypeNode):
    #  After parsing:
    #  positional_args  [ExprNode]        List of positional arguments
    #  keyword_args     DictNode          Keyword arguments
    #  base_type_node   CBaseTypeNode

    #  After analysis:
    #  type             PyrexTypes.BufferType or PyrexTypes.CppClassType  ...containing the right options


    child_attrs = ["base_type_node", "positional_args",
                   "keyword_args", "dtype_node"]

    dtype_node = None

    name = None

    def analyse(self, env, could_be_name = False, base_type = None):
        if base_type is None:
            base_type = self.base_type_node.analyse(env)
        if base_type.is_error: return base_type

        if base_type.is_cpp_class:
            # Templated class
            if self.keyword_args and self.keyword_args.key_value_pairs:
                error(self.pos, "c++ templates cannot take keyword arguments");
                self.type = PyrexTypes.error_type
            else:
                template_types = []
                for template_node in self.positional_args:
                    type = template_node.analyse_as_type(env)
                    if type is None:
                        error(template_node.pos, "unknown type in template argument")
                        return error_type
                    template_types.append(type)
                self.type = base_type.specialize_here(self.pos, template_types)

        elif base_type.is_pyobject:
            # Buffer
            import Buffer

            options = Buffer.analyse_buffer_options(
                self.pos,
                env,
                self.positional_args,
                self.keyword_args,
                base_type.buffer_defaults)

            if sys.version_info[0] < 3:
                # Py 2.x enforces byte strings as keyword arguments ...
                options = dict([ (name.encode('ASCII'), value)
                                 for name, value in options.items() ])

            self.type = PyrexTypes.BufferType(base_type, **options)

        else:
            # Array
            empty_declarator = CNameDeclaratorNode(self.pos, name="", cname=None)
            if len(self.positional_args) > 1 or self.keyword_args.key_value_pairs:
                error(self.pos, "invalid array declaration")
                self.type = PyrexTypes.error_type
            else:
                # It would be nice to merge this class with CArrayDeclaratorNode,
                # but arrays are part of the declaration, not the type...
                if not self.positional_args:
                    dimension = None
                else:
                    dimension = self.positional_args[0]
                self.array_declarator = CArrayDeclaratorNode(self.pos,
                    base = empty_declarator,
                    dimension = dimension)
                self.type = self.array_declarator.analyse(base_type, env)[1]

        return self.type

class CComplexBaseTypeNode(CBaseTypeNode):
    # base_type   CBaseTypeNode
    # declarator  CDeclaratorNode

    child_attrs = ["base_type", "declarator"]

    def analyse(self, env, could_be_name = False):
        base = self.base_type.analyse(env, could_be_name)
        _, type = self.declarator.analyse(base, env)
        return type


class CVarDefNode(StatNode):
    #  C variable definition or forward/extern function declaration.
    #
    #  visibility    'private' or 'public' or 'extern'
    #  base_type     CBaseTypeNode
    #  declarators   [CDeclaratorNode]
    #  in_pxd        boolean
    #  api           boolean

    #  decorators    [cython.locals(...)] or None
    #  directive_locals { string : NameNode } locals defined by cython.locals(...)

    child_attrs = ["base_type", "declarators"]

    decorators = None
    directive_locals = None

    def analyse_declarations(self, env, dest_scope = None):
        if self.directive_locals is None:
            self.directive_locals = {}
        if not dest_scope:
            dest_scope = env
        self.dest_scope = dest_scope
        base_type = self.base_type.analyse(env)
        visibility = self.visibility

        for declarator in self.declarators:
            if isinstance(declarator, CFuncDeclaratorNode):
                name_declarator, type = declarator.analyse(base_type, env, directive_locals=self.directive_locals)
            else:
                name_declarator, type = declarator.analyse(base_type, env)
            if not type.is_complete():
                if not (self.visibility == 'extern' and type.is_array or type.is_memoryviewslice):
                    error(declarator.pos,
                        "Variable type '%s' is incomplete" % type)
            if self.visibility == 'extern' and type.is_pyobject:
                error(declarator.pos,
                    "Python object cannot be declared extern")
            name = name_declarator.name
            cname = name_declarator.cname
            if name == '':
                error(declarator.pos, "Missing name in declaration.")
                return
            if type.is_cfunction:
                entry = dest_scope.declare_cfunction(name, type, declarator.pos,
                    cname = cname, visibility = self.visibility,
                    in_pxd = self.in_pxd, api = self.api)
                if entry is not None:
                    entry.directive_locals = copy.copy(self.directive_locals)
            else:
                if self.directive_locals:
                    error(self.pos, "Decorators can only be followed by functions")
                entry = dest_scope.declare_var(name, type, declarator.pos,
                    cname = cname, visibility = visibility,
                    in_pxd = self.in_pxd, api = self.api, is_cdef = 1)


class CStructOrUnionDefNode(StatNode):
    #  name          string
    #  cname         string or None
    #  kind          "struct" or "union"
    #  typedef_flag  boolean
    #  visibility    "public" or "private"
    #  api           boolean
    #  in_pxd        boolean
    #  attributes    [CVarDefNode] or None
    #  entry         Entry
    #  packed        boolean

    child_attrs = ["attributes"]

    def declare(self, env, scope=None):
        if self.visibility == 'extern' and self.packed and not scope:
            error(self.pos, "Cannot declare extern struct as 'packed'")
        self.entry = env.declare_struct_or_union(
            self.name, self.kind, scope, self.typedef_flag, self.pos,
            self.cname, visibility = self.visibility, api = self.api,
            packed = self.packed)

    def analyse_declarations(self, env):
        scope = None
        if self.attributes is not None:
            scope = StructOrUnionScope(self.name)
        self.declare(env, scope)
        if self.attributes is not None:
            if self.in_pxd and not env.in_cinclude:
                self.entry.defined_in_pxd = 1
            for attr in self.attributes:
                attr.analyse_declarations(env, scope)
            if self.visibility != 'extern':
                for attr in scope.var_entries:
                    type = attr.type
                    while type.is_array:
                        type = type.base_type
                    if type == self.entry.type:
                        error(attr.pos, "Struct cannot contain itself as a member.")

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        pass


class CppClassNode(CStructOrUnionDefNode):

    #  name          string
    #  cname         string or None
    #  visibility    "extern"
    #  in_pxd        boolean
    #  attributes    [CVarDefNode] or None
    #  entry         Entry
    #  base_classes  [string]
    #  templates     [string] or None

    def declare(self, env):
        if self.templates is None:
            template_types = None
        else:
            template_types = [PyrexTypes.TemplatePlaceholderType(template_name) for template_name in self.templates]
        self.entry = env.declare_cpp_class(
            self.name, None, self.pos,
            self.cname, base_classes = [], visibility = self.visibility, templates = template_types)

    def analyse_declarations(self, env):
        scope = None
        if self.attributes is not None:
            scope = CppClassScope(self.name, env)
        base_class_types = []
        for base_class_name in self.base_classes:
            base_class_entry = env.lookup(base_class_name)
            if base_class_entry is None:
                error(self.pos, "'%s' not found" % base_class_name)
            elif not base_class_entry.is_type or not base_class_entry.type.is_cpp_class:
                error(self.pos, "'%s' is not a cpp class type" % base_class_name)
            else:
                base_class_types.append(base_class_entry.type)
        if self.templates is None:
            template_types = None
        else:
            template_types = [PyrexTypes.TemplatePlaceholderType(template_name) for template_name in self.templates]
        self.entry = env.declare_cpp_class(
            self.name, scope, self.pos,
            self.cname, base_class_types, visibility = self.visibility, templates = template_types)
        if self.entry is None:
            return
        self.entry.is_cpp_class = 1
        if self.attributes is not None:
            if self.in_pxd and not env.in_cinclude:
                self.entry.defined_in_pxd = 1
            for attr in self.attributes:
                attr.analyse_declarations(scope)

class CEnumDefNode(StatNode):
    #  name           string or None
    #  cname          string or None
    #  items          [CEnumDefItemNode]
    #  typedef_flag   boolean
    #  visibility     "public" or "private"
    #  api            boolean
    #  in_pxd         boolean
    #  entry          Entry

    child_attrs = ["items"]

    def declare(self, env):
         self.entry = env.declare_enum(self.name, self.pos,
             cname = self.cname, typedef_flag = self.typedef_flag,
             visibility = self.visibility, api = self.api)

    def analyse_declarations(self, env):
        if self.items is not None:
            if self.in_pxd and not env.in_cinclude:
                self.entry.defined_in_pxd = 1
            for item in self.items:
                item.analyse_declarations(env, self.entry)

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        if self.visibility == 'public' or self.api:
            temp = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
            for item in self.entry.enum_values:
                code.putln("%s = PyInt_FromLong(%s); %s" % (
                        temp,
                        item.cname,
                        code.error_goto_if_null(temp, item.pos)))
                code.put_gotref(temp)
                code.putln('if (__Pyx_SetAttrString(%s, "%s", %s) < 0) %s' % (
                        Naming.module_cname,
                        item.name,
                        temp,
                        code.error_goto(item.pos)))
                code.put_decref_clear(temp, PyrexTypes.py_object_type)
            code.funcstate.release_temp(temp)


class CEnumDefItemNode(StatNode):
    #  name     string
    #  cname    string or None
    #  value    ExprNode or None

    child_attrs = ["value"]

    def analyse_declarations(self, env, enum_entry):
        if self.value:
            self.value.analyse_const_expression(env)
            if not self.value.type.is_int:
                self.value = self.value.coerce_to(PyrexTypes.c_int_type, env)
                self.value.analyse_const_expression(env)
        entry = env.declare_const(self.name, enum_entry.type,
            self.value, self.pos, cname = self.cname,
            visibility = enum_entry.visibility, api = enum_entry.api)
        enum_entry.enum_values.append(entry)


class CTypeDefNode(StatNode):
    #  base_type    CBaseTypeNode
    #  declarator   CDeclaratorNode
    #  visibility   "public" or "private"
    #  api          boolean
    #  in_pxd       boolean

    child_attrs = ["base_type", "declarator"]

    def analyse_declarations(self, env):
        base = self.base_type.analyse(env)
        name_declarator, type = self.declarator.analyse(base, env)
        name = name_declarator.name
        cname = name_declarator.cname
        entry = env.declare_typedef(name, type, self.pos,
            cname = cname, visibility = self.visibility, api = self.api)
        if self.in_pxd and not env.in_cinclude:
            entry.defined_in_pxd = 1

    def analyse_expressions(self, env):
        pass
    def generate_execution_code(self, code):
        pass


class FuncDefNode(StatNode, BlockNode):
    #  Base class for function definition nodes.
    #
    #  return_type     PyrexType
    #  #filename        string        C name of filename string const
    #  entry           Symtab.Entry
    #  needs_closure   boolean        Whether or not this function has inner functions/classes/yield
    #  needs_outer_scope boolean      Whether or not this function requires outer scope
    #  pymethdef_required boolean     Force Python method struct generation
    #  directive_locals { string : NameNode } locals defined by cython.locals(...)
    # star_arg      PyArgDeclNode or None  * argument
    # starstar_arg  PyArgDeclNode or None  ** argument

    py_func = None
    assmt = None
    needs_closure = False
    needs_outer_scope = False
    pymethdef_required = False
    is_generator = False
    is_generator_body = False
    modifiers = []
    star_arg = None
    starstar_arg = None

    def analyse_default_values(self, env):
        genv = env.global_scope()
        default_seen = 0
        for arg in self.args:
            if arg.default:
                default_seen = 1
                if arg.is_generic:
                    arg.default.analyse_types(env)
                    arg.default = arg.default.coerce_to(arg.type, genv)
                else:
                    error(arg.pos,
                        "This argument cannot have a default value")
                    arg.default = None
            elif arg.kw_only:
                default_seen = 1
            elif default_seen:
                error(arg.pos, "Non-default argument following default argument")

    def align_argument_type(self, env, arg):
        directive_locals = self.directive_locals
        type = arg.type
        if arg.name in directive_locals:
            type_node = directive_locals[arg.name]
            other_type = type_node.analyse_as_type(env)
            if other_type is None:
                error(type_node.pos, "Not a type")
            elif (type is not PyrexTypes.py_object_type
                    and not type.same_as(other_type)):
                error(arg.base_type.pos, "Signature does not agree with previous declaration")
                error(type_node.pos, "Previous declaration here")
            else:
                arg.type = other_type
        return arg

    def need_gil_acquisition(self, lenv):
        return 0

    def create_local_scope(self, env):
        genv = env
        while genv.is_py_class_scope or genv.is_c_class_scope:
            genv = genv.outer_scope
        if self.needs_closure:
            lenv = ClosureScope(name=self.entry.name,
                                outer_scope = genv,
                                parent_scope = env,
                                scope_name=self.entry.cname)
        else:
            lenv = LocalScope(name=self.entry.name,
                              outer_scope=genv,
                              parent_scope=env)
        lenv.return_type = self.return_type
        type = self.entry.type
        if type.is_cfunction:
            lenv.nogil = type.nogil and not type.with_gil
        self.local_scope = lenv
        lenv.directives = env.directives
        return lenv

    def generate_function_body(self, env, code):
        self.body.generate_execution_code(code)

    def generate_function_definitions(self, env, code):
        import Buffer, MemoryView

        lenv = self.local_scope
        if lenv.is_closure_scope and not lenv.is_passthrough:
            outer_scope_cname = "%s->%s" % (Naming.cur_scope_cname,
                                            Naming.outer_scope_cname)
        else:
            outer_scope_cname = Naming.outer_scope_cname
        lenv.mangle_closure_cnames(outer_scope_cname)
        # Generate closure function definitions
        self.body.generate_function_definitions(lenv, code)
        # generate lambda function definitions
        self.generate_lambda_definitions(lenv, code)

        is_getbuffer_slot = (self.entry.name == "__getbuffer__" and
                             self.entry.scope.is_c_class_scope)
        is_releasebuffer_slot = (self.entry.name == "__releasebuffer__" and
                                 self.entry.scope.is_c_class_scope)
        is_buffer_slot = is_getbuffer_slot or is_releasebuffer_slot
        if is_buffer_slot:
            if 'cython_unused' not in self.modifiers:
                self.modifiers = self.modifiers + ['cython_unused']

        preprocessor_guard = None
        if self.entry.is_special and not is_buffer_slot:
            slot = TypeSlots.method_name_to_slot.get(self.entry.name)
            if slot:
                preprocessor_guard = slot.preprocessor_guard_code()
                if (self.entry.name == '__long__' and
                    not self.entry.scope.lookup_here('__int__')):
                    preprocessor_guard = None

        profile = code.globalstate.directives['profile']
        if profile and lenv.nogil:
            warning(self.pos, "Cannot profile nogil function.", 1)
            profile = False
        if profile:
            code.globalstate.use_utility_code(profile_utility_code)

        # Generate C code for header and body of function
        code.enter_cfunc_scope()
        code.return_from_error_cleanup_label = code.new_label()

        # ----- Top-level constants used by this function
        code.mark_pos(self.pos)
        self.generate_cached_builtins_decls(lenv, code)
        # ----- Function header
        code.putln("")

        if preprocessor_guard:
            code.putln(preprocessor_guard)

        with_pymethdef = (self.needs_assignment_synthesis(env, code) or
                          self.pymethdef_required)
        if self.py_func:
            self.py_func.generate_function_header(code,
                with_pymethdef = with_pymethdef,
                proto_only=True)
        self.generate_function_header(code,
            with_pymethdef = with_pymethdef)
        # ----- Local variable declarations
        # Find function scope
        cenv = env
        while cenv.is_py_class_scope or cenv.is_c_class_scope:
            cenv = cenv.outer_scope
        if self.needs_closure:
            code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
            code.putln(";")
        elif self.needs_outer_scope:
            if lenv.is_passthrough:
                code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
                code.putln(";")
            code.put(cenv.scope_class.type.declaration_code(Naming.outer_scope_cname))
            code.putln(";")
        self.generate_argument_declarations(lenv, code)

        for entry in lenv.var_entries:
            if not entry.in_closure:
                code.put_var_declaration(entry)

        # Initialize the return variable __pyx_r
        init = ""
        if not self.return_type.is_void:
            if self.return_type.is_pyobject:
                init = " = NULL"
            elif self.return_type.is_memoryviewslice:
                init = "= {0, 0}"

            code.putln(
                "%s%s;" %
                    (self.return_type.declaration_code(Naming.retval_cname),
                     init))

        tempvardecl_code = code.insertion_point()
        self.generate_keyword_list(code)

        if profile:
            code.put_trace_declarations()

        # ----- Extern library function declarations
        lenv.generate_library_function_declarations(code)

        # ----- GIL acquisition
        acquire_gil = self.acquire_gil

        # See if we need to acquire the GIL for variable declarations and
        acquire_gil_for_var_decls_only = (lenv.nogil and
                                          lenv.has_with_gil_block)

        use_refnanny = not lenv.nogil or acquire_gil_for_var_decls_only

        if acquire_gil or acquire_gil_for_var_decls_only:
            code.put_ensure_gil()

        # ----- set up refnanny
        if use_refnanny:
            tempvardecl_code.put_declare_refcount_context()
            code.put_setup_refcount_context(self.entry.name)

        # ----- Automatic lead-ins for certain special functions
        if is_getbuffer_slot:
            self.getbuffer_init(code)
        # ----- Create closure scope object
        if self.needs_closure:
            code.putln("%s = (%s)%s->tp_new(%s, %s, NULL);" % (
                Naming.cur_scope_cname,
                lenv.scope_class.type.declaration_code(''),
                lenv.scope_class.type.typeptr_cname,
                lenv.scope_class.type.typeptr_cname,
                Naming.empty_tuple))
            code.putln("if (unlikely(!%s)) {" % Naming.cur_scope_cname)
            if is_getbuffer_slot:
                self.getbuffer_error_cleanup(code)

            if use_refnanny:
                code.put_finish_refcount_context()
                if acquire_gil_for_var_decls_only:
                    code.put_release_ensured_gil()

            # FIXME: what if the error return value is a Python value?
            code.putln("return %s;" % self.error_value())
            code.putln("}")
            code.put_gotref(Naming.cur_scope_cname)
            # Note that it is unsafe to decref the scope at this point.
        if self.needs_outer_scope:
            code.putln("%s = (%s)%s;" % (
                            outer_scope_cname,
                            cenv.scope_class.type.declaration_code(''),
                            Naming.self_cname))
            if lenv.is_passthrough:
                code.putln("%s = %s;" % (Naming.cur_scope_cname, outer_scope_cname));
            elif self.needs_closure:
                # inner closures own a reference to their outer parent
                code.put_incref(outer_scope_cname, cenv.scope_class.type)
                code.put_giveref(outer_scope_cname)
        # ----- Trace function call
        if profile:
            # this looks a bit late, but if we don't get here due to a
            # fatal error before hand, it's not really worth tracing
            code.put_trace_call(self.entry.name, self.pos)
        # ----- Fetch arguments
        self.generate_argument_parsing_code(env, code)
        # If an argument is assigned to in the body, we must
        # incref it to properly keep track of refcounts.
        for entry in lenv.arg_entries:
            if entry.type.is_pyobject:
                if (acquire_gil or entry.assignments) and not entry.in_closure:
                    code.put_var_incref(entry)
            if entry.type.is_memoryviewslice:
                code.put_incref_memoryviewslice(entry.cname,
                                                have_gil=not lenv.nogil)
                #code.put_incref("%s.memview" % entry.cname, cython_memoryview_ptr_type)
        # ----- Initialise local buffer auxiliary variables
        for entry in lenv.var_entries + lenv.arg_entries:
            if entry.type.is_buffer and entry.buffer_aux.buflocal_nd_var.used:
                Buffer.put_init_vars(entry, code)
        # ----- Initialise local memoryviewslices
        for entry in lenv.var_entries:
            if entry.visibility == "private" and not entry.used:
                continue

        # ----- Check and convert arguments
        self.generate_argument_type_tests(code)
        # ----- Acquire buffer arguments
        for entry in lenv.arg_entries:
            if entry.type.is_buffer:
                Buffer.put_acquire_arg_buffer(entry, code, self.pos)

        if acquire_gil_for_var_decls_only:
            code.put_release_ensured_gil()

        # -------------------------
        # ----- Function body -----
        # -------------------------
        self.generate_function_body(env, code)

        # ----- Default return value
        code.putln("")
        if self.return_type.is_pyobject:
            #if self.return_type.is_extension_type:
            #    lhs = "(PyObject *)%s" % Naming.retval_cname
            #else:
            lhs = Naming.retval_cname
            code.put_init_to_py_none(lhs, self.return_type)
        else:
            val = self.return_type.default_value
            if val:
                code.putln("%s = %s;" % (Naming.retval_cname, val))
        # ----- Error cleanup
        if code.error_label in code.labels_used:
            code.put_goto(code.return_label)
            code.put_label(code.error_label)
            for cname, type in code.funcstate.all_managed_temps():
                code.put_xdecref(cname, type)

            # Clean up buffers -- this calls a Python function
            # so need to save and restore error state
            buffers_present = len(lenv.buffer_entries) > 0
            if buffers_present:
                code.globalstate.use_utility_code(restore_exception_utility_code)
                code.putln("{ PyObject *__pyx_type, *__pyx_value, *__pyx_tb;")
                code.putln("__Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);")
                for entry in lenv.buffer_entries:
                    Buffer.put_release_buffer_code(code, entry)
                    #code.putln("%s = 0;" % entry.cname)
                code.putln("__Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}")

            err_val = self.error_value()
            exc_check = self.caller_will_check_exceptions()
            if err_val is not None or exc_check:
                # TODO: Fix exception tracing (though currently unused by cProfile).
                # code.globalstate.use_utility_code(get_exception_tuple_utility_code)
                # code.put_trace_exception()

                if lenv.nogil:
                    code.putln("{")
                    code.put_ensure_gil()

                code.put_add_traceback(self.entry.qualified_name)

                if lenv.nogil:
                    code.put_release_ensured_gil()
                    code.putln("}")
            else:
                warning(self.entry.pos, "Unraisable exception in function '%s'." \
                            % self.entry.qualified_name, 0)
                format_tuple = (
                    self.entry.qualified_name,
                    Naming.clineno_cname,
                    Naming.lineno_cname,
                    Naming.filename_cname,
                    )
                code.putln(
                    '__Pyx_WriteUnraisable("%s", %s, %s, %s);' % format_tuple)
                env.use_utility_code(unraisable_exception_utility_code)
                env.use_utility_code(restore_exception_utility_code)
            default_retval = self.return_type.default_value
            if err_val is None and default_retval:
                err_val = default_retval
            if err_val is not None:
                code.putln("%s = %s;" % (Naming.retval_cname, err_val))

            if is_getbuffer_slot:
                self.getbuffer_error_cleanup(code)

            # If we are using the non-error cleanup section we should
            # jump past it if we have an error. The if-test below determine
            # whether this section is used.
            if buffers_present or is_getbuffer_slot:
                code.put_goto(code.return_from_error_cleanup_label)

        # ----- Non-error return cleanup
        code.put_label(code.return_label)
        for entry in lenv.buffer_entries:
            if entry.used:
                Buffer.put_release_buffer_code(code, entry)
        if is_getbuffer_slot:
            self.getbuffer_normal_cleanup(code)
        # ----- Return cleanup for both error and no-error return
        code.put_label(code.return_from_error_cleanup_label)

        for entry in lenv.var_entries:
            if not entry.used or entry.in_closure:
                continue
            if entry.type.is_memoryviewslice:
                #code.put_xdecref("%s.memview" % entry.cname, cython_memoryview_ptr_type)
                code.put_xdecref_memoryviewslice(entry.cname)
            if entry.type.is_pyobject:
                code.put_var_decref(entry)

        # Decref any increfed args
        for entry in lenv.arg_entries:
            if entry.type.is_pyobject:
                if (acquire_gil or entry.assignments) and not entry.in_closure:
                    code.put_var_decref(entry)
            if entry.type.is_memoryviewslice:
                code.put_xdecref_memoryviewslice(entry.cname)
                #code.put_decref("%s.memview" % entry.cname, cython_memoryview_ptr_type)
        if self.needs_closure:
            code.put_decref(Naming.cur_scope_cname, lenv.scope_class.type)

        # ----- Return
        # This code is duplicated in ModuleNode.generate_module_init_func
        if not lenv.nogil:
            default_retval = self.return_type.default_value
            err_val = self.error_value()
            if err_val is None and default_retval:
                err_val = default_retval
            if self.return_type.is_pyobject:
                code.put_xgiveref(self.return_type.as_pyobject(Naming.retval_cname))
            #elif self.return_type.is_memoryviewslice:
            #    code.put_xgiveref(code.as_pyobject("%s.memview" % Naming.retval_cname,cython_memoryview_ptr_type))
            #    code.put_xgiveref_memoryviewslice(Naming.retval_cname)

        if self.entry.is_special and self.entry.name == "__hash__":
            # Returning -1 for __hash__ is supposed to signal an error
            # We do as Python instances and coerce -1 into -2.
            code.putln("if (unlikely(%s == -1) && !PyErr_Occurred()) %s = -2;" % (
                    Naming.retval_cname, Naming.retval_cname))

        if profile:
            if self.return_type.is_pyobject:
                code.put_trace_return(Naming.retval_cname)
            else:
                code.put_trace_return("Py_None")

        if not lenv.nogil:
            # GIL holding funcion
            code.put_finish_refcount_context()

        if acquire_gil or acquire_gil_for_var_decls_only:
            code.put_release_ensured_gil()

        if not self.return_type.is_void:
            code.putln("return %s;" % Naming.retval_cname)

        code.putln("}")

        if preprocessor_guard:
            code.putln("#endif /*!(%s)*/" % preprocessor_guard)

        # ----- Go back and insert temp variable declarations
        tempvardecl_code.put_temp_declarations(code.funcstate)
        if code.funcstate.should_declare_error_indicator:
            # Initialize these variables to shut up compiler warnings
            tempvardecl_code.putln("int %s = 0;" % Naming.lineno_cname)
            tempvardecl_code.putln("const char *%s = NULL;" %
                                                    Naming.filename_cname)
            if code.c_line_in_traceback:
                tempvardecl_code.putln("int %s = 0;" % Naming.clineno_cname)

        # ----- Python version
        code.exit_cfunc_scope()
        if self.py_func:
            self.py_func.generate_function_definitions(env, code)
        self.generate_wrapper_functions(code)

    def declare_argument(self, env, arg):
        if arg.type.is_void:
            error(arg.pos, "Invalid use of 'void'")
        elif not arg.type.is_complete() and not (arg.type.is_array or arg.type.is_memoryviewslice):
            error(arg.pos,
                "Argument type '%s' is incomplete" % arg.type)
        return env.declare_arg(arg.name, arg.type, arg.pos)

    def generate_arg_type_test(self, arg, code):
        # Generate type test for one argument.
        if arg.type.typeobj_is_available():
            code.globalstate.use_utility_code(arg_type_test_utility_code)
            typeptr_cname = arg.type.typeptr_cname
            arg_code = "((PyObject *)%s)" % arg.entry.cname
            code.putln(
                'if (unlikely(!__Pyx_ArgTypeTest(%s, %s, %d, "%s", %s))) %s' % (
                    arg_code,
                    typeptr_cname,
                    arg.accept_none,
                    arg.name,
                    arg.type.is_builtin_type,
                    code.error_goto(arg.pos)))
        else:
            error(arg.pos, "Cannot test type of extern C class "
                "without type object name specification")

    def generate_arg_none_check(self, arg, code):
        # Generate None check for one argument.
        code.putln('if (unlikely(((PyObject *)%s) == Py_None)) {' % arg.entry.cname)
        code.putln('''PyErr_Format(PyExc_TypeError, "Argument '%s' must not be None"); %s''' % (
            arg.name,
            code.error_goto(arg.pos)))
        code.putln('}')

    def generate_wrapper_functions(self, code):
        pass

    def generate_execution_code(self, code):
        # Evaluate and store argument default values
        for arg in self.args:
            default = arg.default
            if default:
                if not default.is_literal:
                    default.generate_evaluation_code(code)
                    default.make_owned_reference(code)
                    result = default.result_as(arg.type)
                    code.putln(
                        "%s = %s;" % (
                            arg.calculate_default_value_code(code),
                            result))
                    if arg.type.is_pyobject:
                        code.put_giveref(default.result())
                    default.generate_post_assignment_code(code)
                    default.free_temps(code)
        # For Python class methods, create and store function object
        if self.assmt:
            self.assmt.generate_execution_code(code)

    #
    # Special code for the __getbuffer__ function
    #
    def getbuffer_init(self, code):
        info = self.local_scope.arg_entries[1].cname
        # Python 3.0 betas have a bug in memoryview which makes it call
        # getbuffer with a NULL parameter. For now we work around this;
        # the following block should be removed when this bug is fixed.
        code.putln("if (%s != NULL) {" % info)
        code.putln("%s->obj = Py_None; __Pyx_INCREF(Py_None);" % info)
        code.put_giveref("%s->obj" % info) # Do not refnanny object within structs
        code.putln("}")

    def getbuffer_error_cleanup(self, code):
        info = self.local_scope.arg_entries[1].cname
        code.putln("if (%s != NULL && %s->obj != NULL) {"
                   % (info, info))
        code.put_gotref("%s->obj" % info)
        code.putln("__Pyx_DECREF(%s->obj); %s->obj = NULL;"
                   % (info, info))
        code.putln("}")

    def getbuffer_normal_cleanup(self, code):
        info = self.local_scope.arg_entries[1].cname
        code.putln("if (%s != NULL && %s->obj == Py_None) {" % (info, info))
        code.put_gotref("Py_None")
        code.putln("__Pyx_DECREF(Py_None); %s->obj = NULL;" % info)
        code.putln("}")

class CFuncDefNode(FuncDefNode):
    #  C function definition.
    #
    #  modifiers     ['inline']
    #  visibility    'private' or 'public' or 'extern'
    #  base_type     CBaseTypeNode
    #  declarator    CDeclaratorNode
    #  body          StatListNode
    #  api           boolean
    #  decorators    [DecoratorNode]        list of decorators
    #
    #  with_gil      boolean    Acquire GIL around body
    #  type          CFuncType
    #  py_func       wrapper for calling from Python
    #  overridable   whether or not this is a cpdef function
    #  inline_in_pxd whether this is an inline function in a pxd file

    child_attrs = ["base_type", "declarator", "body", "py_func"]

    inline_in_pxd = False
    decorators = None
    directive_locals = None
    override = None

    def unqualified_name(self):
        return self.entry.name

    def analyse_declarations(self, env):
        if self.directive_locals is None:
            self.directive_locals = {}
        self.directive_locals.update(env.directives['locals'])
        base_type = self.base_type.analyse(env)
        # The 2 here is because we need both function and argument names.
        if isinstance(self.declarator, CFuncDeclaratorNode):
            name_declarator, type = self.declarator.analyse(base_type, env,
                                                            nonempty = 2 * (self.body is not None),
                                                            directive_locals = self.directive_locals)
        else:
            name_declarator, type = self.declarator.analyse(base_type, env, nonempty = 2 * (self.body is not None))
        if not type.is_cfunction:
            error(self.pos,
                "Suite attached to non-function declaration")
        # Remember the actual type according to the function header
        # written here, because the type in the symbol table entry
        # may be different if we're overriding a C method inherited
        # from the base type of an extension type.
        self.type = type
        type.is_overridable = self.overridable
        declarator = self.declarator
        while not hasattr(declarator, 'args'):
            declarator = declarator.base
        self.args = declarator.args
        for formal_arg, type_arg in zip(self.args, type.args):
            self.align_argument_type(env, type_arg)
            formal_arg.type = type_arg.type
            formal_arg.name = type_arg.name
            formal_arg.cname = type_arg.cname
            if type_arg.type.is_buffer and 'inline' in self.modifiers:
                warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1)
        name = name_declarator.name
        cname = name_declarator.cname
        self.entry = env.declare_cfunction(
            name, type, self.pos,
            cname = cname, visibility = self.visibility, api = self.api,
            defining = self.body is not None, modifiers = self.modifiers)
        self.entry.inline_func_in_pxd = self.inline_in_pxd
        self.return_type = type.return_type
        if self.return_type.is_array and self.visibility != 'extern':
            error(self.pos,
                "Function cannot return an array")

        if self.overridable and not env.is_module_scope:
            if len(self.args) < 1 or not self.args[0].type.is_pyobject:
                # An error will be produced in the cdef function
                self.overridable = False

        if self.overridable:
            import ExprNodes
            py_func_body = self.call_self_node(is_module_scope = env.is_module_scope)
            self.py_func = DefNode(pos = self.pos,
                                   name = self.entry.name,
                                   args = self.args,
                                   star_arg = None,
                                   starstar_arg = None,
                                   doc = self.doc,
                                   body = py_func_body,
                                   is_wrapper = 1)
            self.py_func.is_module_scope = env.is_module_scope
            self.py_func.analyse_declarations(env)
            self.entry.as_variable = self.py_func.entry
            # Reset scope entry the above cfunction
            env.entries[name] = self.entry
            if (not self.entry.is_final_cmethod and
                (not env.is_module_scope or Options.lookup_module_cpdef)):
                self.override = OverrideCheckNode(self.pos, py_func = self.py_func)
                self.body = StatListNode(self.pos, stats=[self.override, self.body])
        self.create_local_scope(env)

    def call_self_node(self, omit_optional_args=0, is_module_scope=0):
        import ExprNodes
        args = self.type.args
        if omit_optional_args:
            args = args[:len(args) - self.type.optional_arg_count]
        arg_names = [arg.name for arg in args]
        if is_module_scope:
            cfunc = ExprNodes.NameNode(self.pos, name=self.entry.name)
        else:
            self_arg = ExprNodes.NameNode(self.pos, name=arg_names[0])
            cfunc = ExprNodes.AttributeNode(self.pos, obj=self_arg, attribute=self.entry.name)
        skip_dispatch = not is_module_scope or Options.lookup_module_cpdef
        c_call = ExprNodes.SimpleCallNode(self.pos, function=cfunc, args=[ExprNodes.NameNode(self.pos, name=n) for n in arg_names[1-is_module_scope:]], wrapper_call=skip_dispatch)
        return ReturnStatNode(pos=self.pos, return_type=PyrexTypes.py_object_type, value=c_call)

    def declare_arguments(self, env):
        for arg in self.type.args:
            if not arg.name:
                error(arg.pos, "Missing argument name")
            self.declare_argument(env, arg)

    def need_gil_acquisition(self, lenv):
        return self.type.with_gil

    def nogil_check(self, env):
        type = self.type
        with_gil = type.with_gil
        if type.nogil and not with_gil:
            if type.return_type.is_pyobject:
                error(self.pos,
                      "Function with Python return type cannot be declared nogil")
            for entry in self.local_scope.var_entries:
                if entry.type.is_pyobject and not entry.in_with_gil_block:
                    error(self.pos, "Function declared nogil has Python locals or temporaries")

    def analyse_expressions(self, env):
        self.local_scope.directives = env.directives
        if self.py_func is not None:
            # this will also analyse the default values
            self.py_func.analyse_expressions(env)
        else:
            self.analyse_default_values(env)
        self.acquire_gil = self.need_gil_acquisition(self.local_scope)

    def needs_assignment_synthesis(self, env, code=None):
        return False

    def generate_function_header(self, code, with_pymethdef, with_opt_args = 1, with_dispatch = 1, cname = None):
        scope = self.local_scope
        arg_decls = []
        type = self.type
        for arg in type.args[:len(type.args)-type.optional_arg_count]:
            arg_decl = arg.declaration_code()
            entry = scope.lookup(arg.name)
            if not entry.cf_used:
                arg_decl = 'CYTHON_UNUSED %s' % arg_decl
            arg_decls.append(arg_decl)
        if with_dispatch and self.overridable:
            dispatch_arg = PyrexTypes.c_int_type.declaration_code(
                Naming.skip_dispatch_cname)
            if self.override:
                arg_decls.append(dispatch_arg)
            else:
                arg_decls.append('CYTHON_UNUSED %s' % dispatch_arg)
        if type.optional_arg_count and with_opt_args:
            arg_decls.append(type.op_arg_struct.declaration_code(Naming.optional_args_cname))
        if type.has_varargs:
            arg_decls.append("...")
        if not arg_decls:
            arg_decls = ["void"]
        if cname is None:
            cname = self.entry.func_cname
        entity = type.function_header_code(cname, ', '.join(arg_decls))
        if self.entry.visibility == 'private':
            storage_class = "static "
        else:
            storage_class = ""
        dll_linkage = None
        modifiers = ""
        if 'inline' in self.modifiers:
            self.modifiers[self.modifiers.index('inline')] = 'cython_inline'
        if self.modifiers:
            modifiers = "%s " % ' '.join(self.modifiers).upper()

        header = self.return_type.declaration_code(entity, dll_linkage=dll_linkage)
        #print (storage_class, modifiers, header)
        code.putln("%s%s%s {" % (storage_class, modifiers, header))

    def generate_argument_declarations(self, env, code):
        scope = self.local_scope
        for arg in self.args:
            if arg.default:
                entry = scope.lookup(arg.name)
                if self.override or entry.cf_used:
                    result = arg.calculate_default_value_code(code)
                    code.putln('%s = %s;' % (
                        arg.type.declaration_code(arg.cname), result))

    def generate_keyword_list(self, code):
        pass

    def generate_argument_parsing_code(self, env, code):
        i = 0
        used = 0
        if self.type.optional_arg_count:
            scope = self.local_scope
            code.putln('if (%s) {' % Naming.optional_args_cname)
            for arg in self.args:
                if arg.default:
                    entry = scope.lookup(arg.name)
                    if self.override or entry.cf_used:
                        code.putln('if (%s->%sn > %s) {' %
                                   (Naming.optional_args_cname,
                                    Naming.pyrex_prefix, i))
                        declarator = arg.declarator
                        while not hasattr(declarator, 'name'):
                            declarator = declarator.base
                        code.putln('%s = %s->%s;' %
                                   (arg.cname, Naming.optional_args_cname,
                                    self.type.opt_arg_cname(declarator.name)))
                        used += 1
                    i += 1
            for _ in range(used):
                code.putln('}')
            code.putln('}')

    def generate_argument_conversion_code(self, code):
        pass

    def generate_argument_type_tests(self, code):
        # Generate type tests for args whose type in a parent
        # class is a supertype of the declared type.
        for arg in self.type.args:
            if arg.needs_type_test:
                self.generate_arg_type_test(arg, code)
            elif arg.type.is_pyobject and not arg.accept_none:
                self.generate_arg_none_check(arg, code)

    def error_value(self):
        if self.return_type.is_pyobject:
            return "0"
        else:
            #return None
            return self.entry.type.exception_value

    def caller_will_check_exceptions(self):
        return self.entry.type.exception_check

    def generate_wrapper_functions(self, code):
        # If the C signature of a function has changed, we need to generate
        # wrappers to put in the slots here.
        k = 0
        entry = self.entry
        func_type = entry.type
        while entry.prev_entry is not None:
            k += 1
            entry = entry.prev_entry
            entry.func_cname = "%s%swrap_%s" % (self.entry.func_cname, Naming.pyrex_prefix, k)
            code.putln()
            self.generate_function_header(code,
                                          0,
                                          with_dispatch = entry.type.is_overridable,
                                          with_opt_args = entry.type.optional_arg_count,
                                          cname = entry.func_cname)
            if not self.return_type.is_void:
                code.put('return ')
            args = self.type.args
            arglist = [arg.cname for arg in args[:len(args)-self.type.optional_arg_count]]
            if entry.type.is_overridable:
                arglist.append(Naming.skip_dispatch_cname)
            elif func_type.is_overridable:
                arglist.append('0')
            if entry.type.optional_arg_count:
                arglist.append(Naming.optional_args_cname)
            elif func_type.optional_arg_count:
                arglist.append('NULL')
            code.putln('%s(%s);' % (self.entry.func_cname, ', '.join(arglist)))
            code.putln('}')


class PyArgDeclNode(Node):
    # Argument which must be a Python object (used
    # for * and ** arguments).
    #
    # name        string
    # entry       Symtab.Entry
    # annotation  ExprNode or None   Py3 argument annotation
    child_attrs = []

    def generate_function_definitions(self, env, code):
        self.entry.generate_function_definitions(env, code)

class DecoratorNode(Node):
    # A decorator
    #
    # decorator    NameNode or CallNode or AttributeNode
    child_attrs = ['decorator']


class DefNode(FuncDefNode):
    # A Python function definition.
    #
    # name          string                 the Python name of the function
    # lambda_name   string                 the internal name of a lambda 'function'
    # decorators    [DecoratorNode]        list of decorators
    # args          [CArgDeclNode]         formal arguments
    # doc           EncodedString or None
    # body          StatListNode
    # return_type_annotation
    #               ExprNode or None       the Py3 return type annotation
    #
    #  The following subnode is constructed internally
    #  when the def statement is inside a Python class definition.
    #
    #  assmt   AssignmentNode   Function construction/assignment
    #  py_cfunc_node  PyCFunctionNode/InnerFunctionNode   The PyCFunction to create and assign

    child_attrs = ["args", "star_arg", "starstar_arg", "body", "decorators"]

    lambda_name = None
    assmt = None
    num_kwonly_args = 0
    num_required_kw_args = 0
    reqd_kw_flags_cname = "0"
    is_wrapper = 0
    no_assignment_synthesis = 0
    decorators = None
    return_type_annotation = None
    entry = None
    acquire_gil = 0
    self_in_stararg = 0
    py_cfunc_node = None
    doc = None

    def __init__(self, pos, **kwds):
        FuncDefNode.__init__(self, pos, **kwds)
        k = rk = r = 0
        for arg in self.args:
            if arg.kw_only:
                k += 1
                if not arg.default:
                    rk += 1
            if not arg.default:
                r += 1
        self.num_kwonly_args = k
        self.num_required_kw_args = rk
        self.num_required_args = r

    def as_cfunction(self, cfunc=None, scope=None, overridable=True):
        if self.star_arg:
            error(self.star_arg.pos, "cdef function cannot have star argument")
        if self.starstar_arg:
            error(self.starstar_arg.pos, "cdef function cannot have starstar argument")
        if cfunc is None:
            cfunc_args = []
            for formal_arg in self.args:
                name_declarator, type = formal_arg.analyse(scope, nonempty=1)
                cfunc_args.append(PyrexTypes.CFuncTypeArg(name = name_declarator.name,
                                                          cname = None,
                                                          type = py_object_type,
                                                          pos = formal_arg.pos))
            cfunc_type = PyrexTypes.CFuncType(return_type = py_object_type,
                                              args = cfunc_args,
                                              has_varargs = False,
                                              exception_value = None,
                                              exception_check = False,
                                              nogil = False,
                                              with_gil = False,
                                              is_overridable = overridable)
            cfunc = CVarDefNode(self.pos, type=cfunc_type)
        else:
            if scope is None:
                scope = cfunc.scope
            cfunc_type = cfunc.type
            if len(self.args) != len(cfunc_type.args) or cfunc_type.has_varargs:
                error(self.pos, "wrong number of arguments")
                error(cfunc.pos, "previous declaration here")
            for i, (formal_arg, type_arg) in enumerate(zip(self.args, cfunc_type.args)):
                name_declarator, type = formal_arg.analyse(scope, nonempty=1,
                                                           is_self_arg = (i == 0 and scope.is_c_class_scope))
                if type is None or type is PyrexTypes.py_object_type:
                    formal_arg.type = type_arg.type
                    formal_arg.name_declarator = name_declarator
        import ExprNodes
        if cfunc_type.exception_value is None:
            exception_value = None
        else:
            exception_value = ExprNodes.ConstNode(self.pos, value=cfunc_type.exception_value, type=cfunc_type.return_type)
        declarator = CFuncDeclaratorNode(self.pos,
                                         base = CNameDeclaratorNode(self.pos, name=self.name, cname=None),
                                         args = self.args,
                                         has_varargs = False,
                                         exception_check = cfunc_type.exception_check,
                                         exception_value = exception_value,
                                         with_gil = cfunc_type.with_gil,
                                         nogil = cfunc_type.nogil)
        return CFuncDefNode(self.pos,
                            modifiers = [],
                            base_type = CAnalysedBaseTypeNode(self.pos, type=cfunc_type.return_type),
                            declarator = declarator,
                            body = self.body,
                            doc = self.doc,
                            overridable = cfunc_type.is_overridable,
                            type = cfunc_type,
                            with_gil = cfunc_type.with_gil,
                            nogil = cfunc_type.nogil,
                            visibility = 'private',
                            api = False,
                            directive_locals = getattr(cfunc, 'directive_locals', {}))

    def is_cdef_func_compatible(self):
        """Determines if the function's signature is compatible with a
        cdef function.  This can be used before calling
        .as_cfunction() to see if that will be successful.
        """
        if self.needs_closure:
            return False
        if self.star_arg or self.starstar_arg:
            return False
        return True

    def analyse_declarations(self, env):
        self.is_classmethod = self.is_staticmethod = False
        if self.decorators:
            for decorator in self.decorators:
                func = decorator.decorator
                if func.is_name:
                    self.is_classmethod |= func.name == 'classmethod'
                    self.is_staticmethod |= func.name == 'staticmethod'

        if self.is_classmethod and env.lookup_here('classmethod'):
            # classmethod() was overridden - not much we can do here ...
            self.is_classmethod = False
        if self.is_staticmethod and env.lookup_here('staticmethod'):
            # staticmethod() was overridden - not much we can do here ...
            self.is_staticmethod = False

        if self.name == '__new__' and env.is_py_class_scope:
            self.is_staticmethod = 1

        self.analyse_argument_types(env)
        if self.name == '<lambda>':
            self.declare_lambda_function(env)
        else:
            self.declare_pyfunction(env)
        self.analyse_signature(env)
        self.return_type = self.entry.signature.return_type()
        self.create_local_scope(env)

    def analyse_argument_types(self, env):
        directive_locals = self.directive_locals = env.directives['locals']
        allow_none_for_extension_args = env.directives['allow_none_for_extension_args']
        for arg in self.args:
            if hasattr(arg, 'name'):
                name_declarator = None
            else:
                base_type = arg.base_type.analyse(env)
                name_declarator, type = \
                    arg.declarator.analyse(base_type, env)
                arg.name = name_declarator.name
                arg.type = type
            self.align_argument_type(env, arg)
            if name_declarator and name_declarator.cname:
                error(self.pos,
                    "Python function argument cannot have C name specification")
            arg.type = arg.type.as_argument_type()
            arg.hdr_type = None
            arg.needs_conversion = 0
            arg.needs_type_test = 0
            arg.is_generic = 1
            if arg.type.is_pyobject:
                if arg.or_none:
                    arg.accept_none = True
                elif arg.not_none:
                    arg.accept_none = False
                elif arg.type.is_extension_type or arg.type.is_builtin_type:
                    if arg.default and arg.default.constant_result is None:
                        # special case: def func(MyType obj = None)
                        arg.accept_none = True
                    else:
                        # default depends on compiler directive
                        arg.accept_none = allow_none_for_extension_args
                else:
                    # probably just a plain 'object'
                    arg.accept_none = True
            else:
                arg.accept_none = True # won't be used, but must be there
                if arg.not_none:
                    error(arg.pos, "Only Python type arguments can have 'not None'")
                if arg.or_none:
                    error(arg.pos, "Only Python type arguments can have 'or None'")

    def analyse_signature(self, env):
        if self.entry.is_special:
            if self.decorators:
                error(self.pos, "special functions of cdef classes cannot have decorators")
            self.entry.trivial_signature = len(self.args) == 1 and not (self.star_arg or self.starstar_arg)
        elif not env.directives['always_allow_keywords'] and not (self.star_arg or self.starstar_arg):
            # Use the simpler calling signature for zero- and one-argument functions.
            if self.entry.signature is TypeSlots.pyfunction_signature:
                if len(self.args) == 0:
                    self.entry.signature = TypeSlots.pyfunction_noargs
                elif len(self.args) == 1:
                    if self.args[0].default is None and not self.args[0].kw_only:
                        self.entry.signature = TypeSlots.pyfunction_onearg
            elif self.entry.signature is TypeSlots.pymethod_signature:
                if len(self.args) == 1:
                    self.entry.signature = TypeSlots.unaryfunc
                elif len(self.args) == 2:
                    if self.args[1].default is None and not self.args[1].kw_only:
                        self.entry.signature = TypeSlots.ibinaryfunc

        sig = self.entry.signature
        nfixed = sig.num_fixed_args()
        if sig is TypeSlots.pymethod_signature and nfixed == 1 \
               and len(self.args) == 0 and self.star_arg:
            # this is the only case where a diverging number of
            # arguments is not an error - when we have no explicit
            # 'self' parameter as in method(*args)
            sig = self.entry.signature = TypeSlots.pyfunction_signature # self is not 'really' used
            self.self_in_stararg = 1
            nfixed = 0

        for i in range(min(nfixed, len(self.args))):
            arg = self.args[i]
            arg.is_generic = 0
            if sig.is_self_arg(i) and not self.is_staticmethod:
                if self.is_classmethod:
                    arg.is_type_arg = 1
                    arg.hdr_type = arg.type = Builtin.type_type
                else:
                    arg.is_self_arg = 1
                    arg.hdr_type = arg.type = env.parent_type
                arg.needs_conversion = 0
            else:
                arg.hdr_type = sig.fixed_arg_type(i)
                if not arg.type.same_as(arg.hdr_type):
                    if arg.hdr_type.is_pyobject and arg.type.is_pyobject:
                        arg.needs_type_test = 1
                    else:
                        arg.needs_conversion = 1
            if arg.needs_conversion:
                arg.hdr_cname = Naming.arg_prefix + arg.name
            else:
                arg.hdr_cname = Naming.var_prefix + arg.name

        if nfixed > len(self.args):
            self.bad_signature()
            return
        elif nfixed < len(self.args):
            if not sig.has_generic_args:
                self.bad_signature()
            for arg in self.args:
                if arg.is_generic and \
                        (arg.type.is_extension_type or arg.type.is_builtin_type):
                    arg.needs_type_test = 1

    def bad_signature(self):
        sig = self.entry.signature
        expected_str = "%d" % sig.num_fixed_args()
        if sig.has_generic_args:
            expected_str = expected_str + " or more"
        name = self.name
        if name.startswith("__") and name.endswith("__"):
            desc = "Special method"
        else:
            desc = "Method"
        error(self.pos,
            "%s %s has wrong number of arguments "
            "(%d declared, %s expected)" % (
                desc, self.name, len(self.args), expected_str))

    def signature_has_nongeneric_args(self):
        argcount = len(self.args)
        if argcount == 0 or (
                argcount == 1 and (self.args[0].is_self_arg or
                                   self.args[0].is_type_arg)):
            return 0
        return 1

    def signature_has_generic_args(self):
        return self.entry.signature.has_generic_args

    def declare_pyfunction(self, env):
        #print "DefNode.declare_pyfunction:", self.name, "in", env ###
        name = self.name
        entry = env.lookup_here(name)
        if entry:
            if entry.is_final_cmethod and not env.parent_type.is_final_type:
                error(self.pos, "Only final types can have final Python (def/cpdef) methods")
            if (entry.type.is_cfunction and not entry.is_builtin_cmethod
                and not self.is_wrapper):
                warning(self.pos, "Overriding cdef method with def method.", 5)
        entry = env.declare_pyfunction(name, self.pos, allow_redefine=not self.is_wrapper)
        self.entry = entry
        prefix = env.next_id(env.scope_prefix)
        entry.func_cname = Naming.pyfunc_prefix + prefix + name
        entry.pymethdef_cname = Naming.pymethdef_prefix + prefix + name
        if Options.docstrings:
            entry.doc = embed_position(self.pos, self.doc)
            entry.doc_cname = Naming.funcdoc_prefix + prefix + name
            if entry.is_special:
                if entry.name in TypeSlots.invisible or not entry.doc or (entry.name in '__getattr__' and env.directives['fast_getattr']):
                    entry.wrapperbase_cname = None
                else:
                    entry.wrapperbase_cname = Naming.wrapperbase_prefix + prefix + name
        else:
            entry.doc = None

    def declare_lambda_function(self, env):
        entry = env.declare_lambda_function(self.lambda_name, self.pos)
        entry.doc = None
        self.entry = entry

    def declare_arguments(self, env):
        for arg in self.args:
            if not arg.name:
                error(arg.pos, "Missing argument name")
            if arg.needs_conversion:
                arg.entry = env.declare_var(arg.name, arg.type, arg.pos)
                if arg.type.is_pyobject:
                    arg.entry.init = "0"
            else:
                arg.entry = self.declare_argument(env, arg)
            arg.entry.is_arg = 1
            arg.entry.used = 1
            arg.entry.is_self_arg = arg.is_self_arg
            if arg.hdr_type:
                if arg.is_self_arg or arg.is_type_arg or \
                    (arg.type.is_extension_type and not arg.hdr_type.is_extension_type):
                        arg.entry.is_declared_generic = 1
        self.declare_python_arg(env, self.star_arg)
        self.declare_python_arg(env, self.starstar_arg)

    def declare_python_arg(self, env, arg):
        if arg:
            if env.directives['infer_types'] != False:
                type = PyrexTypes.unspecified_type
            else:
                type = py_object_type
            entry = env.declare_var(arg.name, type, arg.pos)
            entry.is_arg = 1
            entry.used = 1
            entry.init = "0"
            entry.xdecref_cleanup = 1
            arg.entry = entry

    def analyse_expressions(self, env):
        self.local_scope.directives = env.directives
        self.analyse_default_values(env)
        if self.needs_assignment_synthesis(env):
            # Shouldn't we be doing this at the module level too?
            self.synthesize_assignment_node(env)
        elif self.decorators:
            for decorator in self.decorators[::-1]:
                decorator.decorator.analyse_expressions(env)

    def needs_assignment_synthesis(self, env, code=None):
        if self.no_assignment_synthesis:
            return False
        # Should enable for module level as well, that will require more testing...
        if self.entry.is_anonymous:
            return True
        if env.is_module_scope:
            if code is None:
                return env.directives['binding']
            else:
                return code.globalstate.directives['binding']
        return env.is_py_class_scope or env.is_closure_scope

    def synthesize_assignment_node(self, env):
        import ExprNodes
        genv = env
        while genv.is_py_class_scope or genv.is_c_class_scope:
            genv = genv.outer_scope

        if genv.is_closure_scope:
            rhs = self.py_cfunc_node = ExprNodes.InnerFunctionNode(
                self.pos, pymethdef_cname = self.entry.pymethdef_cname,
                code_object = ExprNodes.CodeObjectNode(self))
        else:
            rhs = self.py_cfunc_node = ExprNodes.PyCFunctionNode(
                self.pos, pymethdef_cname = self.entry.pymethdef_cname,
                binding = env.directives['binding'],
                code_object = ExprNodes.CodeObjectNode(self))

        if env.is_py_class_scope:
            if not self.is_staticmethod and not self.is_classmethod:
                rhs.binding = True
            else:
                rhs.binding = False

        if self.decorators:
            for decorator in self.decorators[::-1]:
                rhs = ExprNodes.SimpleCallNode(
                    decorator.pos,
                    function = decorator.decorator,
                    args = [rhs])

        self.assmt = SingleAssignmentNode(self.pos,
            lhs = ExprNodes.NameNode(self.pos, name = self.name),
            rhs = rhs)
        self.assmt.analyse_declarations(env)
        self.assmt.analyse_expressions(env)

    def generate_function_header(self, code, with_pymethdef, proto_only=0):
        arg_code_list = []
        sig = self.entry.signature
        if sig.has_dummy_arg or self.self_in_stararg:
            arg_code_list.append(
                "PyObject *%s" % Naming.self_cname)
        for arg in self.args:
            if not arg.is_generic:
                if arg.is_self_arg or arg.is_type_arg:
                    arg_code_list.append("PyObject *%s" % arg.hdr_cname)
                else:
                    decl = arg.hdr_type.declaration_code(arg.hdr_cname)
                    entry = self.local_scope.lookup(arg.name)
                    if not entry.cf_used:
                        arg_code_list.append('CYTHON_UNUSED ' + decl)
                    else:
                        arg_code_list.append(decl)
        if not self.entry.is_special and sig.method_flags() == [TypeSlots.method_noargs]:
            arg_code_list.append("CYTHON_UNUSED PyObject *unused")
        if (self.entry.scope.is_c_class_scope and self.entry.name == "__ipow__"):
            arg_code_list.append("CYTHON_UNUSED PyObject *unused")
        if sig.has_generic_args:
            arg_code_list.append(
                "PyObject *%s, PyObject *%s"
                    % (Naming.args_cname, Naming.kwds_cname))
        arg_code = ", ".join(arg_code_list)
        dc = self.return_type.declaration_code(self.entry.func_cname)
        mf = " ".join(self.modifiers).upper()
        if mf: mf += " "
        header = "static %s%s(%s)" % (mf, dc, arg_code)
        code.putln("%s; /*proto*/" % header)
        if proto_only:
            return
        if (Options.docstrings and self.entry.doc and
                not self.entry.scope.is_property_scope and
                (not self.entry.is_special or self.entry.wrapperbase_cname)):
            docstr = self.entry.doc
            if docstr.is_unicode:
                docstr = docstr.utf8encode()
            code.putln(
                'static char %s[] = "%s";' % (
                    self.entry.doc_cname,
                    split_string_literal(escape_byte_string(docstr))))
            if self.entry.is_special:
                code.putln(
                    "struct wrapperbase %s;" % self.entry.wrapperbase_cname)
        if with_pymethdef:
            code.put(
                "static PyMethodDef %s = " %
                    self.entry.pymethdef_cname)
            code.put_pymethoddef(self.entry, ";", allow_skip=False)
        code.putln("%s {" % header)

    def generate_argument_declarations(self, env, code):
        for arg in self.args:
            if arg.is_generic: # or arg.needs_conversion:
                if arg.needs_conversion:
                    code.putln("PyObject *%s = 0;" % arg.hdr_cname)
                elif not arg.entry.in_closure:
                    code.put_var_declaration(arg.entry)

    def generate_keyword_list(self, code):
        if self.signature_has_generic_args() and \
                self.signature_has_nongeneric_args():
            code.put(
                "static PyObject **%s[] = {" %
                    Naming.pykwdlist_cname)
            for arg in self.args:
                if arg.is_generic:
                    pystring_cname = code.intern_identifier(arg.name)
                    code.put('&%s,' % pystring_cname)
            code.putln("0};")

    def generate_argument_parsing_code(self, env, code):
        # Generate fast equivalent of PyArg_ParseTuple call for
        # generic arguments, if any, including args/kwargs
        if self.entry.signature.has_dummy_arg and not self.self_in_stararg:
            # get rid of unused argument warning
            code.putln("%s = %s;" % (Naming.self_cname, Naming.self_cname))

        old_error_label = code.new_error_label()
        our_error_label = code.error_label
        end_label = code.new_label("argument_unpacking_done")

        has_kwonly_args = self.num_kwonly_args > 0
        has_star_or_kw_args = self.star_arg is not None \
            or self.starstar_arg is not None or has_kwonly_args

        for arg in self.args:
            if not arg.type.is_pyobject:
                if not arg.type.create_from_py_utility_code(env):
                    pass # will fail later
            elif arg.is_self_arg and arg.entry.in_closure:
                # must store 'self' in the closure explicitly for extension types
                self.generate_arg_assignment(arg, arg.hdr_cname, code)

        if not self.signature_has_generic_args():
            if has_star_or_kw_args:
                error(self.pos, "This method cannot have * or keyword arguments")
            self.generate_argument_conversion_code(code)

        elif not self.signature_has_nongeneric_args():
            # func(*args) or func(**kw) or func(*args, **kw)
            self.generate_stararg_copy_code(code)

        else:
            positional_args = []
            kw_only_args = []
            for arg in self.args:
                arg_entry = arg.entry
                if arg.is_generic:
                    if arg.default:
                        if not arg.is_self_arg and not arg.is_type_arg:
                            if arg.kw_only:
                                kw_only_args.append(arg)
                            else:
                                positional_args.append(arg)
                    elif arg.kw_only:
                        kw_only_args.append(arg)
                    elif not arg.is_self_arg and not arg.is_type_arg:
                        positional_args.append(arg)

            self.generate_tuple_and_keyword_parsing_code(
                positional_args, kw_only_args, end_label, code)

        code.error_label = old_error_label
        if code.label_used(our_error_label):
            if not code.label_used(end_label):
                code.put_goto(end_label)
            code.put_label(our_error_label)
            if has_star_or_kw_args:
                self.generate_arg_decref(self.star_arg, code)
                if self.starstar_arg:
                    if self.starstar_arg.entry.xdecref_cleanup:
                        code.put_var_xdecref_clear(self.starstar_arg.entry)
                    else:
                        code.put_var_decref_clear(self.starstar_arg.entry)
            code.put_add_traceback(self.entry.qualified_name)
            # The arguments are put into the closure one after the
            # other, so when type errors are found, all references in
            # the closure instance must be properly ref-counted to
            # facilitate generic closure instance deallocation.  In
            # the case of an argument type error, it's best to just
            # DECREF+clear the already handled references, as this
            # frees their references as early as possible.
            for arg in self.args:
                if arg.type.is_pyobject and arg.entry.in_closure:
                    code.put_var_xdecref_clear(arg.entry)
            if self.needs_closure:
                code.put_decref(Naming.cur_scope_cname, self.local_scope.scope_class.type)
            code.put_finish_refcount_context()
            code.putln("return %s;" % self.error_value())
        if code.label_used(end_label):
            code.put_label(end_label)

        # fix refnanny view on closure variables here, instead of
        # doing it separately for each arg parsing special case
        if self.star_arg and self.star_arg.entry.in_closure:
            code.put_var_giveref(self.star_arg.entry)
        if self.starstar_arg and self.starstar_arg.entry.in_closure:
            code.put_var_giveref(self.starstar_arg.entry)
        for arg in self.args:
            if arg.type.is_pyobject and arg.entry.in_closure:
                code.put_var_giveref(arg.entry)

    def generate_arg_assignment(self, arg, item, code):
        if arg.type.is_pyobject:
            if arg.is_generic:
                item = PyrexTypes.typecast(arg.type, PyrexTypes.py_object_type, item)
            entry = arg.entry
            if entry.in_closure:
                code.put_incref(item, PyrexTypes.py_object_type)
            code.putln("%s = %s;" % (entry.cname, item))
        else:
            func = arg.type.from_py_function
            if func:
                code.putln("%s = %s(%s); %s" % (
                    arg.entry.cname,
                    func,
                    item,
                    code.error_goto_if(arg.type.error_condition(arg.entry.cname), arg.pos)))
            else:
                error(arg.pos, "Cannot convert Python object argument to type '%s'" % arg.type)

    def generate_arg_xdecref(self, arg, code):
        if arg:
            code.put_var_xdecref_clear(arg.entry)

    def generate_arg_decref(self, arg, code):
        if arg:
            code.put_var_decref_clear(arg.entry)

    def generate_stararg_copy_code(self, code):
        if not self.star_arg:
            code.globalstate.use_utility_code(raise_argtuple_invalid_utility_code)
            code.putln("if (unlikely(PyTuple_GET_SIZE(%s) > 0)) {" %
                       Naming.args_cname)
            code.put('__Pyx_RaiseArgtupleInvalid("%s", 1, 0, 0, PyTuple_GET_SIZE(%s)); return %s;' % (
                    self.name, Naming.args_cname, self.error_value()))
            code.putln("}")

        if self.starstar_arg:
            if self.star_arg:
                kwarg_check = "unlikely(%s)" % Naming.kwds_cname
            else:
                kwarg_check = "%s" % Naming.kwds_cname
        else:
            kwarg_check = "unlikely(%s) && unlikely(PyDict_Size(%s) > 0)" % (
                Naming.kwds_cname, Naming.kwds_cname)
        code.globalstate.use_utility_code(keyword_string_check_utility_code)
        code.putln(
            "if (%s && unlikely(!__Pyx_CheckKeywordStrings(%s, \"%s\", %d))) return %s;" % (
                kwarg_check, Naming.kwds_cname, self.name,
                bool(self.starstar_arg), self.error_value()))

        if self.starstar_arg:
            code.putln("%s = (%s) ? PyDict_Copy(%s) : PyDict_New();" % (
                    self.starstar_arg.entry.cname,
                    Naming.kwds_cname,
                    Naming.kwds_cname))
            code.putln("if (unlikely(!%s)) return %s;" % (
                    self.starstar_arg.entry.cname, self.error_value()))
            self.starstar_arg.entry.xdecref_cleanup = 0
            code.put_gotref(self.starstar_arg.entry.cname)

        if self.self_in_stararg:
            # need to create a new tuple with 'self' inserted as first item
            code.put("%s = PyTuple_New(PyTuple_GET_SIZE(%s)+1); if (unlikely(!%s)) " % (
                    self.star_arg.entry.cname,
                    Naming.args_cname,
                    self.star_arg.entry.cname))
            if self.starstar_arg:
                code.putln("{")
                code.put_decref_clear(self.starstar_arg.entry.cname, py_object_type)
                code.putln("return %s;" % self.error_value())
                code.putln("}")
            else:
                code.putln("return %s;" % self.error_value())
            code.put_gotref(self.star_arg.entry.cname)
            code.put_incref(Naming.self_cname, py_object_type)
            code.put_giveref(Naming.self_cname)
            code.putln("PyTuple_SET_ITEM(%s, 0, %s);" % (
                self.star_arg.entry.cname, Naming.self_cname))
            temp = code.funcstate.allocate_temp(PyrexTypes.c_py_ssize_t_type, manage_ref=False)
            code.putln("for (%s=0; %s < PyTuple_GET_SIZE(%s); %s++) {" % (
                temp, temp, Naming.args_cname, temp))
            code.putln("PyObject* item = PyTuple_GET_ITEM(%s, %s);" % (
                Naming.args_cname, temp))
            code.put_incref("item", py_object_type)
            code.put_giveref("item")
            code.putln("PyTuple_SET_ITEM(%s, %s+1, item);" % (
                self.star_arg.entry.cname, temp))
            code.putln("}")
            code.funcstate.release_temp(temp)
            self.star_arg.entry.xdecref_cleanup = 0
        elif self.star_arg:
            code.put_incref(Naming.args_cname, py_object_type)
            code.putln("%s = %s;" % (
                    self.star_arg.entry.cname,
                    Naming.args_cname))
            self.star_arg.entry.xdecref_cleanup = 0

    def generate_tuple_and_keyword_parsing_code(self, positional_args,
                                                kw_only_args, success_label, code):
        argtuple_error_label = code.new_label("argtuple_error")

        min_positional_args = self.num_required_args - self.num_required_kw_args
        if len(self.args) > 0 and (self.args[0].is_self_arg or self.args[0].is_type_arg):
            min_positional_args -= 1
        max_positional_args = len(positional_args)
        has_fixed_positional_count = not self.star_arg and \
            min_positional_args == max_positional_args
        has_kw_only_args = bool(kw_only_args)

        if self.num_required_kw_args:
            code.globalstate.use_utility_code(raise_keyword_required_utility_code)

        if self.starstar_arg or self.star_arg:
            self.generate_stararg_init_code(max_positional_args, code)

        # Before being converted and assigned to the target variables,
        # borrowed references to all unpacked argument values are
        # collected into a local PyObject* array, regardless if they
        # were taken from default arguments, positional arguments or
        # keyword arguments.
        code.putln('{')
        all_args = tuple(positional_args) + tuple(kw_only_args)
        self.generate_argument_values_setup_code(
            all_args, max_positional_args, argtuple_error_label, code)

        # --- optimised code when we receive keyword arguments
        code.putln("if (%s(%s)) {" % (
            (self.num_required_kw_args > 0) and "likely" or "unlikely",
            Naming.kwds_cname))
        self.generate_keyword_unpacking_code(
            min_positional_args, max_positional_args,
            has_fixed_positional_count, has_kw_only_args,
            all_args, argtuple_error_label, code)

        # --- optimised code when we do not receive any keyword arguments
        if (self.num_required_kw_args and min_positional_args > 0) or min_positional_args == max_positional_args:
            # Python raises arg tuple related errors first, so we must
            # check the length here
            if min_positional_args == max_positional_args and not self.star_arg:
                compare = '!='
            else:
                compare = '<'
            code.putln('} else if (PyTuple_GET_SIZE(%s) %s %d) {' % (
                    Naming.args_cname, compare, min_positional_args))
            code.put_goto(argtuple_error_label)

        if self.num_required_kw_args:
            # pure error case: keywords required but not passed
            if max_positional_args > min_positional_args and not self.star_arg:
                code.putln('} else if (PyTuple_GET_SIZE(%s) > %d) {' % (
                        Naming.args_cname, max_positional_args))
                code.put_goto(argtuple_error_label)
            code.putln('} else {')
            for i, arg in enumerate(kw_only_args):
                if not arg.default:
                    pystring_cname = code.intern_identifier(arg.name)
                    # required keyword-only argument missing
                    code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' % (
                            self.name,
                            pystring_cname))
                    code.putln(code.error_goto(self.pos))
                    break

        else:
            # optimised tuple unpacking code
            code.putln('} else {')
            if min_positional_args == max_positional_args:
                # parse the exact number of positional arguments from
                # the args tuple
                for i, arg in enumerate(positional_args):
                    code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
            else:
                # parse the positional arguments from the variable length
                # args tuple and reject illegal argument tuple sizes
                code.putln('switch (PyTuple_GET_SIZE(%s)) {' % Naming.args_cname)
                if self.star_arg:
                    code.putln('default:')
                reversed_args = list(enumerate(positional_args))[::-1]
                for i, arg in reversed_args:
                    if i >= min_positional_args-1:
                        code.put('case %2d: ' % (i+1))
                    code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
                if min_positional_args == 0:
                    code.put('case  0: ')
                code.putln('break;')
                if self.star_arg:
                    if min_positional_args:
                        for i in range(min_positional_args-1, -1, -1):
                            code.putln('case %2d:' % i)
                        code.put_goto(argtuple_error_label)
                else:
                    code.put('default: ')
                    code.put_goto(argtuple_error_label)
                code.putln('}')

        code.putln('}')

        # convert arg values to their final type and assign them
        for i, arg in enumerate(all_args):
            if arg.default and not arg.type.is_pyobject:
                code.putln("if (values[%d]) {" % i)
            self.generate_arg_assignment(arg, "values[%d]" % i, code)
            if arg.default and not arg.type.is_pyobject:
                code.putln('} else {')
                code.putln(
                    "%s = %s;" % (
                        arg.entry.cname,
                        arg.calculate_default_value_code(code)))
                code.putln('}')

        code.putln('}')

        if code.label_used(argtuple_error_label):
            code.put_goto(success_label)
            code.put_label(argtuple_error_label)
            code.globalstate.use_utility_code(raise_argtuple_invalid_utility_code)
            code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, PyTuple_GET_SIZE(%s)); ' % (
                    self.name, has_fixed_positional_count,
                    min_positional_args, max_positional_args,
                    Naming.args_cname))
            code.putln(code.error_goto(self.pos))

    def generate_arg_default_assignments(self, code):
        for arg in self.args:
            if arg.is_generic and arg.default:
                code.putln(
                    "%s = %s;" % (
                        arg.entry.cname,
                        arg.calculate_default_value_code(code)))

    def generate_stararg_init_code(self, max_positional_args, code):
        if self.starstar_arg:
            self.starstar_arg.entry.xdecref_cleanup = 0
            code.putln('%s = PyDict_New(); if (unlikely(!%s)) return %s;' % (
                    self.starstar_arg.entry.cname,
                    self.starstar_arg.entry.cname,
                    self.error_value()))
            code.put_gotref(self.starstar_arg.entry.cname)
        if self.star_arg:
            self.star_arg.entry.xdecref_cleanup = 0
            code.putln('if (PyTuple_GET_SIZE(%s) > %d) {' % (
                    Naming.args_cname,
                    max_positional_args))
            code.putln('%s = PyTuple_GetSlice(%s, %d, PyTuple_GET_SIZE(%s));' % (
                    self.star_arg.entry.cname, Naming.args_cname,
                    max_positional_args, Naming.args_cname))
            code.putln("if (unlikely(!%s)) {" % self.star_arg.entry.cname)
            if self.starstar_arg:
                code.put_decref_clear(self.starstar_arg.entry.cname, py_object_type)
            if self.needs_closure:
                code.put_decref(Naming.cur_scope_cname, self.local_scope.scope_class.type)
            code.put_finish_refcount_context()
            code.putln('return %s;' % self.error_value())
            code.putln('}')
            code.put_gotref(self.star_arg.entry.cname)
            code.putln('} else {')
            code.put("%s = %s; " % (self.star_arg.entry.cname, Naming.empty_tuple))
            code.put_incref(Naming.empty_tuple, py_object_type)
            code.putln('}')

    def generate_argument_values_setup_code(self, args, max_positional_args, argtuple_error_label, code):
        max_args = len(args)
        # the 'values' array collects borrowed references to arguments
        # before doing any type coercion etc.
        code.putln("PyObject* values[%d] = {%s};" % (
            max_args, ','.join('0'*max_args)))

        # assign borrowed Python default values to the values array,
        # so that they can be overwritten by received arguments below
        for i, arg in enumerate(args):
            if arg.default and arg.type.is_pyobject:
                default_value = arg.calculate_default_value_code(code)
                code.putln('values[%d] = %s;' % (i, arg.type.as_pyobject(default_value)))

    def generate_keyword_unpacking_code(self, min_positional_args, max_positional_args,
                                        has_fixed_positional_count, has_kw_only_args,
                                        all_args, argtuple_error_label, code):
        code.putln('Py_ssize_t kw_args;')
        code.putln('const Py_ssize_t pos_args = PyTuple_GET_SIZE(%s);' % Naming.args_cname)
        # copy the values from the args tuple and check that it's not too long
        code.putln('switch (pos_args) {')
        if self.star_arg:
            code.putln('default:')
        for i in range(max_positional_args-1, -1, -1):
            code.put('case %2d: ' % (i+1))
            code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (
                    i, Naming.args_cname, i))
        code.putln('case  0: break;')
        if not self.star_arg:
            code.put('default: ') # more arguments than allowed
            code.put_goto(argtuple_error_label)
        code.putln('}')

        # The code above is very often (but not always) the same as
        # the optimised non-kwargs tuple unpacking code, so we keep
        # the code block above at the very top, before the following
        # 'external' PyDict_Size() call, to make it easy for the C
        # compiler to merge the two separate tuple unpacking
        # implementations into one when they turn out to be identical.

        # If we received kwargs, fill up the positional/required
        # arguments with values from the kw dict
        code.putln('kw_args = PyDict_Size(%s);' % Naming.kwds_cname)
        if self.num_required_args or max_positional_args > 0:
            last_required_arg = -1
            for i, arg in enumerate(all_args):
                if not arg.default:
                    last_required_arg = i
            if last_required_arg < max_positional_args:
                last_required_arg = max_positional_args-1
            if max_positional_args > 0:
                code.putln('switch (pos_args) {')
            for i, arg in enumerate(all_args[:last_required_arg+1]):
                if max_positional_args > 0 and i <= max_positional_args:
                    if self.star_arg and i == max_positional_args:
                        code.putln('default:')
                    else:
                        code.putln('case %2d:' % i)
                pystring_cname = code.intern_identifier(arg.name)
                if arg.default:
                    if arg.kw_only:
                        # handled separately below
                        continue
                    code.putln('if (kw_args > 0) {')
                    code.putln('PyObject* value = PyDict_GetItem(%s, %s);' % (
                        Naming.kwds_cname, pystring_cname))
                    code.putln('if (value) { values[%d] = value; kw_args--; }' % i)
                    code.putln('}')
                else:
                    code.putln('values[%d] = PyDict_GetItem(%s, %s);' % (
                        i, Naming.kwds_cname, pystring_cname))
                    code.putln('if (likely(values[%d])) kw_args--;' % i);
                    if i < min_positional_args:
                        if i == 0:
                            # special case: we know arg 0 is missing
                            code.put('else ')
                            code.put_goto(argtuple_error_label)
                        else:
                            # print the correct number of values (args or
                            # kwargs) that were passed into positional
                            # arguments up to this point
                            code.putln('else {')
                            code.globalstate.use_utility_code(raise_argtuple_invalid_utility_code)
                            code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, %d); ' % (
                                    self.name, has_fixed_positional_count,
                                    min_positional_args, max_positional_args, i))
                            code.putln(code.error_goto(self.pos))
                            code.putln('}')
                    elif arg.kw_only:
                        code.putln('else {')
                        code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' %(
                                self.name, pystring_cname))
                        code.putln(code.error_goto(self.pos))
                        code.putln('}')
            if max_positional_args > 0:
                code.putln('}')

        if has_kw_only_args and not self.starstar_arg:
            # unpack optional keyword-only arguments
            # checking for interned strings in a dict is faster than iterating
            # but it's too likely that we must iterate if we expect **kwargs
            optional_args = []
            for i, arg in enumerate(all_args[max_positional_args:]):
                if not arg.kw_only or not arg.default:
                    continue
                optional_args.append((i+max_positional_args, arg))
            if optional_args:
                # this mimics an unrolled loop so that we can "break" out of it
                code.putln('while (kw_args > 0) {')
                code.putln('PyObject* value;')
                for i, arg in optional_args:
                    pystring_cname = code.intern_identifier(arg.name)
                    code.putln(
                        'value = PyDict_GetItem(%s, %s);' % (
                        Naming.kwds_cname, pystring_cname))
                    code.putln(
                        'if (value) { values[%d] = value; if (!(--kw_args)) break; }' % i)
                code.putln('break;')
                code.putln('}')

        code.putln('if (unlikely(kw_args > 0)) {')
        # non-positional/-required kw args left in dict: default args,
        # kw-only args, **kwargs or error
        #
        # This is sort of a catch-all: except for checking required
        # arguments, this will always do the right thing for unpacking
        # keyword arguments, so that we can concentrate on optimising
        # common cases above.
        if max_positional_args == 0:
            pos_arg_count = "0"
        elif self.star_arg:
            code.putln("const Py_ssize_t used_pos_args = (pos_args < %d) ? pos_args : %d;" % (
                    max_positional_args, max_positional_args))
            pos_arg_count = "used_pos_args"
        else:
            pos_arg_count = "pos_args"
        code.globalstate.use_utility_code(parse_keywords_utility_code)
        code.putln(
            'if (unlikely(__Pyx_ParseOptionalKeywords(%s, %s, %s, values, %s, "%s") < 0)) %s' % (
                Naming.kwds_cname,
                Naming.pykwdlist_cname,
                self.starstar_arg and self.starstar_arg.entry.cname or '0',
                pos_arg_count,
                self.name,
                code.error_goto(self.pos)))
        code.putln('}')

    def generate_argument_conversion_code(self, code):
        # Generate code to convert arguments from signature type to
        # declared type, if needed.  Also copies signature arguments
        # into closure fields.
        for arg in self.args:
            if arg.needs_conversion:
                self.generate_arg_conversion(arg, code)
            elif not arg.is_self_arg and arg.entry.in_closure:
                if arg.type.is_pyobject:
                    code.put_incref(arg.hdr_cname, py_object_type)
                code.putln('%s = %s;' % (arg.entry.cname, arg.hdr_cname))

    def generate_arg_conversion(self, arg, code):
        # Generate conversion code for one argument.
        old_type = arg.hdr_type
        new_type = arg.type
        if old_type.is_pyobject:
            if arg.default:
                code.putln("if (%s) {" % arg.hdr_cname)
            else:
                code.putln("assert(%s); {" % arg.hdr_cname)
            self.generate_arg_conversion_from_pyobject(arg, code)
            code.putln("}")
        elif new_type.is_pyobject:
            self.generate_arg_conversion_to_pyobject(arg, code)
        else:
            if new_type.assignable_from(old_type):
                code.putln(
                    "%s = %s;" % (arg.entry.cname, arg.hdr_cname))
            else:
                error(arg.pos,
                    "Cannot convert 1 argument from '%s' to '%s'" %
                        (old_type, new_type))

    def generate_arg_conversion_from_pyobject(self, arg, code):
        new_type = arg.type
        func = new_type.from_py_function
        # copied from CoerceFromPyTypeNode
        if func:
            lhs = arg.entry.cname
            rhs = "%s(%s)" % (func, arg.hdr_cname)
            if new_type.is_enum:
                rhs = PyrexTypes.typecast(new_type, PyrexTypes.c_long_type, rhs)
            code.putln("%s = %s; %s" % (
                lhs,
                rhs,
                code.error_goto_if(new_type.error_condition(arg.entry.cname), arg.pos)))
        else:
            error(arg.pos,
                "Cannot convert Python object argument to type '%s'"
                    % new_type)

    def generate_arg_conversion_to_pyobject(self, arg, code):
        old_type = arg.hdr_type
        func = old_type.to_py_function
        if func:
            code.putln("%s = %s(%s); %s" % (
                arg.entry.cname,
                func,
                arg.hdr_cname,
                code.error_goto_if_null(arg.entry.cname, arg.pos)))
            code.put_var_gotref(arg.entry)
        else:
            error(arg.pos,
                "Cannot convert argument of type '%s' to Python object"
                    % old_type)

    def generate_argument_type_tests(self, code):
        # Generate type tests for args whose signature
        # type is PyObject * and whose declared type is
        # a subtype thereof.
        for arg in self.args:
            if arg.needs_type_test:
                self.generate_arg_type_test(arg, code)
            elif not arg.accept_none and arg.type.is_pyobject:
                self.generate_arg_none_check(arg, code)

    def error_value(self):
        return self.entry.signature.error_value

    def caller_will_check_exceptions(self):
        return 1


class GeneratorDefNode(DefNode):
    # Generator DefNode.
    #
    # gbody          GeneratorBodyDefNode
    #

    is_generator = True
    needs_closure = True

    child_attrs = DefNode.child_attrs + ["gbody"]

    def __init__(self, **kwargs):
        # XXX: don't actually needs a body
        kwargs['body'] = StatListNode(kwargs['pos'], stats=[])
        super(GeneratorDefNode, self).__init__(**kwargs)

    def analyse_declarations(self, env):
        super(GeneratorDefNode, self).analyse_declarations(env)
        self.gbody.local_scope = self.local_scope
        self.gbody.analyse_declarations(env)

    def generate_function_body(self, env, code):
        body_cname = self.gbody.entry.func_cname
        generator_cname = '%s->%s' % (Naming.cur_scope_cname, Naming.obj_base_cname)

        code.putln('%s.resume_label = 0;' % generator_cname)
        code.putln('%s.body = (__pyx_generator_body_t) %s;' % (generator_cname, body_cname))
        code.put_giveref(Naming.cur_scope_cname)
        code.put_finish_refcount_context()
        code.putln("return (PyObject *) %s;" % Naming.cur_scope_cname);

    def generate_function_definitions(self, env, code):
        from ExprNodes import generator_utility_code
        env.use_utility_code(generator_utility_code)

        self.gbody.generate_function_header(code, proto=True)
        super(GeneratorDefNode, self).generate_function_definitions(env, code)
        self.gbody.generate_function_definitions(env, code)


class GeneratorBodyDefNode(DefNode):
    # Generator body DefNode.
    #

    is_generator_body = True

    def __init__(self, pos=None, name=None, body=None):
        super(GeneratorBodyDefNode, self).__init__(pos=pos, body=body, name=name, doc=None,
                                                   args=[],
                                                   star_arg=None, starstar_arg=None)

    def declare_generator_body(self, env):
        prefix = env.next_id(env.scope_prefix)
        name = env.next_id('generator')
        cname = Naming.genbody_prefix + prefix + name
        entry = env.declare_var(None, py_object_type, self.pos,
                                cname=cname, visibility='private')
        entry.func_cname = cname
        entry.qualified_name = EncodedString(self.name)
        self.entry = entry

    def analyse_declarations(self, env):
        self.analyse_argument_types(env)
        self.declare_generator_body(env)

    def generate_function_header(self, code, proto=False):
        header = "static PyObject *%s(%s, PyObject *%s)" % (
            self.entry.func_cname,
            self.local_scope.scope_class.type.declaration_code(Naming.cur_scope_cname),
            Naming.sent_value_cname)
        if proto:
            code.putln('%s; /* proto */' % header)
        else:
            code.putln('%s /* generator body */\n{' % header);

    def generate_function_definitions(self, env, code):
        lenv = self.local_scope

        # Generate closure function definitions
        self.body.generate_function_definitions(lenv, code)

        # Generate C code for header and body of function
        code.enter_cfunc_scope()
        code.return_from_error_cleanup_label = code.new_label()

        # ----- Top-level constants used by this function
        code.mark_pos(self.pos)
        self.generate_cached_builtins_decls(lenv, code)
        # ----- Function header
        code.putln("")
        self.generate_function_header(code)
        # ----- Local variables
        code.putln("PyObject *%s = NULL;" % Naming.retval_cname)
        tempvardecl_code = code.insertion_point()
        code.put_declare_refcount_context()
        code.put_setup_refcount_context(self.entry.name)

        # ----- Resume switch point.
        code.funcstate.init_closure_temps(lenv.scope_class.type.scope)
        resume_code = code.insertion_point()
        first_run_label = code.new_label('first_run')
        code.use_label(first_run_label)
        code.put_label(first_run_label)
        code.putln('%s' %
                   (code.error_goto_if_null(Naming.sent_value_cname, self.pos)))

        # ----- Function body
        self.generate_function_body(env, code)
        code.putln('PyErr_SetNone(PyExc_StopIteration); %s' % code.error_goto(self.pos))
        # ----- Error cleanup
        if code.error_label in code.labels_used:
            code.put_goto(code.return_label)
            code.put_label(code.error_label)
            for cname, type in code.funcstate.all_managed_temps():
                code.put_xdecref(cname, type)
            code.put_add_traceback(self.entry.qualified_name)

        # ----- Non-error return cleanup
        code.put_label(code.return_label)
        code.put_xdecref(Naming.retval_cname, py_object_type)
        code.putln('%s->%s.resume_label = -1;' % (Naming.cur_scope_cname, Naming.obj_base_cname))
        code.put_finish_refcount_context()
        code.putln('return NULL;');
        code.putln("}")

        # ----- Go back and insert temp variable declarations
        tempvardecl_code.put_temp_declarations(code.funcstate)
        # ----- Generator resume code
        resume_code.putln("switch (%s->%s.resume_label) {" % (Naming.cur_scope_cname, Naming.obj_base_cname));
        resume_code.putln("case 0: goto %s;" % first_run_label)

        from ParseTreeTransforms import YieldNodeCollector
        collector = YieldNodeCollector()
        collector.visitchildren(self)
        for yield_expr in collector.yields:
            resume_code.putln("case %d: goto %s;" % (yield_expr.label_num, yield_expr.label_name));
        resume_code.putln("default: /* CPython raises the right error here */");
        resume_code.put_finish_refcount_context()
        resume_code.putln("return NULL;");
        resume_code.putln("}");

        code.exit_cfunc_scope()


class OverrideCheckNode(StatNode):
    # A Node for dispatching to the def method if it
    # is overriden.
    #
    #  py_func
    #
    #  args
    #  func_temp
    #  body

    child_attrs = ['body']

    body = None

    def analyse_expressions(self, env):
        self.args = env.arg_entries
        if self.py_func.is_module_scope:
            first_arg = 0
        else:
            first_arg = 1
        import ExprNodes
        self.func_node = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
        call_tuple = ExprNodes.TupleNode(self.pos, args=[ExprNodes.NameNode(self.pos, name=arg.name) for arg in self.args[first_arg:]])
        call_node = ExprNodes.SimpleCallNode(self.pos,
                                             function=self.func_node,
                                             args=[ExprNodes.NameNode(self.pos, name=arg.name) for arg in self.args[first_arg:]])
        self.body = ReturnStatNode(self.pos, value=call_node)
        self.body.analyse_expressions(env)

    def generate_execution_code(self, code):
        interned_attr_cname = code.intern_identifier(self.py_func.entry.name)
        # Check to see if we are an extension type
        if self.py_func.is_module_scope:
            self_arg = "((PyObject *)%s)" % Naming.module_cname
        else:
            self_arg = "((PyObject *)%s)" % self.args[0].cname
        code.putln("/* Check if called by wrapper */")
        code.putln("if (unlikely(%s)) ;" % Naming.skip_dispatch_cname)
        code.putln("/* Check if overriden in Python */")
        if self.py_func.is_module_scope:
            code.putln("else {")
        else:
            code.putln("else if (unlikely(Py_TYPE(%s)->tp_dictoffset != 0)) {" % self_arg)
        func_node_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
        self.func_node.set_cname(func_node_temp)
        # need to get attribute manually--scope would return cdef method
        err = code.error_goto_if_null(func_node_temp, self.pos)
        code.putln("%s = PyObject_GetAttr(%s, %s); %s" % (
            func_node_temp, self_arg, interned_attr_cname, err))
        code.put_gotref(func_node_temp)
        is_builtin_function_or_method = "PyCFunction_Check(%s)" % func_node_temp
        is_overridden = "(PyCFunction_GET_FUNCTION(%s) != (void *)&%s)" % (
            func_node_temp, self.py_func.entry.func_cname)
        code.putln("if (!%s || %s) {" % (is_builtin_function_or_method, is_overridden))
        self.body.generate_execution_code(code)
        code.putln("}")
        code.put_decref_clear(func_node_temp, PyrexTypes.py_object_type)
        code.funcstate.release_temp(func_node_temp)
        code.putln("}")

class ClassDefNode(StatNode, BlockNode):
    pass

class PyClassDefNode(ClassDefNode):
    #  A Python class definition.
    #
    #  name     EncodedString   Name of the class
    #  doc      string or None
    #  body     StatNode        Attribute definition code
    #  entry    Symtab.Entry
    #  scope    PyClassScope
    #  decorators    [DecoratorNode]        list of decorators or None
    #
    #  The following subnodes are constructed internally:
    #
    #  dict     DictNode   Class dictionary or Py3 namespace
    #  classobj ClassNode  Class object
    #  target   NameNode   Variable to assign class object to

    child_attrs = ["body", "dict", "metaclass", "mkw", "bases", "class_result", "target"]
    decorators = None
    class_result = None
    py3_style_class = False # Python3 style class (bases+kwargs)

    def __init__(self, pos, name, bases, doc, body, decorators = None,
                 keyword_args = None, starstar_arg = None):
        StatNode.__init__(self, pos)
        self.name = name
        self.doc = doc
        self.body = body
        self.decorators = decorators
        import ExprNodes
        if self.doc and Options.docstrings:
            doc = embed_position(self.pos, self.doc)
            doc_node = ExprNodes.StringNode(pos, value = doc)
        else:
            doc_node = None
        if keyword_args or starstar_arg:
            self.py3_style_class = True
            self.bases = bases
            self.metaclass = None
            if keyword_args and not starstar_arg:
                for i, item in list(enumerate(keyword_args.key_value_pairs))[::-1]:
                    if item.key.value == 'metaclass':
                        if self.metaclass is not None:
                            error(item.pos, "keyword argument 'metaclass' passed multiple times")
                        # special case: we already know the metaclass,
                        # so we don't need to do the "build kwargs,
                        # find metaclass" dance at runtime
                        self.metaclass = item.value
                        del keyword_args.key_value_pairs[i]
            if starstar_arg or (keyword_args and keyword_args.key_value_pairs):
                self.mkw = ExprNodes.KeywordArgsNode(
                    pos, keyword_args = keyword_args, starstar_arg = starstar_arg)
            else:
                self.mkw = ExprNodes.NullNode(pos)
            if self.metaclass is None:
                self.metaclass = ExprNodes.PyClassMetaclassNode(
                    pos, mkw = self.mkw, bases = self.bases)
            self.dict = ExprNodes.PyClassNamespaceNode(pos, name = name,
                        doc = doc_node, metaclass = self.metaclass, bases = self.bases,
                        mkw = self.mkw)
            self.classobj = ExprNodes.Py3ClassNode(pos, name = name,
                    bases = self.bases, dict = self.dict, doc = doc_node,
                    metaclass = self.metaclass, mkw = self.mkw)
        else:
            self.dict = ExprNodes.DictNode(pos, key_value_pairs = [])
            self.metaclass = None
            self.mkw = None
            self.bases = None
            self.classobj = ExprNodes.ClassNode(pos, name = name,
                    bases = bases, dict = self.dict, doc = doc_node)
        self.target = ExprNodes.NameNode(pos, name = name)

    def as_cclass(self):
        """
        Return this node as if it were declared as an extension class
        """
        if self.py3_style_class:
            error(self.classobj.pos, "Python3 style class could not be represented as C class")
            return
        bases = self.classobj.bases.args
        if len(bases) == 0:
            base_class_name = None
            base_class_module = None
        elif len(bases) == 1:
            base = bases[0]
            path = []
            from ExprNodes import AttributeNode, NameNode
            while isinstance(base, AttributeNode):
                path.insert(0, base.attribute)
                base = base.obj
            if isinstance(base, NameNode):
                path.insert(0, base.name)
                base_class_name = path[-1]
                if len(path) > 1:
                    base_class_module = u'.'.join(path[:-1])
                else:
                    base_class_module = None
            else:
                error(self.classobj.bases.args.pos, "Invalid base class")
        else:
            error(self.classobj.bases.args.pos, "C class may only have one base class")
            return None

        return CClassDefNode(self.pos,
                             visibility = 'private',
                             module_name = None,
                             class_name = self.name,
                             base_class_module = base_class_module,
                             base_class_name = base_class_name,
                             decorators = self.decorators,
                             body = self.body,
                             in_pxd = False,
                             doc = self.doc)

    def create_scope(self, env):
        genv = env
        while genv.is_py_class_scope or genv.is_c_class_scope:
            genv = genv.outer_scope
        cenv = self.scope = PyClassScope(name = self.name, outer_scope = genv)
        return cenv

    def analyse_declarations(self, env):
        class_result = self.classobj
        if self.decorators:
            from ExprNodes import SimpleCallNode
            for decorator in self.decorators[::-1]:
                class_result = SimpleCallNode(
                    decorator.pos,
                    function = decorator.decorator,
                    args = [class_result])
        self.class_result = class_result
        self.class_result.analyse_declarations(env)
        self.target.analyse_target_declaration(env)
        cenv = self.create_scope(env)
        cenv.directives = env.directives
        cenv.class_obj_cname = self.target.entry.cname
        self.body.analyse_declarations(cenv)

    def analyse_expressions(self, env):
        if self.py3_style_class:
            self.bases.analyse_expressions(env)
            self.metaclass.analyse_expressions(env)
            self.mkw.analyse_expressions(env)
        self.dict.analyse_expressions(env)
        self.class_result.analyse_expressions(env)
        genv = env.global_scope()
        cenv = self.scope
        self.body.analyse_expressions(cenv)
        self.target.analyse_target_expression(env, self.classobj)

    def generate_function_definitions(self, env, code):
        self.generate_lambda_definitions(self.scope, code)
        self.body.generate_function_definitions(self.scope, code)

    def generate_execution_code(self, code):
        code.pyclass_stack.append(self)
        cenv = self.scope
        if self.py3_style_class:
            self.bases.generate_evaluation_code(code)
            self.mkw.generate_evaluation_code(code)
            self.metaclass.generate_evaluation_code(code)
        self.dict.generate_evaluation_code(code)
        cenv.namespace_cname = cenv.class_obj_cname = self.dict.result()
        self.body.generate_execution_code(code)
        self.class_result.generate_evaluation_code(code)
        cenv.namespace_cname = cenv.class_obj_cname = self.classobj.result()
        self.target.generate_assignment_code(self.class_result, code)
        self.dict.generate_disposal_code(code)
        self.dict.free_temps(code)
        if self.py3_style_class:
            self.mkw.generate_disposal_code(code)
            self.mkw.free_temps(code)
            self.metaclass.generate_disposal_code(code)
            self.metaclass.free_temps(code)
            self.bases.generate_disposal_code(code)
            self.bases.free_temps(code)
        code.pyclass_stack.pop()

class CClassDefNode(ClassDefNode):
    #  An extension type definition.
    #
    #  visibility         'private' or 'public' or 'extern'
    #  typedef_flag       boolean
    #  api                boolean
    #  module_name        string or None    For import of extern type objects
    #  class_name         string            Unqualified name of class
    #  as_name            string or None    Name to declare as in this scope
    #  base_class_module  string or None    Module containing the base class
    #  base_class_name    string or None    Name of the base class
    #  objstruct_name     string or None    Specified C name of object struct
    #  typeobj_name       string or None    Specified C name of type object
    #  in_pxd             boolean           Is in a .pxd file
    #  decorators         [DecoratorNode]   list of decorators or None
    #  doc                string or None
    #  body               StatNode or None
    #  entry              Symtab.Entry
    #  base_type          PyExtensionType or None
    #  buffer_defaults_node DictNode or None Declares defaults for a buffer
    #  buffer_defaults_pos

    child_attrs = ["body"]
    buffer_defaults_node = None
    buffer_defaults_pos = None
    typedef_flag = False
    api = False
    objstruct_name = None
    typeobj_name = None
    decorators = None
    shadow = False

    def buffer_defaults(self, env):
        if not hasattr(self, '_buffer_defaults'):
            import Buffer
            if self.buffer_defaults_node:
                self._buffer_defaults = Buffer.analyse_buffer_options(
                    self.buffer_defaults_pos,
                    env, [], self.buffer_defaults_node,
                    need_complete=False)
            else:
                self._buffer_defaults = None
        return self._buffer_defaults

    def declare(self, env):
        if self.module_name and self.visibility != 'extern':
            module_path = self.module_name.split(".")
            home_scope = env.find_imported_module(module_path, self.pos)
            if not home_scope:
                return None
        else:
            home_scope = env

        self.entry = home_scope.declare_c_class(
            name = self.class_name,
            pos = self.pos,
            defining = 0,
            implementing = 0,
            module_name = self.module_name,
            base_type = None,
            objstruct_cname = self.objstruct_name,
            typeobj_cname = self.typeobj_name,
            visibility = self.visibility,
            typedef_flag = self.typedef_flag,
            api = self.api,
            buffer_defaults = self.buffer_defaults(env),
            shadow = self.shadow)

    def analyse_declarations(self, env):
        #print "CClassDefNode.analyse_declarations:", self.class_name
        #print "...visibility =", self.visibility
        #print "...module_name =", self.module_name

        if env.in_cinclude and not self.objstruct_name:
            error(self.pos, "Object struct name specification required for "
                "C class defined in 'extern from' block")
        if self.decorators:
            error(self.pos,
                  "Decorators not allowed on cdef classes (used on type '%s')" % self.class_name)
        self.base_type = None
        # Now that module imports are cached, we need to
        # import the modules for extern classes.
        if self.module_name:
            self.module = None
            for module in env.cimported_modules:
                if module.name == self.module_name:
                    self.module = module
            if self.module is None:
                self.module = ModuleScope(self.module_name, None, env.context)
                self.module.has_extern_class = 1
                env.add_imported_module(self.module)

        if self.base_class_name:
            if self.base_class_module:
                base_class_scope = env.find_module(self.base_class_module, self.pos)
            else:
                base_class_scope = env
            if self.base_class_name == 'object':
                # extension classes are special and don't need to inherit from object
                if base_class_scope is None or base_class_scope.lookup('object') is None:
                    self.base_class_name = None
                    self.base_class_module = None
                    base_class_scope = None
            if base_class_scope:
                base_class_entry = base_class_scope.find(self.base_class_name, self.pos)
                if base_class_entry:
                    if not base_class_entry.is_type:
                        error(self.pos, "'%s' is not a type name" % self.base_class_name)
                    elif not base_class_entry.type.is_extension_type and \
                             not (base_class_entry.type.is_builtin_type and \
                                  base_class_entry.type.objstruct_cname):
                        error(self.pos, "'%s' is not an extension type" % self.base_class_name)
                    elif not base_class_entry.type.is_complete():
                        error(self.pos, "Base class '%s' of type '%s' is incomplete" % (
                            self.base_class_name, self.class_name))
                    elif base_class_entry.type.scope and base_class_entry.type.scope.directives and \
                             base_class_entry.type.is_final_type:
                        error(self.pos, "Base class '%s' of type '%s' is final" % (
                            self.base_class_name, self.class_name))
                    elif base_class_entry.type.is_builtin_type and \
                             base_class_entry.type.name in ('tuple', 'str', 'bytes'):
                        error(self.pos, "inheritance from PyVarObject types like '%s' is not currently supported"
                              % base_class_entry.type.name)
                    else:
                        self.base_type = base_class_entry.type
        has_body = self.body is not None
        if self.module_name and self.visibility != 'extern':
            module_path = self.module_name.split(".")
            home_scope = env.find_imported_module(module_path, self.pos)
            if not home_scope:
                return
        else:
            home_scope = env

        if self.visibility == 'extern':
            if (self.module_name == '__builtin__' and
                self.class_name in Builtin.builtin_types and
                env.qualified_name[:8] != 'cpython.'): # allow overloaded names for cimporting from cpython
                warning(self.pos, "%s already a builtin Cython type" % self.class_name, 1)

        self.entry = home_scope.declare_c_class(
            name = self.class_name,
            pos = self.pos,
            defining = has_body and self.in_pxd,
            implementing = has_body and not self.in_pxd,
            module_name = self.module_name,
            base_type = self.base_type,
            objstruct_cname = self.objstruct_name,
            typeobj_cname = self.typeobj_name,
            visibility = self.visibility,
            typedef_flag = self.typedef_flag,
            api = self.api,
            buffer_defaults = self.buffer_defaults(env),
            shadow = self.shadow)

        if self.shadow:
            home_scope.lookup(self.class_name).as_variable = self.entry
        if home_scope is not env and self.visibility == 'extern':
            env.add_imported_entry(self.class_name, self.entry, self.pos)
        self.scope = scope = self.entry.type.scope
        if scope is not None:
            scope.directives = env.directives

        if self.doc and Options.docstrings:
            scope.doc = embed_position(self.pos, self.doc)

        if has_body:
            self.body.analyse_declarations(scope)
            if self.in_pxd:
                scope.defined = 1
            else:
                scope.implemented = 1
        env.allocate_vtable_names(self.entry)

    def analyse_expressions(self, env):
        if self.body:
            scope = self.entry.type.scope
            self.body.analyse_expressions(scope)

    def generate_function_definitions(self, env, code):
        if self.body:
            self.generate_lambda_definitions(self.scope, code)
            self.body.generate_function_definitions(self.scope, code)

    def generate_execution_code(self, code):
        # This is needed to generate evaluation code for
        # default values of method arguments.
        if self.body:
            self.body.generate_execution_code(code)

    def annotate(self, code):
        if self.body:
            self.body.annotate(code)


class PropertyNode(StatNode):
    #  Definition of a property in an extension type.
    #
    #  name   string
    #  doc    EncodedString or None    Doc string
    #  body   StatListNode

    child_attrs = ["body"]

    def analyse_declarations(self, env):
        entry = env.declare_property(self.name, self.doc, self.pos)
        if entry:
            entry.scope.directives = env.directives
            self.body.analyse_declarations(entry.scope)

    def analyse_expressions(self, env):
        self.body.analyse_expressions(env)

    def generate_function_definitions(self, env, code):
        self.body.generate_function_definitions(env, code)

    def generate_execution_code(self, code):
        pass

    def annotate(self, code):
        self.body.annotate(code)


class GlobalNode(StatNode):
    # Global variable declaration.
    #
    # names    [string]

    child_attrs = []

    def analyse_declarations(self, env):
        for name in self.names:
            env.declare_global(name, self.pos)

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        pass


class NonlocalNode(StatNode):
    # Nonlocal variable declaration via the 'nonlocal' keyword.
    #
    # names    [string]

    child_attrs = []

    def analyse_declarations(self, env):
        for name in self.names:
            env.declare_nonlocal(name, self.pos)

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        pass


class ExprStatNode(StatNode):
    #  Expression used as a statement.
    #
    #  expr   ExprNode

    child_attrs = ["expr"]

    def analyse_declarations(self, env):
        import ExprNodes
        if isinstance(self.expr, ExprNodes.GeneralCallNode):
            func = self.expr.function.as_cython_attribute()
            if func == u'declare':
                args, kwds = self.expr.explicit_args_kwds()
                if len(args):
                    error(self.expr.pos, "Variable names must be specified.")
                for var, type_node in kwds.key_value_pairs:
                    type = type_node.analyse_as_type(env)
                    if type is None:
                        error(type_node.pos, "Unknown type")
                    else:
                        env.declare_var(var.value, type, var.pos, is_cdef = True)
                self.__class__ = PassStatNode

    def analyse_expressions(self, env):
        self.expr.result_is_used = False # hint that .result() may safely be left empty
        self.expr.analyse_expressions(env)

    def nogil_check(self, env):
        if self.expr.type.is_pyobject and self.expr.is_temp:
            self.gil_error()

    gil_message = "Discarding owned Python object"

    def generate_execution_code(self, code):
        self.expr.generate_evaluation_code(code)
        if not self.expr.is_temp and self.expr.result():
            code.putln("%s;" % self.expr.result())
        self.expr.generate_disposal_code(code)
        self.expr.free_temps(code)

    def generate_function_definitions(self, env, code):
        self.expr.generate_function_definitions(env, code)

    def annotate(self, code):
        self.expr.annotate(code)


class AssignmentNode(StatNode):
    #  Abstract base class for assignment nodes.
    #
    #  The analyse_expressions and generate_execution_code
    #  phases of assignments are split into two sub-phases
    #  each, to enable all the right hand sides of a
    #  parallel assignment to be evaluated before assigning
    #  to any of the left hand sides.

    def analyse_expressions(self, env):
        self.analyse_types(env)

#       def analyse_expressions(self, env):
#           self.analyse_expressions_1(env)
#           self.analyse_expressions_2(env)

    def generate_execution_code(self, code):
        self.generate_rhs_evaluation_code(code)
        self.generate_assignment_code(code)


class SingleAssignmentNode(AssignmentNode):
    #  The simplest case:
    #
    #    a = b
    #
    #  lhs      ExprNode      Left hand side
    #  rhs      ExprNode      Right hand side
    #  first    bool          Is this guaranteed the first assignment to lhs?

    child_attrs = ["lhs", "rhs"]
    first = False
    declaration_only = False

    def analyse_declarations(self, env):
        import ExprNodes

        # handle declarations of the form x = cython.foo()
        if isinstance(self.rhs, ExprNodes.CallNode):
            func_name = self.rhs.function.as_cython_attribute()
            if func_name:
                args, kwds = self.rhs.explicit_args_kwds()

                if func_name in ['declare', 'typedef']:
                    if len(args) > 2 or kwds is not None:
                        error(self.rhs.pos, "Can only declare one type at a time.")
                        return
                    type = args[0].analyse_as_type(env)
                    if type is None:
                        error(args[0].pos, "Unknown type")
                        return
                    lhs = self.lhs
                    if func_name == 'declare':
                        if isinstance(lhs, ExprNodes.NameNode):
                            vars = [(lhs.name, lhs.pos)]
                        elif isinstance(lhs, ExprNodes.TupleNode):
                            vars = [(var.name, var.pos) for var in lhs.args]
                        else:
                            error(lhs.pos, "Invalid declaration")
                            return
                        for var, pos in vars:
                            env.declare_var(var, type, pos, is_cdef = True)
                        if len(args) == 2:
                            # we have a value
                            self.rhs = args[1]
                        else:
                            self.declaration_only = True
                    else:
                        self.declaration_only = True
                        if not isinstance(lhs, ExprNodes.NameNode):
                            error(lhs.pos, "Invalid declaration.")
                        env.declare_typedef(lhs.name, type, self.pos, visibility='private')

                elif func_name in ['struct', 'union']:
                    self.declaration_only = True
                    if len(args) > 0 or kwds is None:
                        error(self.rhs.pos, "Struct or union members must be given by name.")
                        return
                    members = []
                    for member, type_node in kwds.key_value_pairs:
                        type = type_node.analyse_as_type(env)
                        if type is None:
                            error(type_node.pos, "Unknown type")
                        else:
                            members.append((member.value, type, member.pos))
                    if len(members) < len(kwds.key_value_pairs):
                        return
                    if not isinstance(self.lhs, ExprNodes.NameNode):
                        error(self.lhs.pos, "Invalid declaration.")
                    name = self.lhs.name
                    scope = StructOrUnionScope(name)
                    env.declare_struct_or_union(name, func_name, scope, False, self.rhs.pos)
                    for member, type, pos in members:
                        scope.declare_var(member, type, pos)

        if self.declaration_only:
            return
        else:
            self.lhs.analyse_target_declaration(env)

    def analyse_types(self, env, use_temp = 0):
        self.rhs.analyse_types(env)
        self.lhs.analyse_target_types(env)
        self.lhs.gil_assignment_check(env)
        self.rhs = self.rhs.coerce_to(self.lhs.type, env)
        if use_temp:
            self.rhs = self.rhs.coerce_to_temp(env)

    def generate_rhs_evaluation_code(self, code):
        self.rhs.generate_evaluation_code(code)

    def generate_assignment_code(self, code):
        self.lhs.generate_assignment_code(self.rhs, code)

    def generate_function_definitions(self, env, code):
        self.rhs.generate_function_definitions(env, code)

    def annotate(self, code):
        self.lhs.annotate(code)
        self.rhs.annotate(code)


class CascadedAssignmentNode(AssignmentNode):
    #  An assignment with multiple left hand sides:
    #
    #    a = b = c
    #
    #  lhs_list   [ExprNode]   Left hand sides
    #  rhs        ExprNode     Right hand sides
    #
    #  Used internally:
    #
    #  coerced_rhs_list   [ExprNode]   RHS coerced to type of each LHS

    child_attrs = ["lhs_list", "rhs", "coerced_rhs_list"]
    coerced_rhs_list = None

    def analyse_declarations(self, env):
        for lhs in self.lhs_list:
            lhs.analyse_target_declaration(env)

    def analyse_types(self, env, use_temp = 0):
        self.rhs.analyse_types(env)
        if not self.rhs.is_simple():
            if use_temp:
                self.rhs = self.rhs.coerce_to_temp(env)
            else:
                self.rhs = self.rhs.coerce_to_simple(env)
        from ExprNodes import CloneNode
        self.coerced_rhs_list = []
        for lhs in self.lhs_list:
            lhs.analyse_target_types(env)
            lhs.gil_assignment_check(env)
            rhs = CloneNode(self.rhs)
            rhs = rhs.coerce_to(lhs.type, env)
            self.coerced_rhs_list.append(rhs)

    def generate_rhs_evaluation_code(self, code):
        self.rhs.generate_evaluation_code(code)

    def generate_assignment_code(self, code):
        for i in range(len(self.lhs_list)):
            lhs = self.lhs_list[i]
            rhs = self.coerced_rhs_list[i]
            rhs.generate_evaluation_code(code)
            lhs.generate_assignment_code(rhs, code)
            # Assignment has disposed of the cloned RHS
        self.rhs.generate_disposal_code(code)
        self.rhs.free_temps(code)

    def generate_function_definitions(self, env, code):
        self.rhs.generate_function_definitions(env, code)

    def annotate(self, code):
        for i in range(len(self.lhs_list)):
            lhs = self.lhs_list[i].annotate(code)
            rhs = self.coerced_rhs_list[i].annotate(code)
        self.rhs.annotate(code)


class ParallelAssignmentNode(AssignmentNode):
    #  A combined packing/unpacking assignment:
    #
    #    a, b, c =  d, e, f
    #
    #  This has been rearranged by the parser into
    #
    #    a = d ; b = e ; c = f
    #
    #  but we must evaluate all the right hand sides
    #  before assigning to any of the left hand sides.
    #
    #  stats     [AssignmentNode]   The constituent assignments

    child_attrs = ["stats"]

    def analyse_declarations(self, env):
        for stat in self.stats:
            stat.analyse_declarations(env)

    def analyse_expressions(self, env):
        for stat in self.stats:
            stat.analyse_types(env, use_temp = 1)

#    def analyse_expressions(self, env):
#        for stat in self.stats:
#            stat.analyse_expressions_1(env, use_temp = 1)
#        for stat in self.stats:
#            stat.analyse_expressions_2(env)

    def generate_execution_code(self, code):
        for stat in self.stats:
            stat.generate_rhs_evaluation_code(code)
        for stat in self.stats:
            stat.generate_assignment_code(code)

    def generate_function_definitions(self, env, code):
        for stat in self.stats:
            stat.generate_function_definitions(env, code)

    def annotate(self, code):
        for stat in self.stats:
            stat.annotate(code)


class InPlaceAssignmentNode(AssignmentNode):
    #  An in place arithmetic operand:
    #
    #    a += b
    #    a -= b
    #    ...
    #
    #  lhs      ExprNode      Left hand side
    #  rhs      ExprNode      Right hand side
    #  operator char          one of "+-*/%^&|"
    #
    #  This code is a bit tricky because in order to obey Python
    #  semantics the sub-expressions (e.g. indices) of the lhs must
    #  not be evaluated twice. So we must re-use the values calculated
    #  in evaluation phase for the assignment phase as well.
    #  Fortunately, the type of the lhs node is fairly constrained
    #  (it must be a NameNode, AttributeNode, or IndexNode).

    child_attrs = ["lhs", "rhs"]

    def analyse_declarations(self, env):
        self.lhs.analyse_target_declaration(env)

    def analyse_types(self, env):
        self.rhs.analyse_types(env)
        self.lhs.analyse_target_types(env)

    def generate_execution_code(self, code):
        import ExprNodes
        self.rhs.generate_evaluation_code(code)
        self.lhs.generate_subexpr_evaluation_code(code)
        c_op = self.operator
        if c_op == "//":
            c_op = "/"
        elif c_op == "**":
            error(self.pos, "No C inplace power operator")
        if isinstance(self.lhs, ExprNodes.IndexNode) and self.lhs.is_buffer_access:
            if self.lhs.type.is_pyobject:
                error(self.pos, "In-place operators not allowed on object buffers in this release.")
            if c_op in ('/', '%') and self.lhs.type.is_int and not code.directives['cdivision']:
                error(self.pos, "In-place non-c divide operators not allowed on int buffers.")
            self.lhs.generate_buffer_setitem_code(self.rhs, code, c_op)
        else:
            # C++
            # TODO: make sure overload is declared
            code.putln("%s %s= %s;" % (self.lhs.result(), c_op, self.rhs.result()))
        self.lhs.generate_subexpr_disposal_code(code)
        self.lhs.free_subexpr_temps(code)
        self.rhs.generate_disposal_code(code)
        self.rhs.free_temps(code)

    def annotate(self, code):
        self.lhs.annotate(code)
        self.rhs.annotate(code)

    def create_binop_node(self):
        import ExprNodes
        return ExprNodes.binop_node(self.pos, self.operator, self.lhs, self.rhs)


class PrintStatNode(StatNode):
    #  print statement
    #
    #  arg_tuple         TupleNode
    #  stream            ExprNode or None (stdout)
    #  append_newline    boolean

    child_attrs = ["arg_tuple", "stream"]

    def analyse_expressions(self, env):
        if self.stream:
            self.stream.analyse_expressions(env)
            self.stream = self.stream.coerce_to_pyobject(env)
        self.arg_tuple.analyse_expressions(env)
        self.arg_tuple = self.arg_tuple.coerce_to_pyobject(env)
        env.use_utility_code(printing_utility_code)
        if len(self.arg_tuple.args) == 1 and self.append_newline:
            env.use_utility_code(printing_one_utility_code)

    nogil_check = Node.gil_error
    gil_message = "Python print statement"

    def generate_execution_code(self, code):
        if self.stream:
            self.stream.generate_evaluation_code(code)
            stream_result = self.stream.py_result()
        else:
            stream_result = '0'
        if len(self.arg_tuple.args) == 1 and self.append_newline:
            arg = self.arg_tuple.args[0]
            arg.generate_evaluation_code(code)

            code.putln(
                "if (__Pyx_PrintOne(%s, %s) < 0) %s" % (
                    stream_result,
                    arg.py_result(),
                    code.error_goto(self.pos)))
            arg.generate_disposal_code(code)
            arg.free_temps(code)
        else:
            self.arg_tuple.generate_evaluation_code(code)
            code.putln(
                "if (__Pyx_Print(%s, %s, %d) < 0) %s" % (
                    stream_result,
                    self.arg_tuple.py_result(),
                    self.append_newline,
                    code.error_goto(self.pos)))
            self.arg_tuple.generate_disposal_code(code)
            self.arg_tuple.free_temps(code)

        if self.stream:
            self.stream.generate_disposal_code(code)
            self.stream.free_temps(code)

    def generate_function_definitions(self, env, code):
        if self.stream:
            self.stream.generate_function_definitions(env, code)
        self.arg_tuple.generate_function_definitions(env, code)

    def annotate(self, code):
        if self.stream:
            self.stream.annotate(code)
        self.arg_tuple.annotate(code)


class ExecStatNode(StatNode):
    #  exec statement
    #
    #  args     [ExprNode]

    child_attrs = ["args"]

    def analyse_expressions(self, env):
        for i, arg in enumerate(self.args):
            arg.analyse_expressions(env)
            arg = arg.coerce_to_pyobject(env)
            self.args[i] = arg
        env.use_utility_code(Builtin.pyexec_utility_code)

    nogil_check = Node.gil_error
    gil_message = "Python exec statement"

    def generate_execution_code(self, code):
        args = []
        for arg in self.args:
            arg.generate_evaluation_code(code)
            args.append( arg.py_result() )
        args = tuple(args + ['0', '0'][:3-len(args)])
        temp_result = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
        code.putln("%s = __Pyx_PyRun(%s, %s, %s);" % (
                (temp_result,) + args))
        for arg in self.args:
            arg.generate_disposal_code(code)
            arg.free_temps(code)
        code.putln(
            code.error_goto_if_null(temp_result, self.pos))
        code.put_gotref(temp_result)
        code.put_decref_clear(temp_result, py_object_type)
        code.funcstate.release_temp(temp_result)

    def annotate(self, code):
        for arg in self.args:
            arg.annotate(code)


class DelStatNode(StatNode):
    #  del statement
    #
    #  args     [ExprNode]

    child_attrs = ["args"]

    def analyse_declarations(self, env):
        for arg in self.args:
            arg.analyse_target_declaration(env)

    def analyse_expressions(self, env):
        for arg in self.args:
            arg.analyse_target_expression(env, None)
            if arg.type.is_pyobject or (arg.is_name and
                                        arg.type.is_memoryviewslice):
                pass
            elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
                self.cpp_check(env)
            elif arg.type.is_cpp_class:
                error(arg.pos, "Deletion of non-heap C++ object")
            else:
                error(arg.pos, "Deletion of non-Python, non-C++ object")
            #arg.release_target_temp(env)

    def nogil_check(self, env):
        for arg in self.args:
            if arg.type.is_pyobject:
                self.gil_error()

    gil_message = "Deleting Python object"

    def generate_execution_code(self, code):
        for arg in self.args:
            if arg.type.is_pyobject or arg.type.is_memoryviewslice:
                arg.generate_deletion_code(code)
            elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
                arg.generate_result_code(code)
                code.putln("delete %s;" % arg.result())
            # else error reported earlier

    def annotate(self, code):
        for arg in self.args:
            arg.annotate(code)


class PassStatNode(StatNode):
    #  pass statement

    child_attrs = []

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        pass


class BreakStatNode(StatNode):

    child_attrs = []
    is_terminator = True

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        if not code.break_label:
            error(self.pos, "break statement not inside loop")
        else:
            code.put_goto(code.break_label)


class ContinueStatNode(StatNode):

    child_attrs = []
    is_terminator = True

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        if code.funcstate.in_try_finally:
            error(self.pos, "continue statement inside try of try...finally")
        elif not code.continue_label:
            error(self.pos, "continue statement not inside loop")
        else:
            code.put_goto(code.continue_label)


class ReturnStatNode(StatNode):
    #  return statement
    #
    #  value         ExprNode or None
    #  return_type   PyrexType

    child_attrs = ["value"]
    is_terminator = True

    # Whether we are in a parallel section
    in_parallel = False

    def analyse_expressions(self, env):
        return_type = env.return_type
        self.return_type = return_type
        if not return_type:
            error(self.pos, "Return not inside a function body")
            return
        if self.value:
            self.value.analyse_types(env)
            if return_type.is_void or return_type.is_returncode:
                error(self.value.pos,
                    "Return with value in void function")
            else:
                self.value = self.value.coerce_to(env.return_type, env)
        else:
            if (not return_type.is_void
                and not return_type.is_pyobject
                and not return_type.is_returncode):
                    error(self.pos, "Return value required")

    def nogil_check(self, env):
        if self.return_type.is_pyobject:
            self.gil_error()

    gil_message = "Returning Python object"

    def generate_execution_code(self, code):
        code.mark_pos(self.pos)
        if not self.return_type:
            # error reported earlier
            return
        if self.return_type.is_pyobject:
            code.put_xdecref(Naming.retval_cname,
                             self.return_type)
        elif self.return_type.is_memoryviewslice:
            code.put_xdecref_memoryviewslice(Naming.retval_cname)
            #code.put_xdecref("%s.memview" % Naming.retval_cname,
            #        self.return_type)

        if self.value:
            self.value.generate_evaluation_code(code)
            if self.return_type.is_memoryviewslice:
                import MemoryView
                MemoryView.put_acquire_memoryviewslice(self.value, self.return_type,
                        False, Naming.retval_cname, None, code)
            else:
                self.value.make_owned_reference(code)
                code.putln(
                    "%s = %s;" % (
                        Naming.retval_cname,
                        self.value.result_as(self.return_type)))
                self.value.generate_post_assignment_code(code)
            self.value.free_temps(code)
        else:
            if self.return_type.is_pyobject:
                code.put_init_to_py_none(Naming.retval_cname, self.return_type)
            elif self.return_type.is_returncode:
                self.put_return(code, self.return_type.default_value)

        for cname, type in code.funcstate.temps_holding_reference():
            code.put_decref_clear(cname, type)

        code.put_goto(code.return_label)

    def put_return(self, code, value):
        if self.in_parallel:
            code.putln_openmp("#pragma omp critical(__pyx_returning)")
        code.putln("%s = %s;" % (Naming.retval_cname, value))

    def generate_function_definitions(self, env, code):
        if self.value is not None:
            self.value.generate_function_definitions(env, code)

    def annotate(self, code):
        if self.value:
            self.value.annotate(code)


class RaiseStatNode(StatNode):
    #  raise statement
    #
    #  exc_type    ExprNode or None
    #  exc_value   ExprNode or None
    #  exc_tb      ExprNode or None
    #  cause       ExprNode or None

    child_attrs = ["exc_type", "exc_value", "exc_tb", "cause"]
    is_terminator = True

    def analyse_expressions(self, env):
        if self.exc_type:
            self.exc_type.analyse_types(env)
            self.exc_type = self.exc_type.coerce_to_pyobject(env)
        if self.exc_value:
            self.exc_value.analyse_types(env)
            self.exc_value = self.exc_value.coerce_to_pyobject(env)
        if self.exc_tb:
            self.exc_tb.analyse_types(env)
            self.exc_tb = self.exc_tb.coerce_to_pyobject(env)
        if self.cause:
            self.cause.analyse_types(env)
            self.cause = self.cause.coerce_to_pyobject(env)
        # special cases for builtin exceptions
        self.builtin_exc_name = None
        if self.exc_type and not self.exc_value and not self.exc_tb:
            exc = self.exc_type
            import ExprNodes
            if (isinstance(exc, ExprNodes.SimpleCallNode) and
                not (exc.args or (exc.arg_tuple is not None and
                                  exc.arg_tuple.args))):
                exc = exc.function # extract the exception type
            if exc.is_name and exc.entry.is_builtin:
                self.builtin_exc_name = exc.name
                if self.builtin_exc_name == 'MemoryError':
                    self.exc_type = None # has a separate implementation

    nogil_check = Node.gil_error
    gil_message = "Raising exception"

    def generate_execution_code(self, code):
        if self.builtin_exc_name == 'MemoryError':
            code.putln('PyErr_NoMemory(); %s' % code.error_goto(self.pos))
            return

        if self.exc_type:
            self.exc_type.generate_evaluation_code(code)
            type_code = self.exc_type.py_result()
        else:
            type_code = "0"
        if self.exc_value:
            self.exc_value.generate_evaluation_code(code)
            value_code = self.exc_value.py_result()
        else:
            value_code = "0"
        if self.exc_tb:
            self.exc_tb.generate_evaluation_code(code)
            tb_code = self.exc_tb.py_result()
        else:
            tb_code = "0"
        if self.cause:
            self.cause.generate_evaluation_code(code)
            cause_code = self.cause.py_result()
        else:
            cause_code = "0"
        code.globalstate.use_utility_code(raise_utility_code)
        code.putln(
            "__Pyx_Raise(%s, %s, %s, %s);" % (
                type_code,
                value_code,
                tb_code,
                cause_code))
        for obj in (self.exc_type, self.exc_value, self.exc_tb, self.cause):
            if obj:
                obj.generate_disposal_code(code)
                obj.free_temps(code)
        code.putln(
            code.error_goto(self.pos))

    def generate_function_definitions(self, env, code):
        if self.exc_type is not None:
            self.exc_type.generate_function_definitions(env, code)
        if self.exc_value is not None:
            self.exc_value.generate_function_definitions(env, code)
        if self.exc_tb is not None:
            self.exc_tb.generate_function_definitions(env, code)
        if self.cause is not None:
            self.cause.generate_function_definitions(env, code)

    def annotate(self, code):
        if self.exc_type:
            self.exc_type.annotate(code)
        if self.exc_value:
            self.exc_value.annotate(code)
        if self.exc_tb:
            self.exc_tb.annotate(code)
        if self.cause:
            self.cause.annotate(code)


class ReraiseStatNode(StatNode):

    child_attrs = []
    is_terminator = True

    def analyse_expressions(self, env):
        env.use_utility_code(restore_exception_utility_code)

    nogil_check = Node.gil_error
    gil_message = "Raising exception"

    def generate_execution_code(self, code):
        vars = code.funcstate.exc_vars
        if vars:
            for varname in vars:
                code.put_giveref(varname)
            code.putln("__Pyx_ErrRestore(%s, %s, %s);" % tuple(vars))
            for varname in vars:
                code.put("%s = 0; " % varname)
            code.putln()
            code.putln(code.error_goto(self.pos))
        else:
            error(self.pos, "Reraise not inside except clause")


class AssertStatNode(StatNode):
    #  assert statement
    #
    #  cond    ExprNode
    #  value   ExprNode or None

    child_attrs = ["cond", "value"]

    def analyse_expressions(self, env):
        self.cond = self.cond.analyse_boolean_expression(env)
        if self.value:
            self.value.analyse_types(env)
            self.value = self.value.coerce_to_pyobject(env)

    nogil_check = Node.gil_error
    gil_message = "Raising exception"

    def generate_execution_code(self, code):
        code.putln("#ifndef CYTHON_WITHOUT_ASSERTIONS")
        self.cond.generate_evaluation_code(code)
        code.putln(
            "if (unlikely(!%s)) {" %
                self.cond.result())
        if self.value:
            self.value.generate_evaluation_code(code)
            code.putln(
                "PyErr_SetObject(PyExc_AssertionError, %s);" %
                    self.value.py_result())
            self.value.generate_disposal_code(code)
            self.value.free_temps(code)
        else:
            code.putln(
                "PyErr_SetNone(PyExc_AssertionError);")
        code.putln(
                code.error_goto(self.pos))
        code.putln(
            "}")
        self.cond.generate_disposal_code(code)
        self.cond.free_temps(code)
        code.putln("#endif")

    def generate_function_definitions(self, env, code):
        self.cond.generate_function_definitions(env, code)
        if self.value is not None:
            self.value.generate_function_definitions(env, code)

    def annotate(self, code):
        self.cond.annotate(code)
        if self.value:
            self.value.annotate(code)


class IfStatNode(StatNode):
    #  if statement
    #
    #  if_clauses   [IfClauseNode]
    #  else_clause  StatNode or None

    child_attrs = ["if_clauses", "else_clause"]

    def analyse_declarations(self, env):
        for if_clause in self.if_clauses:
            if_clause.analyse_declarations(env)
        if self.else_clause:
            self.else_clause.analyse_declarations(env)

    def analyse_expressions(self, env):
        for if_clause in self.if_clauses:
            if_clause.analyse_expressions(env)
        if self.else_clause:
            self.else_clause.analyse_expressions(env)

    def generate_execution_code(self, code):
        code.mark_pos(self.pos)
        end_label = code.new_label()
        for if_clause in self.if_clauses:
            if_clause.generate_execution_code(code, end_label)
        if self.else_clause:
            code.putln("/*else*/ {")
            self.else_clause.generate_execution_code(code)
            code.putln("}")
        code.put_label(end_label)

    def generate_function_definitions(self, env, code):
        for clause in self.if_clauses:
            clause.generate_function_definitions(env, code)
        if self.else_clause is not None:
            self.else_clause.generate_function_definitions(env, code)

    def annotate(self, code):
        for if_clause in self.if_clauses:
            if_clause.annotate(code)
        if self.else_clause:
            self.else_clause.annotate(code)


class IfClauseNode(Node):
    #  if or elif clause in an if statement
    #
    #  condition   ExprNode
    #  body        StatNode

    child_attrs = ["condition", "body"]

    def analyse_declarations(self, env):
        self.body.analyse_declarations(env)

    def analyse_expressions(self, env):
        self.condition = \
            self.condition.analyse_temp_boolean_expression(env)
        self.body.analyse_expressions(env)

    def get_constant_condition_result(self):
        if self.condition.has_constant_result():
            return bool(self.condition.constant_result)
        else:
            return None

    def generate_execution_code(self, code, end_label):
        self.condition.generate_evaluation_code(code)
        code.putln(
            "if (%s) {" %
                self.condition.result())
        self.condition.generate_disposal_code(code)
        self.condition.free_temps(code)
        self.body.generate_execution_code(code)
        code.put_goto(end_label)
        code.putln("}")

    def generate_function_definitions(self, env, code):
        self.condition.generate_function_definitions(env, code)
        self.body.generate_function_definitions(env, code)

    def annotate(self, code):
        self.condition.annotate(code)
        self.body.annotate(code)


class SwitchCaseNode(StatNode):
    # Generated in the optimization of an if-elif-else node
    #
    # conditions    [ExprNode]
    # body          StatNode

    child_attrs = ['conditions', 'body']

    def generate_execution_code(self, code):
        for cond in self.conditions:
            code.mark_pos(cond.pos)
            cond.generate_evaluation_code(code)
            code.putln("case %s:" % cond.result())
        self.body.generate_execution_code(code)
        code.putln("break;")

    def generate_function_definitions(self, env, code):
        for cond in self.conditions:
            cond.generate_function_definitions(env, code)
        self.body.generate_function_definitions(env, code)

    def annotate(self, code):
        for cond in self.conditions:
            cond.annotate(code)
        self.body.annotate(code)

class SwitchStatNode(StatNode):
    # Generated in the optimization of an if-elif-else node
    #
    # test          ExprNode
    # cases         [SwitchCaseNode]
    # else_clause   StatNode or None

    child_attrs = ['test', 'cases', 'else_clause']

    def generate_execution_code(self, code):
        self.test.generate_evaluation_code(code)
        code.putln("switch (%s) {" % self.test.result())
        for case in self.cases:
            case.generate_execution_code(code)
        if self.else_clause is not None:
            code.putln("default:")
            self.else_clause.generate_execution_code(code)
            code.putln("break;")
        code.putln("}")

    def generate_function_definitions(self, env, code):
        self.test.generate_function_definitions(env, code)
        for case in self.cases:
            case.generate_function_definitions(env, code)
        if self.else_clause is not None:
            self.else_clause.generate_function_definitions(env, code)

    def annotate(self, code):
        self.test.annotate(code)
        for case in self.cases:
            case.annotate(code)
        if self.else_clause is not None:
            self.else_clause.annotate(code)

class LoopNode(object):
    pass


class WhileStatNode(LoopNode, StatNode):
    #  while statement
    #
    #  condition    ExprNode
    #  body         StatNode
    #  else_clause  StatNode

    child_attrs = ["condition", "body", "else_clause"]

    def analyse_declarations(self, env):
        self.body.analyse_declarations(env)
        if self.else_clause:
            self.else_clause.analyse_declarations(env)

    def analyse_expressions(self, env):
        if self.condition:
            self.condition = self.condition.analyse_temp_boolean_expression(env)
        self.body.analyse_expressions(env)
        if self.else_clause:
            self.else_clause.analyse_expressions(env)

    def generate_execution_code(self, code):
        old_loop_labels = code.new_loop_labels()
        code.putln(
            "while (1) {")
        if self.condition:
            self.condition.generate_evaluation_code(code)
            self.condition.generate_disposal_code(code)
            code.putln(
                "if (!%s) break;" %
                    self.condition.result())
            self.condition.free_temps(code)
        self.body.generate_execution_code(code)
        code.put_label(code.continue_label)
        code.putln("}")
        break_label = code.break_label
        code.set_loop_labels(old_loop_labels)
        if self.else_clause:
            code.putln("/*else*/ {")
            self.else_clause.generate_execution_code(code)
            code.putln("}")
        code.put_label(break_label)

    def generate_function_definitions(self, env, code):
        if self.condition:
            self.condition.generate_function_definitions(env, code)
        self.body.generate_function_definitions(env, code)
        if self.else_clause is not None:
            self.else_clause.generate_function_definitions(env, code)

    def annotate(self, code):
        if self.condition:
            self.condition.annotate(code)
        self.body.annotate(code)
        if self.else_clause:
            self.else_clause.annotate(code)


class DictIterationNextNode(Node):
    # Helper node for calling PyDict_Next() inside of a WhileStatNode
    # and checking the dictionary size for changes.  Created in
    # Optimize.py.
    child_attrs = ['dict_obj', 'expected_size', 'pos_index_addr', 'key_addr', 'value_addr']

    def __init__(self, dict_obj, expected_size, pos_index_addr, key_addr, value_addr):
        Node.__init__(
            self, dict_obj.pos,
            dict_obj = dict_obj,
            expected_size = expected_size,
            pos_index_addr = pos_index_addr,
            key_addr = key_addr,
            value_addr = value_addr,
            type = PyrexTypes.c_bint_type)

    def analyse_expressions(self, env):
        self.dict_obj.analyse_types(env)
        self.expected_size.analyse_types(env)
        self.pos_index_addr.analyse_types(env)
        self.key_addr.analyse_types(env)
        self.value_addr.analyse_types(env)

    def generate_function_definitions(self, env, code):
        self.dict_obj.generate_function_definitions(env, code)

    def generate_execution_code(self, code):
        self.dict_obj.generate_evaluation_code(code)
        code.putln("if (unlikely(%s != PyDict_Size(%s))) {" % (
            self.expected_size.result(),
            self.dict_obj.py_result(),
            ))
        code.putln('PyErr_SetString(PyExc_RuntimeError, "dictionary changed size during iteration"); %s' % (
            code.error_goto(self.pos)))
        code.putln("}")
        self.pos_index_addr.generate_evaluation_code(code)

        code.putln("if (!PyDict_Next(%s, %s, %s, %s)) break;" % (
            self.dict_obj.py_result(),
            self.pos_index_addr.result(),
            self.key_addr.result(),
            self.value_addr.result()))


def ForStatNode(pos, **kw):
    if 'iterator' in kw:
        return ForInStatNode(pos, **kw)
    else:
        return ForFromStatNode(pos, **kw)

class ForInStatNode(LoopNode, StatNode):
    #  for statement
    #
    #  target        ExprNode
    #  iterator      IteratorNode
    #  body          StatNode
    #  else_clause   StatNode
    #  item          NextNode       used internally

    child_attrs = ["target", "iterator", "body", "else_clause"]
    item = None

    def analyse_declarations(self, env):
        self.target.analyse_target_declaration(env)
        self.body.analyse_declarations(env)
        if self.else_clause:
            self.else_clause.analyse_declarations(env)

    def analyse_expressions(self, env):
        import ExprNodes
        self.target.analyse_target_types(env)
        self.iterator.analyse_expressions(env)
        self.item = ExprNodes.NextNode(self.iterator)
        if (self.iterator.type.is_ptr or self.iterator.type.is_array) and \
            self.target.type.assignable_from(self.iterator.type):
            # C array slice optimization.
            pass
        else:
            self.item = self.item.coerce_to(self.target.type, env)
        self.body.analyse_expressions(env)
        if self.else_clause:
            self.else_clause.analyse_expressions(env)

    def generate_execution_code(self, code):
        old_loop_labels = code.new_loop_labels()
        self.iterator.generate_evaluation_code(code)
        code.putln("for (;;) {")
        self.item.generate_evaluation_code(code)
        self.target.generate_assignment_code(self.item, code)
        self.body.generate_execution_code(code)
        code.put_label(code.continue_label)
        code.putln("}")
        break_label = code.break_label
        code.set_loop_labels(old_loop_labels)

        if self.else_clause:
            # in nested loops, the 'else' block can contain a
            # 'continue' statement for the outer loop, but we may need
            # to generate cleanup code before taking that path, so we
            # intercept it here
            orig_continue_label = code.continue_label
            code.continue_label = code.new_label('outer_continue')

            code.putln("/*else*/ {")
            self.else_clause.generate_execution_code(code)
            code.putln("}")

            if code.label_used(code.continue_label):
                code.put_goto(break_label)
                code.put_label(code.continue_label)
                self.iterator.generate_disposal_code(code)
                code.put_goto(orig_continue_label)
            code.set_loop_labels(old_loop_labels)

        if code.label_used(break_label):
            code.put_label(break_label)
        self.iterator.generate_disposal_code(code)
        self.iterator.free_temps(code)

    def generate_function_definitions(self, env, code):
        self.target.generate_function_definitions(env, code)
        self.iterator.generate_function_definitions(env, code)
        self.body.generate_function_definitions(env, code)
        if self.else_clause is not None:
            self.else_clause.generate_function_definitions(env, code)

    def annotate(self, code):
        self.target.annotate(code)
        self.iterator.annotate(code)
        self.body.annotate(code)
        if self.else_clause:
            self.else_clause.annotate(code)
        self.item.annotate(code)


class ForFromStatNode(LoopNode, StatNode):
    #  for name from expr rel name rel expr
    #
    #  target        NameNode
    #  bound1        ExprNode
    #  relation1     string
    #  relation2     string
    #  bound2        ExprNode
    #  step          ExprNode or None
    #  body          StatNode
    #  else_clause   StatNode or None
    #
    #  Used internally:
    #
    #  from_range         bool
    #  is_py_target       bool
    #  loopvar_node       ExprNode (usually a NameNode or temp node)
    #  py_loopvar_node    PyTempNode or None
    child_attrs = ["target", "bound1", "bound2", "step", "body", "else_clause"]

    is_py_target = False
    loopvar_node = None
    py_loopvar_node = None
    from_range = False

    gil_message = "For-loop using object bounds or target"

    def nogil_check(self, env):
        for x in (self.target, self.bound1, self.bound2):
            if x.type.is_pyobject:
                self.gil_error()

    def analyse_declarations(self, env):
        self.target.analyse_target_declaration(env)
        self.body.analyse_declarations(env)
        if self.else_clause:
            self.else_clause.analyse_declarations(env)

    def analyse_expressions(self, env):
        import ExprNodes
        self.target.analyse_target_types(env)
        self.bound1.analyse_types(env)
        self.bound2.analyse_types(env)
        if self.step is not None:
            if isinstance(self.step, ExprNodes.UnaryMinusNode):
                warning(self.step.pos, "Probable infinite loop in for-from-by statment. Consider switching the directions of the relations.", 2)
            self.step.analyse_types(env)

        target_type = self.target.type
        if self.target.type.is_numeric:
            loop_type = self.target.type
        else:
            loop_type = PyrexTypes.c_int_type
            if not self.bound1.type.is_pyobject:
                loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound1.type)
            if not self.bound2.type.is_pyobject:
                loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound2.type)
            if self.step is not None and not self.step.type.is_pyobject:
                loop_type = PyrexTypes.widest_numeric_type(loop_type, self.step.type)
        self.bound1 = self.bound1.coerce_to(loop_type, env)
        self.bound2 = self.bound2.coerce_to(loop_type, env)
        if not self.bound2.is_literal:
            self.bound2 = self.bound2.coerce_to_temp(env)
        if self.step is not None:
            self.step = self.step.coerce_to(loop_type, env)
            if not self.step.is_literal:
                self.step = self.step.coerce_to_temp(env)

        target_type = self.target.type
        if not (target_type.is_pyobject or target_type.is_numeric):
            error(self.target.pos,
                "for-from loop variable must be c numeric type or Python object")
        if target_type.is_numeric:
            self.is_py_target = False
            if isinstance(self.target, ExprNodes.IndexNode) and self.target.is_buffer_access:
                raise error(self.pos, "Buffer indexing not allowed as for loop target.")
            self.loopvar_node = self.target
            self.py_loopvar_node = None
        else:
            self.is_py_target = True
            c_loopvar_node = ExprNodes.TempNode(self.pos, loop_type, env)
            self.loopvar_node = c_loopvar_node
            self.py_loopvar_node = \
                ExprNodes.CloneNode(c_loopvar_node).coerce_to_pyobject(env)
        self.body.analyse_expressions(env)
        if self.else_clause:
            self.else_clause.analyse_expressions(env)

    def generate_execution_code(self, code):
        old_loop_labels = code.new_loop_labels()
        from_range = self.from_range
        self.bound1.generate_evaluation_code(code)
        self.bound2.generate_evaluation_code(code)
        offset, incop = self.relation_table[self.relation1]
        if self.step is not None:
            self.step.generate_evaluation_code(code)
            step = self.step.result()
            incop = "%s=%s" % (incop[0], step)
        import ExprNodes
        if isinstance(self.loopvar_node, ExprNodes.TempNode):
            self.loopvar_node.allocate(code)
        if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
            self.py_loopvar_node.allocate(code)
        if from_range:
            loopvar_name = code.funcstate.allocate_temp(self.target.type, False)
        else:
            loopvar_name = self.loopvar_node.result()
        code.putln(
            "for (%s = %s%s; %s %s %s; %s%s) {" % (
                loopvar_name,
                self.bound1.result(), offset,
                loopvar_name, self.relation2, self.bound2.result(),
                loopvar_name, incop))
        if self.py_loopvar_node:
            self.py_loopvar_node.generate_evaluation_code(code)
            self.target.generate_assignment_code(self.py_loopvar_node, code)
        elif from_range:
            code.putln("%s = %s;" % (
                            self.target.result(), loopvar_name))
        self.body.generate_execution_code(code)
        code.put_label(code.continue_label)
        if self.py_loopvar_node:
            # This mess is to make for..from loops with python targets behave
            # exactly like those with C targets with regards to re-assignment
            # of the loop variable.
            import ExprNodes
            if self.target.entry.is_pyglobal:
                # We know target is a NameNode, this is the only ugly case.
                target_node = ExprNodes.PyTempNode(self.target.pos, None)
                target_node.allocate(code)
                interned_cname = code.intern_identifier(self.target.entry.name)
                code.globalstate.use_utility_code(ExprNodes.get_name_interned_utility_code)
                code.putln("%s = __Pyx_GetName(%s, %s); %s" % (
                                target_node.result(),
                                Naming.module_cname,
                                interned_cname,
                                code.error_goto_if_null(target_node.result(), self.target.pos)))
                code.put_gotref(target_node.result())
            else:
                target_node = self.target
            from_py_node = ExprNodes.CoerceFromPyTypeNode(self.loopvar_node.type, target_node, None)
            from_py_node.temp_code = loopvar_name
            from_py_node.generate_result_code(code)
            if self.target.entry.is_pyglobal:
                code.put_decref(target_node.result(), target_node.type)
                target_node.release(code)
        code.putln("}")
        if self.py_loopvar_node:
            # This is potentially wasteful, but we don't want the semantics to
            # depend on whether or not the loop is a python type.
            self.py_loopvar_node.generate_evaluation_code(code)
            self.target.generate_assignment_code(self.py_loopvar_node, code)
        if from_range:
            code.funcstate.release_temp(loopvar_name)
        break_label = code.break_label
        code.set_loop_labels(old_loop_labels)
        if self.else_clause:
            code.putln("/*else*/ {")
            self.else_clause.generate_execution_code(code)
            code.putln("}")
        code.put_label(break_label)
        self.bound1.generate_disposal_code(code)
        self.bound1.free_temps(code)
        self.bound2.generate_disposal_code(code)
        self.bound2.free_temps(code)
        if isinstance(self.loopvar_node, ExprNodes.TempNode):
            self.loopvar_node.release(code)
        if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
            self.py_loopvar_node.release(code)
        if self.step is not None:
            self.step.generate_disposal_code(code)
            self.step.free_temps(code)

    relation_table = {
        # {relop : (initial offset, increment op)}
        '<=': ("",   "++"),
        '<' : ("+1", "++"),
        '>=': ("",   "--"),
        '>' : ("-1", "--")
    }

    def generate_function_definitions(self, env, code):
        self.target.generate_function_definitions(env, code)
        self.bound1.generate_function_definitions(env, code)
        self.bound2.generate_function_definitions(env, code)
        if self.step is not None:
            self.step.generate_function_definitions(env, code)
        self.body.generate_function_definitions(env, code)
        if self.else_clause is not None:
            self.else_clause.generate_function_definitions(env, code)

    def annotate(self, code):
        self.target.annotate(code)
        self.bound1.annotate(code)
        self.bound2.annotate(code)
        if self.step:
            self.step.annotate(code)
        self.body.annotate(code)
        if self.else_clause:
            self.else_clause.annotate(code)


class WithStatNode(StatNode):
    """
    Represents a Python with statement.

    Implemented by the WithTransform as follows:

        MGR = EXPR
        EXIT = MGR.__exit__
        VALUE = MGR.__enter__()
        EXC = True
        try:
            try:
                TARGET = VALUE  # optional
                BODY
            except:
                EXC = False
                if not EXIT(*EXCINFO):
                    raise
        finally:
            if EXC:
                EXIT(None, None, None)
            MGR = EXIT = VALUE = None
    """
    #  manager          The with statement manager object
    #  target           ExprNode  the target lhs of the __enter__() call
    #  body             StatNode

    child_attrs = ["manager", "target", "body"]

    has_target = False

    def analyse_declarations(self, env):
        self.manager.analyse_declarations(env)
        self.body.analyse_declarations(env)

    def analyse_expressions(self, env):
        self.manager.analyse_types(env)
        self.body.analyse_expressions(env)

    def generate_function_definitions(self, env, code):
        self.manager.generate_function_definitions(env, code)
        self.body.generate_function_definitions(env, code)

    def generate_execution_code(self, code):
        code.putln("/*with:*/ {")
        self.manager.generate_evaluation_code(code)
        self.exit_var = code.funcstate.allocate_temp(py_object_type, manage_ref=False)
        code.putln("%s = PyObject_GetAttr(%s, %s); %s" % (
            self.exit_var,
            self.manager.py_result(),
            code.get_py_string_const(EncodedString('__exit__'), identifier=True),
            code.error_goto_if_null(self.exit_var, self.pos),
            ))
        code.put_gotref(self.exit_var)

        # need to free exit_var in the face of exceptions during setup
        old_error_label = code.new_error_label()
        intermediate_error_label = code.error_label

        enter_func = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
        code.putln("%s = PyObject_GetAttr(%s, %s); %s" % (
            enter_func,
            self.manager.py_result(),
            code.get_py_string_const(EncodedString('__enter__'), identifier=True),
            code.error_goto_if_null(enter_func, self.pos),
            ))
        code.put_gotref(enter_func)
        self.manager.generate_disposal_code(code)
        self.manager.free_temps(code)
        self.target_temp.allocate(code)
        code.putln('%s = PyObject_Call(%s, ((PyObject *)%s), NULL); %s' % (
            self.target_temp.result(),
            enter_func,
            Naming.empty_tuple,
            code.error_goto_if_null(self.target_temp.result(), self.pos),
            ))
        code.put_gotref(self.target_temp.result())
        code.put_decref_clear(enter_func, py_object_type)
        code.funcstate.release_temp(enter_func)
        if not self.has_target:
            code.put_decref_clear(self.target_temp.result(), type=py_object_type)
            self.target_temp.release(code)
            # otherwise, WithTargetAssignmentStatNode will do it for us

        code.error_label = old_error_label
        self.body.generate_execution_code(code)

        step_over_label = code.new_label()
        code.put_goto(step_over_label)
        code.put_label(intermediate_error_label)
        code.put_decref_clear(self.exit_var, py_object_type)
        code.put_goto(old_error_label)
        code.put_label(step_over_label)

        code.funcstate.release_temp(self.exit_var)
        code.putln('}')

class WithTargetAssignmentStatNode(AssignmentNode):
    # The target assignment of the 'with' statement value (return
    # value of the __enter__() call).
    #
    # This is a special cased assignment that steals the RHS reference
    # and frees its temp.
    #
    # lhs  ExprNode  the assignment target
    # rhs  TempNode  the return value of the __enter__() call

    child_attrs = ["lhs", "rhs"]

    def analyse_declarations(self, env):
        self.lhs.analyse_target_declaration(env)

    def analyse_types(self, env):
        self.rhs.analyse_types(env)
        self.lhs.analyse_target_types(env)
        self.lhs.gil_assignment_check(env)
        self.orig_rhs = self.rhs
        self.rhs = self.rhs.coerce_to(self.lhs.type, env)

    def generate_execution_code(self, code):
        self.rhs.generate_evaluation_code(code)
        self.lhs.generate_assignment_code(self.rhs, code)
        self.orig_rhs.release(code)

    def generate_function_definitions(self, env, code):
        self.rhs.generate_function_definitions(env, code)

    def annotate(self, code):
        self.lhs.annotate(code)
        self.rhs.annotate(code)


class TryExceptStatNode(StatNode):
    #  try .. except statement
    #
    #  body             StatNode
    #  except_clauses   [ExceptClauseNode]
    #  else_clause      StatNode or None

    child_attrs = ["body", "except_clauses", "else_clause"]

    def analyse_declarations(self, env):
        self.body.analyse_declarations(env)
        for except_clause in self.except_clauses:
            except_clause.analyse_declarations(env)
        if self.else_clause:
            self.else_clause.analyse_declarations(env)
        env.use_utility_code(reset_exception_utility_code)

    def analyse_expressions(self, env):
        self.body.analyse_expressions(env)
        default_clause_seen = 0
        for except_clause in self.except_clauses:
            except_clause.analyse_expressions(env)
            if default_clause_seen:
                error(except_clause.pos, "default 'except:' must be last")
            if not except_clause.pattern:
                default_clause_seen = 1
        self.has_default_clause = default_clause_seen
        if self.else_clause:
            self.else_clause.analyse_expressions(env)

    nogil_check = Node.gil_error
    gil_message = "Try-except statement"

    def generate_execution_code(self, code):
        old_return_label = code.return_label
        old_break_label = code.break_label
        old_continue_label = code.continue_label
        old_error_label = code.new_error_label()
        our_error_label = code.error_label
        except_end_label = code.new_label('exception_handled')
        except_error_label = code.new_label('except_error')
        except_return_label = code.new_label('except_return')
        try_return_label = code.new_label('try_return')
        try_break_label = code.new_label('try_break')
        try_continue_label = code.new_label('try_continue')
        try_end_label = code.new_label('try_end')

        exc_save_vars = [code.funcstate.allocate_temp(py_object_type, False)
                         for i in xrange(3)]
        code.putln("{")
        code.putln("__Pyx_ExceptionSave(%s);" %
                   ', '.join(['&%s' % var for var in exc_save_vars]))
        for var in exc_save_vars:
            code.put_xgotref(var)
        code.putln(
            "/*try:*/ {")
        code.return_label = try_return_label
        code.break_label = try_break_label
        code.continue_label = try_continue_label
        self.body.generate_execution_code(code)
        code.putln(
            "}")
        temps_to_clean_up = code.funcstate.all_free_managed_temps()
        code.error_label = except_error_label
        code.return_label = except_return_label
        if self.else_clause:
            code.putln(
                "/*else:*/ {")
            self.else_clause.generate_execution_code(code)
            code.putln(
                "}")
        for var in exc_save_vars:
            code.put_xdecref_clear(var, py_object_type)
        code.put_goto(try_end_label)
        if code.label_used(try_return_label):
            code.put_label(try_return_label)
            for var in exc_save_vars:
                code.put_xgiveref(var)
            code.putln("__Pyx_ExceptionReset(%s);" %
                       ', '.join(exc_save_vars))
            code.put_goto(old_return_label)
        code.put_label(our_error_label)
        for temp_name, type in temps_to_clean_up:
            code.put_xdecref_clear(temp_name, type)
        for except_clause in self.except_clauses:
            except_clause.generate_handling_code(code, except_end_label)

        error_label_used = code.label_used(except_error_label)
        if error_label_used or not self.has_default_clause:
            if error_label_used:
                code.put_label(except_error_label)
            for var in exc_save_vars:
                code.put_xgiveref(var)
            code.putln("__Pyx_ExceptionReset(%s);" %
                       ', '.join(exc_save_vars))
            code.put_goto(old_error_label)

        for exit_label, old_label in zip(
            [try_break_label, try_continue_label, except_return_label],
            [old_break_label, old_continue_label, old_return_label]):

            if code.label_used(exit_label):
                code.put_label(exit_label)
                for var in exc_save_vars:
                    code.put_xgiveref(var)
                code.putln("__Pyx_ExceptionReset(%s);" %
                           ', '.join(exc_save_vars))
                code.put_goto(old_label)

        if code.label_used(except_end_label):
            code.put_label(except_end_label)
            for var in exc_save_vars:
                code.put_xgiveref(var)
            code.putln("__Pyx_ExceptionReset(%s);" %
                       ', '.join(exc_save_vars))
        code.put_label(try_end_label)
        code.putln("}")

        for cname in exc_save_vars:
            code.funcstate.release_temp(cname)

        code.return_label = old_return_label
        code.break_label = old_break_label
        code.continue_label = old_continue_label
        code.error_label = old_error_label

    def generate_function_definitions(self, env, code):
        self.body.generate_function_definitions(env, code)
        for except_clause in self.except_clauses:
            except_clause.generate_function_definitions(env, code)
        if self.else_clause is not None:
            self.else_clause.generate_function_definitions(env, code)

    def annotate(self, code):
        self.body.annotate(code)
        for except_node in self.except_clauses:
            except_node.annotate(code)
        if self.else_clause:
            self.else_clause.annotate(code)


class ExceptClauseNode(Node):
    #  Part of try ... except statement.
    #
    #  pattern        [ExprNode]
    #  target         ExprNode or None
    #  body           StatNode
    #  excinfo_target ResultRefNode or None   optional target for exception info
    #  match_flag     string             result of exception match
    #  exc_value      ExcValueNode       used internally
    #  function_name  string             qualified name of enclosing function
    #  exc_vars       (string * 3)       local exception variables

    # excinfo_target is never set by the parser, but can be set by a transform
    # in order to extract more extensive information about the exception as a
    # sys.exc_info()-style tuple into a target variable

    child_attrs = ["pattern", "target", "body", "exc_value", "excinfo_target"]

    exc_value = None
    excinfo_target = None

    def analyse_declarations(self, env):
        if self.target:
            self.target.analyse_target_declaration(env)
        self.body.analyse_declarations(env)

    def analyse_expressions(self, env):
        import ExprNodes
        genv = env.global_scope()
        self.function_name = env.qualified_name
        if self.pattern:
            # normalise/unpack self.pattern into a list
            for i, pattern in enumerate(self.pattern):
                pattern.analyse_expressions(env)
                self.pattern[i] = pattern.coerce_to_pyobject(env)

        if self.target:
            self.exc_value = ExprNodes.ExcValueNode(self.pos, env)
            self.target.analyse_target_expression(env, self.exc_value)
        if self.excinfo_target is not None:
            import ExprNodes
            self.excinfo_tuple = ExprNodes.TupleNode(pos=self.pos, args=[
                ExprNodes.ExcValueNode(pos=self.pos, env=env) for x in range(3)])
            self.excinfo_tuple.analyse_expressions(env)

        self.body.analyse_expressions(env)

    def generate_handling_code(self, code, end_label):
        code.mark_pos(self.pos)
        if self.pattern:
            exc_tests = []
            for pattern in self.pattern:
                pattern.generate_evaluation_code(code)
                exc_tests.append("PyErr_ExceptionMatches(%s)" % pattern.py_result())

            match_flag = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False)
            code.putln(
                "%s = %s;" % (match_flag, ' || '.join(exc_tests)))
            for pattern in self.pattern:
                pattern.generate_disposal_code(code)
                pattern.free_temps(code)
            code.putln(
                "if (%s) {" %
                    match_flag)
            code.funcstate.release_temp(match_flag)
        else:
            code.putln("/*except:*/ {")

        if not getattr(self.body, 'stats', True) and \
                self.excinfo_target is None and self.target is None:
            # most simple case: no exception variable, empty body (pass)
            # => reset the exception state, done
            code.putln("PyErr_Restore(0,0,0);")
            code.put_goto(end_label)
            code.putln("}")
            return

        exc_vars = [code.funcstate.allocate_temp(py_object_type,
                                                 manage_ref=True)
                    for i in xrange(3)]
        code.put_add_traceback(self.function_name)
        # We always have to fetch the exception value even if
        # there is no target, because this also normalises the
        # exception and stores it in the thread state.
        code.globalstate.use_utility_code(get_exception_utility_code)
        exc_args = "&%s, &%s, &%s" % tuple(exc_vars)
        code.putln("if (__Pyx_GetException(%s) < 0) %s" % (exc_args,
            code.error_goto(self.pos)))
        for x in exc_vars:
            code.put_gotref(x)
        if self.target:
            self.exc_value.set_var(exc_vars[1])
            self.exc_value.generate_evaluation_code(code)
            self.target.generate_assignment_code(self.exc_value, code)
        if self.excinfo_target is not None:
            for tempvar, node in zip(exc_vars, self.excinfo_tuple.args):
                node.set_var(tempvar)
            self.excinfo_tuple.generate_evaluation_code(code)
            self.excinfo_target.result_code = self.excinfo_tuple.result()

        old_break_label, old_continue_label = code.break_label, code.continue_label
        code.break_label = code.new_label('except_break')
        code.continue_label = code.new_label('except_continue')

        old_exc_vars = code.funcstate.exc_vars
        code.funcstate.exc_vars = exc_vars
        self.body.generate_execution_code(code)
        code.funcstate.exc_vars = old_exc_vars
        if self.excinfo_target is not None:
            self.excinfo_tuple.generate_disposal_code(code)
        for var in exc_vars:
            code.put_decref_clear(var, py_object_type)
        code.put_goto(end_label)

        if code.label_used(code.break_label):
            code.put_label(code.break_label)
            if self.excinfo_target is not None:
                self.excinfo_tuple.generate_disposal_code(code)
            for var in exc_vars:
                code.put_decref_clear(var, py_object_type)
            code.put_goto(old_break_label)
        code.break_label = old_break_label

        if code.label_used(code.continue_label):
            code.put_label(code.continue_label)
            if self.excinfo_target is not None:
                self.excinfo_tuple.generate_disposal_code(code)
            for var in exc_vars:
                code.put_decref_clear(var, py_object_type)
            code.put_goto(old_continue_label)
        code.continue_label = old_continue_label

        if self.excinfo_target is not None:
            self.excinfo_tuple.free_temps(code)
        for temp in exc_vars:
            code.funcstate.release_temp(temp)

        code.putln(
            "}")

    def generate_function_definitions(self, env, code):
        if self.target is not None:
            self.target.generate_function_definitions(env, code)
        self.body.generate_function_definitions(env, code)

    def annotate(self, code):
        if self.pattern:
            for pattern in self.pattern:
                pattern.annotate(code)
        if self.target:
            self.target.annotate(code)
        self.body.annotate(code)


class TryFinallyStatNode(StatNode):
    #  try ... finally statement
    #
    #  body             StatNode
    #  finally_clause   StatNode
    #
    #  The plan is that we funnel all continue, break
    #  return and error gotos into the beginning of the
    #  finally block, setting a variable to remember which
    #  one we're doing. At the end of the finally block, we
    #  switch on the variable to figure out where to go.
    #  In addition, if we're doing an error, we save the
    #  exception on entry to the finally block and restore
    #  it on exit.

    child_attrs = ["body", "finally_clause"]

    preserve_exception = 1

    # handle exception case, in addition to return/break/continue
    handle_error_case = True

    disallow_continue_in_try_finally = 0
    # There doesn't seem to be any point in disallowing
    # continue in the try block, since we have no problem
    # handling it.

    is_try_finally_in_nogil = False

    def create_analysed(pos, env, body, finally_clause):
        node = TryFinallyStatNode(pos, body=body, finally_clause=finally_clause)
        return node
    create_analysed = staticmethod(create_analysed)

    def analyse_declarations(self, env):
        self.body.analyse_declarations(env)
        self.finally_clause.analyse_declarations(env)

    def analyse_expressions(self, env):
        self.body.analyse_expressions(env)
        self.finally_clause.analyse_expressions(env)

    nogil_check = Node.gil_error
    gil_message = "Try-finally statement"

    def generate_execution_code(self, code):
        old_error_label = code.error_label
        old_labels = code.all_new_labels()
        new_labels = code.get_all_labels()
        new_error_label = code.error_label
        if not self.handle_error_case:
            code.error_label = old_error_label
        catch_label = code.new_label()

        code.putln("/*try:*/ {")

        if self.disallow_continue_in_try_finally:
            was_in_try_finally = code.funcstate.in_try_finally
            code.funcstate.in_try_finally = 1

        self.body.generate_execution_code(code)

        if self.disallow_continue_in_try_finally:
            code.funcstate.in_try_finally = was_in_try_finally

        code.putln("}")

        temps_to_clean_up = code.funcstate.all_free_managed_temps()
        code.mark_pos(self.finally_clause.pos)
        code.putln("/*finally:*/ {")

        cases_used = []
        error_label_used = 0
        for i, new_label in enumerate(new_labels):
            if new_label in code.labels_used:
                cases_used.append(i)
                if new_label == new_error_label:
                    error_label_used = 1
                    error_label_case = i

        if cases_used:
            code.putln("int __pyx_why;")

            if error_label_used and self.preserve_exception:
                if self.is_try_finally_in_nogil:
                    code.declare_gilstate()

                code.putln("PyObject *%s, *%s, *%s;" % Naming.exc_vars)
                code.putln("int %s;" % Naming.exc_lineno_name)
                exc_var_init_zero = ''.join(
                                ["%s = 0; " % var for var in Naming.exc_vars])
                exc_var_init_zero += '%s = 0;' % Naming.exc_lineno_name
                code.putln(exc_var_init_zero)
            else:
                exc_var_init_zero = None

            code.use_label(catch_label)
            code.putln("__pyx_why = 0; goto %s;" % catch_label)
            for i in cases_used:
                new_label = new_labels[i]
                #if new_label and new_label != "<try>":
                if new_label == new_error_label and self.preserve_exception:
                    self.put_error_catcher(code,
                        new_error_label, i+1, catch_label, temps_to_clean_up)
                else:
                    code.put('%s: ' % new_label)
                    if exc_var_init_zero:
                        code.putln(exc_var_init_zero)
                    code.putln("__pyx_why = %s; goto %s;" % (i+1, catch_label))
            code.put_label(catch_label)

        code.set_all_labels(old_labels)
        if error_label_used:
            code.new_error_label()
            finally_error_label = code.error_label

        self.finally_clause.generate_execution_code(code)

        if error_label_used:
            if finally_error_label in code.labels_used and self.preserve_exception:
                over_label = code.new_label()
                code.put_goto(over_label)
                code.put_label(finally_error_label)

                code.putln("if (__pyx_why == %d) {" % (error_label_case + 1))
                if self.is_try_finally_in_nogil:
                    code.put_ensure_gil(declare_gilstate=False)
                for var in Naming.exc_vars:
                    code.putln("Py_XDECREF(%s);" % var)
                if self.is_try_finally_in_nogil:
                    code.put_release_ensured_gil()
                code.putln("}")

                code.put_goto(old_error_label)
                code.put_label(over_label)

            code.error_label = old_error_label

        if cases_used:
            code.putln(
                "switch (__pyx_why) {")
            for i in cases_used:
                old_label = old_labels[i]
                if old_label == old_error_label and self.preserve_exception:
                    self.put_error_uncatcher(code, i+1, old_error_label)
                else:
                    code.use_label(old_label)
                    code.putln("case %s: goto %s;" % (i+1, old_label))

            # End the switch
            code.putln(
                "}")

        # End finally
        code.putln(
            "}")

    def generate_function_definitions(self, env, code):
        self.body.generate_function_definitions(env, code)
        self.finally_clause.generate_function_definitions(env, code)

    def put_error_catcher(self, code, error_label, i, catch_label,
                          temps_to_clean_up):
        code.globalstate.use_utility_code(restore_exception_utility_code)
        code.putln("%s: {" % error_label)
        code.putln("__pyx_why = %s;" % i)

        if self.is_try_finally_in_nogil:
            code.put_ensure_gil(declare_gilstate=False)

        for temp_name, type in temps_to_clean_up:
            code.put_xdecref_clear(temp_name, type)

        code.putln("__Pyx_ErrFetch(&%s, &%s, &%s);" % Naming.exc_vars)
        code.putln("%s = %s;" % (Naming.exc_lineno_name, Naming.lineno_cname))

        if self.is_try_finally_in_nogil:
            code.put_release_ensured_gil()

        code.put_goto(catch_label)
        code.putln("}")

    def put_error_uncatcher(self, code, i, error_label):
        code.globalstate.use_utility_code(restore_exception_utility_code)
        code.putln(
            "case %s: {" % i)

        if self.is_try_finally_in_nogil:
            code.put_ensure_gil(declare_gilstate=False)

        code.putln("__Pyx_ErrRestore(%s, %s, %s);" % Naming.exc_vars)
        code.putln("%s = %s;" % (Naming.lineno_cname, Naming.exc_lineno_name))

        if self.is_try_finally_in_nogil:
            code.put_release_ensured_gil()

        for var in Naming.exc_vars:
            code.putln(
                   "%s = 0;" % var)

        code.put_goto(error_label)
        code.putln(
            "}")

    def annotate(self, code):
        self.body.annotate(code)
        self.finally_clause.annotate(code)


class NogilTryFinallyStatNode(TryFinallyStatNode):
    """
    A try/finally statement that may be used in nogil code sections.
    """

    preserve_exception = False
    nogil_check = None


class GILStatNode(NogilTryFinallyStatNode):
    #  'with gil' or 'with nogil' statement
    #
    #   state   string   'gil' or 'nogil'

    def __init__(self, pos, state, body):
        self.state = state
        TryFinallyStatNode.__init__(self, pos,
            body = body,
            finally_clause = GILExitNode(pos, state = state))

    def analyse_declarations(self, env):
        env._in_with_gil_block = (self.state == 'gil')
        if self.state == 'gil':
            env.has_with_gil_block = True

        return super(GILStatNode, self).analyse_declarations(env)

    def analyse_expressions(self, env):
        env.use_utility_code(force_init_threads_utility_code)
        was_nogil = env.nogil
        env.nogil = self.state == 'nogil'
        TryFinallyStatNode.analyse_expressions(self, env)
        env.nogil = was_nogil

    def generate_execution_code(self, code):
        code.mark_pos(self.pos)
        code.begin_block()

        if self.state == 'gil':
            code.put_ensure_gil()
        else:
            code.put_release_gil()

        TryFinallyStatNode.generate_execution_code(self, code)
        code.end_block()


class GILExitNode(StatNode):
    """
    Used as the 'finally' block in a GILStatNode

    state   string   'gil' or 'nogil'
    """

    child_attrs = []

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        if self.state == 'gil':
            code.put_release_ensured_gil()
        else:
            code.put_acquire_gil()


class EnsureGILNode(GILExitNode):
    """
    Ensure the GIL in nogil functions for cleanup before returning.
    """

    def generate_execution_code(self, code):
        code.put_ensure_gil(declare_gilstate=False)


class CImportStatNode(StatNode):
    #  cimport statement
    #
    #  module_name   string           Qualified name of module being imported
    #  as_name       string or None   Name specified in "as" clause, if any

    child_attrs = []

    def analyse_declarations(self, env):
        if not env.is_module_scope:
            error(self.pos, "cimport only allowed at module level")
            return
        module_scope = env.find_module(self.module_name, self.pos)
        if "." in self.module_name:
            names = [EncodedString(name) for name in self.module_name.split(".")]
            top_name = names[0]
            top_module_scope = env.context.find_submodule(top_name)
            module_scope = top_module_scope
            for name in names[1:]:
                submodule_scope = module_scope.find_submodule(name)
                module_scope.declare_module(name, submodule_scope, self.pos)
                module_scope = submodule_scope
            if self.as_name:
                env.declare_module(self.as_name, module_scope, self.pos)
            else:
                env.add_imported_module(module_scope)
                env.declare_module(top_name, top_module_scope, self.pos)
        else:
            name = self.as_name or self.module_name
            env.declare_module(name, module_scope, self.pos)

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        pass


class FromCImportStatNode(StatNode):
    #  from ... cimport statement
    #
    #  module_name     string                        Qualified name of module
    #  imported_names  [(pos, name, as_name, kind)]  Names to be imported

    child_attrs = []

    def analyse_declarations(self, env):
        if not env.is_module_scope:
            error(self.pos, "cimport only allowed at module level")
            return
        module_scope = env.find_module(self.module_name, self.pos)
        env.add_imported_module(module_scope)
        for pos, name, as_name, kind in self.imported_names:
            if name == "*":
                for local_name, entry in module_scope.entries.items():
                    env.add_imported_entry(local_name, entry, pos)
            else:
                entry = module_scope.lookup(name)
                if entry:
                    if kind and not self.declaration_matches(entry, kind):
                        entry.redeclared(pos)
                    entry.used = 1
                else:
                    if kind == 'struct' or kind == 'union':
                        entry = module_scope.declare_struct_or_union(name,
                            kind = kind, scope = None, typedef_flag = 0, pos = pos)
                    elif kind == 'class':
                        entry = module_scope.declare_c_class(name, pos = pos,
                            module_name = self.module_name)
                    else:
                        submodule_scope = env.context.find_module(name, relative_to = module_scope, pos = self.pos)
                        if submodule_scope.parent_module is module_scope:
                            env.declare_module(as_name or name, submodule_scope, self.pos)
                        else:
                            error(pos, "Name '%s' not declared in module '%s'"
                                % (name, self.module_name))

                if entry:
                    local_name = as_name or name
                    env.add_imported_entry(local_name, entry, pos)

    def declaration_matches(self, entry, kind):
        if not entry.is_type:
            return 0
        type = entry.type
        if kind == 'class':
            if not type.is_extension_type:
                return 0
        else:
            if not type.is_struct_or_union:
                return 0
            if kind != type.kind:
                return 0
        return 1

    def analyse_expressions(self, env):
        pass

    def generate_execution_code(self, code):
        pass


class FromImportStatNode(StatNode):
    #  from ... import statement
    #
    #  module           ImportNode
    #  items            [(string, NameNode)]
    #  interned_items   [(string, NameNode, ExprNode)]
    #  item             PyTempNode            used internally
    #  import_star      boolean               used internally

    child_attrs = ["module"]
    import_star = 0

    def analyse_declarations(self, env):
        for name, target in self.items:
            if name == "*":
                if not env.is_module_scope:
                    error(self.pos, "import * only allowed at module level")
                    return
                env.has_import_star = 1
                self.import_star = 1
            else:
                target.analyse_target_declaration(env)

    def analyse_expressions(self, env):
        import ExprNodes
        self.module.analyse_expressions(env)
        self.item = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
        self.interned_items = []
        for name, target in self.items:
            if name == '*':
                for _, entry in env.entries.items():
                    if not entry.is_type and entry.type.is_extension_type:
                        env.use_utility_code(ExprNodes.type_test_utility_code)
                        break
            else:
                entry =  env.lookup(target.name)
                # check whether or not entry is already cimported
                if (entry.is_type and entry.type.name == name
                    and hasattr(entry.type, 'module_name')):
                    if entry.type.module_name == self.module.module_name.value:
                        # cimported with absolute name
                        continue
                    try:
                        # cimported with relative name
                        module = env.find_module(self.module.module_name.value,
                                                 pos=None)
                        if entry.type.module_name == module.qualified_name:
                            continue
                    except AttributeError:
                        pass
                target.analyse_target_expression(env, None)
                if target.type is py_object_type:
                    coerced_item = None
                else:
                    coerced_item = self.item.coerce_to(target.type, env)
                self.interned_items.append((name, target, coerced_item))

    def generate_execution_code(self, code):
        self.module.generate_evaluation_code(code)
        if self.import_star:
            code.putln(
                'if (%s(%s) < 0) %s;' % (
                    Naming.import_star,
                    self.module.py_result(),
                    code.error_goto(self.pos)))
        item_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
        self.item.set_cname(item_temp)
        for name, target, coerced_item in self.interned_items:
            cname = code.intern_identifier(name)
            code.putln(
                '%s = PyObject_GetAttr(%s, %s); %s' % (
                    item_temp,
                    self.module.py_result(),
                    cname,
                    code.error_goto_if_null(item_temp, self.pos)))
            code.put_gotref(item_temp)
            if coerced_item is None:
                target.generate_assignment_code(self.item, code)
            else:
                coerced_item.allocate_temp_result(code)
                coerced_item.generate_result_code(code)
                target.generate_assignment_code(coerced_item, code)
            code.put_decref_clear(item_temp, py_object_type)
        code.funcstate.release_temp(item_temp)
        self.module.generate_disposal_code(code)
        self.module.free_temps(code)


class ParallelNode(Node):
    """
    Base class for cython.parallel constructs.
    """

    nogil_check = None


class ParallelStatNode(StatNode, ParallelNode):
    """
    Base class for 'with cython.parallel.parallel():' and 'for i in prange():'.

    assignments     { Entry(var) : (var.pos, inplace_operator_or_None) }
                    assignments to variables in this parallel section

    parent          parent ParallelStatNode or None
    is_parallel     indicates whether this node is OpenMP parallel
                    (true for #pragma omp parallel for and
                              #pragma omp parallel)

    is_parallel is true for:

        #pragma omp parallel
        #pragma omp parallel for

    sections, but NOT for

        #pragma omp for

    We need this to determine the sharing attributes.

    privatization_insertion_point   a code insertion point used to make temps
                                    private (esp. the "nsteps" temp)

    args         tuple          the arguments passed to the parallel construct
    kwargs       DictNode       the keyword arguments passed to the parallel
                                construct (replaced by its compile time value)
    """

    child_attrs = ['body', 'num_threads']

    body = None

    is_prange = False

    error_label_used = False

    num_threads = None

    parallel_exc = (
        Naming.parallel_exc_type,
        Naming.parallel_exc_value,
        Naming.parallel_exc_tb,
    )

    parallel_pos_info = (
        Naming.parallel_filename,
        Naming.parallel_lineno,
        Naming.parallel_clineno,
    )

    pos_info = (
        Naming.filename_cname,
        Naming.lineno_cname,
        Naming.clineno_cname,
    )

    critical_section_counter = 0

    def __init__(self, pos, **kwargs):
        super(ParallelStatNode, self).__init__(pos, **kwargs)

        # All assignments in this scope
        self.assignments = kwargs.get('assignments') or {}

        # All seen closure cnames and their temporary cnames
        self.seen_closure_vars = set()

        # Dict of variables that should be declared (first|last|)private or
        # reduction { Entry: (op, lastprivate) }.
        # If op is not None, it's a reduction.
        self.privates = {}

        # [NameNode]
        self.assigned_nodes = []

    def analyse_declarations(self, env):
        self.body.analyse_declarations(env)

        self.num_threads = None

        if self.kwargs:
            for idx, dictitem in enumerate(self.kwargs.key_value_pairs[:]):
                if dictitem.key.value == 'num_threads':
                    self.num_threads = dictitem.value
                    del self.kwargs.key_value_pairs[idx]
                    break

            try:
                self.kwargs = self.kwargs.compile_time_value(env)
            except Exception, e:
                error(self.kwargs.pos, "Only compile-time values may be "
                                       "supplied as keyword arguments")
        else:
            self.kwargs = {}

        for kw, val in self.kwargs.iteritems():
            if kw not in self.valid_keyword_arguments:
                error(self.pos, "Invalid keyword argument: %s" % kw)
            else:
                setattr(self, kw, val)

    def analyse_expressions(self, env):
        if self.num_threads:
            self.num_threads.analyse_expressions(env)
        self.body.analyse_expressions(env)
        self.analyse_sharing_attributes(env)

        if self.num_threads is not None:
            if self.parent and self.parent.num_threads is not None:
                error(self.pos,
                      "num_threads already declared in outer section")
            elif self.parent:
                error(self.pos,
                      "num_threads must be declared in the parent parallel section")
            elif (self.num_threads.type.is_int and
                  self.num_threads.is_literal and
                  self.num_threads.compile_time_value(env) <= 0):
                error(self.pos,
                      "argument to num_threads must be greater than 0")

            self.num_threads = self.num_threads.coerce_to(
                                PyrexTypes.c_int_type, env).coerce_to_temp(env)

    def analyse_sharing_attributes(self, env):
        """
        Analyse the privates for this block and set them in self.privates.
        This should be called in a post-order fashion during the
        analyse_expressions phase
        """
        for entry, (pos, op) in self.assignments.iteritems():

            if self.is_prange and not self.is_parallel:
                # closely nested prange in a with parallel block, disallow
                # assigning to privates in the with parallel block (we
                # consider it too implicit and magicky for users)
                if entry in self.parent.assignments:
                    error(pos,
                          "Cannot assign to private of outer parallel block")
                    continue

            if not self.is_prange and op:
                # Again possible, but considered to magicky
                error(pos, "Reductions not allowed for parallel blocks")
                continue

            # By default all variables should have the same values as if
            # executed sequentially
            lastprivate = True
            self.propagate_var_privatization(entry, op, lastprivate)

    def propagate_var_privatization(self, entry, op, lastprivate):
        """
        Propagate the sharing attributes of a variable. If the privatization is
        determined by a parent scope, done propagate further.

        If we are a prange, we propagate our sharing attributes outwards to
        other pranges. If we are a prange in parallel block and the parallel
        block does not determine the variable private, we propagate to the
        parent of the parent. Recursion stops at parallel blocks, as they have
        no concept of lastprivate or reduction.

        So the following cases propagate:

            sum is a reduction for all loops:

                for i in prange(n):
                    for j in prange(n):
                        for k in prange(n):
                            sum += i * j * k

            sum is a reduction for both loops, local_var is private to the
            parallel with block:

                for i in prange(n):
                    with parallel:
                        local_var = ... # private to the parallel
                        for j in prange(n):
                            sum += i * j

        Nested with parallel blocks are disallowed, because they wouldn't
        allow you to propagate lastprivates or reductions:

            #pragma omp parallel for lastprivate(i)
            for i in prange(n):

                sum = 0

                #pragma omp parallel private(j, sum)
                with parallel:

                    #pragma omp parallel
                    with parallel:

                        #pragma omp for lastprivate(j) reduction(+:sum)
                        for j in prange(n):
                            sum += i

                    # sum and j are well-defined here

                # sum and j are undefined here

            # sum and j are undefined here
        """
        self.privates[entry] = (op, lastprivate)
        if self.is_prange:
            if not self.is_parallel and entry not in self.parent.assignments:
                # Parent is a parallel with block
                parent = self.parent.parent
            else:
                parent = self.parent

            # We don't need to propagate privates, only reductions and
            # lastprivates
            if parent and (op or lastprivate):
                parent.propagate_var_privatization(entry, op, lastprivate)

    def _allocate_closure_temp(self, code, entry):
        """
        Helper function that allocate a temporary for a closure variable that
        is assigned to.
        """
        if self.parent:
            return self.parent._allocate_closure_temp(code, entry)

        if entry.cname in self.seen_closure_vars:
            return entry.cname

        cname = code.funcstate.allocate_temp(entry.type, True)

        # Add both the actual cname and the temp cname, as the actual cname
        # will be replaced with the temp cname on the entry
        self.seen_closure_vars.add(entry.cname)
        self.seen_closure_vars.add(cname)

        self.modified_entries.append((entry, entry.cname))
        code.putln("%s = %s;" % (cname, entry.cname))
        entry.cname = cname

    def initialize_privates_to_nan(self, code, exclude=None):
        first = True

        for entry, (op, lastprivate) in self.privates.iteritems():
            if not op and (not exclude or entry != exclude):
                invalid_value = entry.type.invalid_value()

                if invalid_value:
                    if first:
                        code.putln("/* Initialize private variables to "
                                   "invalid values */")
                        code.globalstate.use_utility_code(
                                invalid_values_utility_code)
                        first = False

                    have_invalid_values = True
                    code.putln("%s = %s;" % (entry.cname,
                                             entry.type.cast_code(invalid_value)))

    def put_num_threads(self, code):
        """
        Write self.num_threads if set as the num_threads OpenMP directive
        """
        if self.num_threads is not None:
            c = self.begin_of_parallel_control_block_point
            # we need to set the owner to ourselves temporarily, as
            # allocate_temp may generate a comment in the middle of our pragma
            # otherwise when DebugFlags.debug_temp_code_comments is in effect
            owner = c.funcstate.owner
            c.funcstate.owner = c
            self.num_threads.generate_evaluation_code(c)
            c.funcstate.owner = owner

            code.put(" num_threads(%s)" % (self.num_threads.result(),))


    def declare_closure_privates(self, code):
        """
        If a variable is in a scope object, we need to allocate a temp and
        assign the value from the temp to the variable in the scope object
        after the parallel section. This kind of copying should be done only
        in the outermost parallel section.
        """
        self.modified_entries = []

        for entry, (pos, op) in self.assignments.iteritems():
            if entry.from_closure or entry.in_closure:
                self._allocate_closure_temp(code, entry)

    def release_closure_privates(self, code):
        """
        Release any temps used for variables in scope objects. As this is the
        outermost parallel block, we don't need to delete the cnames from
        self.seen_closure_vars.
        """
        for entry, original_cname in self.modified_entries:
            code.putln("%s = %s;" % (original_cname, entry.cname))
            code.funcstate.release_temp(entry.cname)
            entry.cname = original_cname

    def privatize_temps(self, code, exclude_temps=()):
        """
        Make any used temporaries private. Before the relevant code block
        code.start_collecting_temps() should have been called.
        """
        if self.is_parallel:
            c = self.privatization_insertion_point

            temps = code.funcstate.stop_collecting_temps()
            privates, firstprivates = [], []
            for temp, type in temps:
                if type.is_pyobject:
                    firstprivates.append(temp)
                else:
                    privates.append(temp)

            if privates:
                c.put(" private(%s)" % ", ".join(privates))
            if firstprivates:
                c.put(" firstprivate(%s)" % ", ".join(firstprivates))

            if self.breaking_label_used:
                shared_vars = [Naming.parallel_why]
                if self.error_label_used:
                    shared_vars.extend(self.parallel_exc)
                    c.put(" private(%s, %s, %s)" % self.pos_info)

                c.put(" shared(%s)" % ', '.join(shared_vars))

    def setup_parallel_control_flow_block(self, code):
        """
        Sets up a block that surrounds the parallel block to determine
        how the parallel section was exited. Any kind of return is
        trapped (break, continue, return, exceptions). This is the idea:

        {
            int why = 0;

            #pragma omp parallel
            {
                return # -> goto new_return_label;
                goto end_parallel;

            new_return_label:
                why = 3;
                goto end_parallel;

            end_parallel:;
                #pragma omp flush(why) # we need to flush for every iteration
            }

            if (why == 3)
                goto old_return_label;
        }
        """
        self.old_loop_labels = code.new_loop_labels()
        self.old_error_label = code.new_error_label()
        self.old_return_label = code.return_label
        code.return_label = code.new_label(name="return")

        code.begin_block() # parallel control flow block
        self.begin_of_parallel_control_block_point = code.insertion_point()

    def begin_parallel_block(self, code):
        """
        Each OpenMP thread in a parallel section that contains a with gil block
        must have the thread-state initialized. The call to
        PyGILState_Release() then deallocates our threadstate. If we wouldn't
        do this, each with gil block would allocate and deallocate one, thereby
        losing exception information before it can be saved before leaving the
        parallel section.
        """
        self.begin_of_parallel_block = code.insertion_point()

    def end_parallel_block(self, code):
        "Acquire the GIL, deallocate threadstate, release"
        if self.error_label_used:
            begin_code = self.begin_of_parallel_block
            end_code = code

            begin_code.put_ensure_gil(declare_gilstate=True)
            begin_code.putln("Py_BEGIN_ALLOW_THREADS")

            end_code.putln("Py_END_ALLOW_THREADS")
            end_code.put_release_ensured_gil()

    def trap_parallel_exit(self, code, should_flush=False):
        """
        Trap any kind of return inside a parallel construct. 'should_flush'
        indicates whether the variable should be flushed, which is needed by
        prange to skip the loop. It also indicates whether we need to register
        a continue (we need this for parallel blocks, but not for prange
        loops, as it is a direct jump there).

        It uses the same mechanism as try/finally:
            1 continue
            2 break
            3 return
            4 error
        """
        save_lastprivates_label = code.new_label()
        dont_return_label = code.new_label()
        insertion_point = code.insertion_point()

        self.any_label_used = False
        self.breaking_label_used = False
        self.error_label_used = False

        self.parallel_private_temps = []

        all_labels = code.get_all_labels()

        # Figure this out before starting to generate any code
        for label in all_labels:
            if code.label_used(label):
                self.breaking_label_used = (self.breaking_label_used or
                                            label != code.continue_label)
                self.any_label_used = True

        if self.any_label_used:
            code.put_goto(dont_return_label)

        for i, label in enumerate(all_labels):
            if not code.label_used(label):
                continue

            is_continue_label = label == code.continue_label

            code.put_label(label)

            if not (should_flush and is_continue_label):
                if label == code.error_label:
                    self.error_label_used = True
                    self.fetch_parallel_exception(code)

                code.putln("%s = %d;" % (Naming.parallel_why, i + 1))

            if (self.breaking_label_used and self.is_prange and not
                    is_continue_label):
                code.put_goto(save_lastprivates_label)
            else:
                code.put_goto(dont_return_label)

        if self.any_label_used:
            if self.is_prange and self.breaking_label_used:
                # Don't rely on lastprivate, save our lastprivates
                code.put_label(save_lastprivates_label)
                self.save_parallel_vars(code)

            code.put_label(dont_return_label)

            if should_flush and self.breaking_label_used:
                code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_why)

    def save_parallel_vars(self, code):
        """
        The following shenanigans are instated when we break, return or
        propagate errors from a prange. In this case we cannot rely on
        lastprivate() to do its job, as no iterations may have executed yet
        in the last thread, leaving the values undefined. It is most likely
        that the breaking thread has well-defined values of the lastprivate
        variables, so we keep those values.
        """
        section_name = ("__pyx_parallel_lastprivates%d" %
                                            self.critical_section_counter)
        code.putln_openmp("#pragma omp critical(%s)" % section_name)
        ParallelStatNode.critical_section_counter += 1

        code.begin_block() # begin critical section

        c = self.begin_of_parallel_control_block_point

        temp_count = 0
        for entry, (op, lastprivate) in self.privates.iteritems():
            if not lastprivate or entry.type.is_pyobject:
                continue

            type_decl = entry.type.declaration_code("")
            temp_cname = "__pyx_parallel_temp%d" % temp_count
            private_cname = entry.cname

            temp_count += 1

            # Declare the parallel private in the outer block
            c.putln("%s %s;" % (type_decl, temp_cname))

            # Initialize before escaping
            code.putln("%s = %s;" % (temp_cname, private_cname))

            self.parallel_private_temps.append((temp_cname, private_cname))

        code.end_block() # end critical section

    def fetch_parallel_exception(self, code):
        """
        As each OpenMP thread may raise an exception, we need to fetch that
        exception from the threadstate and save it for after the parallel
        section where it can be re-raised in the master thread.

        Although it would seem that __pyx_filename, __pyx_lineno and
        __pyx_clineno are only assigned to under exception conditions (i.e.,
        when we have the GIL), and thus should be allowed to be shared without
        any race condition, they are in fact subject to the same race
        conditions that they were previously when they were global variables
        and functions were allowed to release the GIL:

            thread A                thread B
                acquire
                set lineno
                release
                                        acquire
                                        set lineno
                                        release
                acquire
                fetch exception
                release
                                        skip the fetch

                deallocate threadstate  deallocate threadstate
        """
        code.begin_block()
        code.put_ensure_gil(declare_gilstate=True)

        code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_exc_type)
        code.putln(
            "if (!%s) {" % Naming.parallel_exc_type)

        code.putln("__Pyx_ErrFetch(&%s, &%s, &%s);" % self.parallel_exc)
        pos_info = chain(*zip(self.parallel_pos_info, self.pos_info))
        code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
        code.putln('__Pyx_GOTREF(%s);' % Naming.parallel_exc_type)

        code.putln(
            "}")

        code.put_release_ensured_gil()
        code.end_block()

    def restore_parallel_exception(self, code):
        "Re-raise a parallel exception"
        code.begin_block()
        code.put_ensure_gil(declare_gilstate=True)

        code.putln("__Pyx_ErrRestore(%s, %s, %s);" % self.parallel_exc)
        pos_info = chain(*zip(self.pos_info, self.parallel_pos_info))
        code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
        code.putln("__Pyx_GIVEREF(%s);" % Naming.parallel_exc_type)

        code.put_release_ensured_gil()
        code.end_block()

    def restore_labels(self, code):
        """
        Restore all old labels. Call this before the 'else' clause to for
        loops and always before ending the parallel control flow block.
        """
        code.set_all_labels(self.old_loop_labels + (self.old_return_label,
                                                    self.old_error_label))

    def end_parallel_control_flow_block(self, code,
                                        break_=False, continue_=False):
        """
        This ends the parallel control flow block and based on how the parallel
        section was exited, takes the corresponding action. The break_ and
        continue_ parameters indicate whether these should be propagated
        outwards:

            for i in prange(...):
                with cython.parallel.parallel():
                    continue

        Here break should be trapped in the parallel block, and propagated to
        the for loop.
        """
        c = self.begin_of_parallel_control_block_point

        # Firstly, always prefer errors over returning, continue or break
        if self.error_label_used:
            c.putln("const char *%s; int %s, %s;" % self.parallel_pos_info)
            c.putln("%s = NULL; %s = %s = 0;" % self.parallel_pos_info)

            c.putln("PyObject *%s = NULL, *%s = NULL, *%s = NULL;" %
                                                self.parallel_exc)

            code.putln(
                "if (%s) {" % Naming.parallel_exc_type)
            code.putln("/* This may have been overridden by a continue, "
                       "break or return in another thread. Prefer the error. */")
            code.putln("%s = 4;" % Naming.parallel_why)
            code.putln(
                "}")

        if continue_:
            any_label_used = self.any_label_used
        else:
            any_label_used = self.breaking_label_used

        if any_label_used:
            # __pyx_parallel_why is used, declare and initialize
            c.putln("int %s;" % Naming.parallel_why)
            c.putln("%s = 0;" % Naming.parallel_why)

            code.putln(
                "if (%s) {" % Naming.parallel_why)

            for temp_cname, private_cname in self.parallel_private_temps:
                code.putln("%s = %s;" % (private_cname, temp_cname))

            code.putln("switch (%s) {" % Naming.parallel_why)
            if continue_:
                code.put("    case 1: ")
                code.put_goto(code.continue_label)

            if break_:
                code.put("    case 2: ")
                code.put_goto(code.break_label)

            code.put("    case 3: ")
            code.put_goto(code.return_label)

            if self.error_label_used:
                code.globalstate.use_utility_code(restore_exception_utility_code)
                code.putln("    case 4:")
                self.restore_parallel_exception(code)
                code.put_goto(code.error_label)

            code.putln("}") # end switch
            code.putln(
                "}") # end if

        code.end_block() # end parallel control flow block


class ParallelWithBlockNode(ParallelStatNode):
    """
    This node represents a 'with cython.parallel.parallel():' block
    """

    valid_keyword_arguments = ['num_threads']

    num_threads = None

    def analyse_declarations(self, env):
        super(ParallelWithBlockNode, self).analyse_declarations(env)
        if self.args:
            error(self.pos, "cython.parallel.parallel() does not take "
                            "positional arguments")

    def generate_execution_code(self, code):
        self.declare_closure_privates(code)
        self.setup_parallel_control_flow_block(code)

        code.putln("#ifdef _OPENMP")
        code.put("#pragma omp parallel ")

        if self.privates:
            privates = [e.cname for e in self.privates
                                    if not e.type.is_pyobject]
            code.put('private(%s)' % ', '.join(privates))

        self.privatization_insertion_point = code.insertion_point()
        self.put_num_threads(code)
        code.putln("")

        code.putln("#endif /* _OPENMP */")

        code.begin_block() # parallel block
        self.begin_parallel_block(code)
        self.initialize_privates_to_nan(code)
        code.funcstate.start_collecting_temps()
        self.body.generate_execution_code(code)
        self.trap_parallel_exit(code)
        self.privatize_temps(code)
        self.end_parallel_block(code)
        code.end_block() # end parallel block

        continue_ = code.label_used(code.continue_label)
        break_ = code.label_used(code.break_label)

        self.restore_labels(code)
        self.end_parallel_control_flow_block(code, break_=break_,
                                             continue_=continue_)
        self.release_closure_privates(code)


class ParallelRangeNode(ParallelStatNode):
    """
    This node represents a 'for i in cython.parallel.prange():' construct.

    target       NameNode       the target iteration variable
    else_clause  Node or None   the else clause of this loop
    """

    child_attrs = ['body', 'target', 'else_clause', 'args']

    body = target = else_clause = args = None

    start = stop = step = None

    is_prange = True

    nogil = None
    schedule = None
    num_threads = None

    valid_keyword_arguments = ['schedule', 'nogil', 'num_threads']

    def __init__(self, pos, **kwds):
        super(ParallelRangeNode, self).__init__(pos, **kwds)
        # Pretend to be a ForInStatNode for control flow analysis
        self.iterator = PassStatNode(pos)

    def analyse_declarations(self, env):
        super(ParallelRangeNode, self).analyse_declarations(env)
        self.target.analyse_target_declaration(env)
        if self.else_clause is not None:
            self.else_clause.analyse_declarations(env)

        if not self.args or len(self.args) > 3:
            error(self.pos, "Invalid number of positional arguments to prange")
            return

        if len(self.args) == 1:
            self.stop, = self.args
        elif len(self.args) == 2:
            self.start, self.stop = self.args
        else:
            self.start, self.stop, self.step = self.args

        if hasattr(self.schedule, 'decode'):
            self.schedule = self.schedule.decode('ascii')

        if self.schedule not in (None, 'static', 'dynamic', 'guided',
                                 'runtime'):
            error(self.pos, "Invalid schedule argument to prange: %s" %
                                                        (self.schedule,))

    def analyse_expressions(self, env):
        if self.nogil:
            was_nogil = env.nogil
            env.nogil = True

        if self.target is None:
            error(self.pos, "prange() can only be used as part of a for loop")
            return

        self.target.analyse_target_types(env)

        if not self.target.type.is_numeric:
            # Not a valid type, assume one for now anyway

            if not self.target.type.is_pyobject:
                # nogil_check will catch the is_pyobject case
                error(self.target.pos,
                      "Must be of numeric type, not %s" % self.target.type)

            self.index_type = PyrexTypes.c_py_ssize_t_type
        else:
            self.index_type = self.target.type

        # Setup start, stop and step, allocating temps if needed
        self.names = 'start', 'stop', 'step'
        start_stop_step = self.start, self.stop, self.step

        for node, name in zip(start_stop_step, self.names):
            if node is not None:
                node.analyse_types(env)
                if not node.type.is_numeric:
                    error(node.pos, "%s argument must be numeric" % name)
                    continue

                if not node.is_literal:
                    node = node.coerce_to_temp(env)
                    setattr(self, name, node)

                # As we range from 0 to nsteps, computing the index along the
                # way, we need a fitting type for 'i' and 'nsteps'
                self.index_type = PyrexTypes.widest_numeric_type(
                                        self.index_type, node.type)

        if self.else_clause is not None:
            self.else_clause.analyse_expressions(env)

        # Although not actually an assignment in this scope, it should be
        # treated as such to ensure it is unpacked if a closure temp, and to
        # ensure lastprivate behaviour and propagation. If the target index is
        # not a NameNode, it won't have an entry, and an error was issued by
        # ParallelRangeTransform
        if hasattr(self.target, 'entry'):
            self.assignments[self.target.entry] = self.target.pos, None

        super(ParallelRangeNode, self).analyse_expressions(env)

        if self.nogil:
            env.nogil = was_nogil

    def nogil_check(self, env):
        names = 'start', 'stop', 'step', 'target'
        nodes = self.start, self.stop, self.step, self.target
        for name, node in zip(names, nodes):
            if node is not None and node.type.is_pyobject:
                error(node.pos, "%s may not be a Python object "
                                "as we don't have the GIL" % name)

    def generate_execution_code(self, code):
        """
        Generate code in the following steps

            1)  copy any closure variables determined thread-private
                into temporaries

            2)  allocate temps for start, stop and step

            3)  generate a loop that calculates the total number of steps,
                which then computes the target iteration variable for every step:

                    for i in prange(start, stop, step):
                        ...

                becomes

                    nsteps = (stop - start) / step;
                    i = start;

                    #pragma omp parallel for lastprivate(i)
                    for (temp = 0; temp < nsteps; temp++) {
                        i = start + step * temp;
                        ...
                    }

                Note that accumulation of 'i' would have a data dependency
                between iterations.

                Also, you can't do this

                    for (i = start; i < stop; i += step)
                        ...

                as the '<' operator should become '>' for descending loops.
                'for i from x < i < y:' does not suffer from this problem
                as the relational operator is known at compile time!

            4) release our temps and write back any private closure variables
        """
        self.declare_closure_privates(code)

        # This can only be a NameNode
        target_index_cname = self.target.entry.cname

        # This will be used as the dict to format our code strings, holding
        # the start, stop , step, temps and target cnames
        fmt_dict = {
            'target': target_index_cname,
        }

        # Setup start, stop and step, allocating temps if needed
        start_stop_step = self.start, self.stop, self.step
        defaults = '0', '0', '1'
        for node, name, default in zip(start_stop_step, self.names, defaults):
            if node is None:
                result = default
            elif node.is_literal:
                result = node.get_constant_c_result_code()
            else:
                node.generate_evaluation_code(code)
                result = node.result()

            fmt_dict[name] = result

        fmt_dict['i'] = code.funcstate.allocate_temp(self.index_type, False)
        fmt_dict['nsteps'] = code.funcstate.allocate_temp(self.index_type, False)

        # TODO: check if the step is 0 and if so, raise an exception in a
        # 'with gil' block. For now, just abort
        code.putln("if (%(step)s == 0) abort();" % fmt_dict)

        self.setup_parallel_control_flow_block(code) # parallel control flow block

        self.control_flow_var_code_point = code.insertion_point()

        # Note: nsteps is private in an outer scope if present
        code.putln("%(nsteps)s = (%(stop)s - %(start)s) / %(step)s;" % fmt_dict)

        # The target iteration variable might not be initialized, do it only if
        # we are executing at least 1 iteration, otherwise we should leave the
        # target unaffected. The target iteration variable is firstprivate to
        # shut up compiler warnings caused by lastprivate, as the compiler
        # erroneously believes that nsteps may be <= 0, leaving the private
        # target index uninitialized
        code.putln("if (%(nsteps)s > 0)" % fmt_dict)
        code.begin_block() # if block
        code.putln("%(target)s = 0;" % fmt_dict)
        self.generate_loop(code, fmt_dict)
        code.end_block() # end if block

        self.restore_labels(code)

        if self.else_clause:
            if self.breaking_label_used:
                code.put("if (%s < 2)" % Naming.parallel_why)

            code.begin_block() # else block
            code.putln("/* else */")
            self.else_clause.generate_execution_code(code)
            code.end_block() # end else block

        # ------ cleanup ------
        self.end_parallel_control_flow_block(code) # end parallel control flow block

        # And finally, release our privates and write back any closure
        # variables
        for temp in start_stop_step:
            if temp is not None:
                temp.generate_disposal_code(code)
                temp.free_temps(code)

        code.funcstate.release_temp(fmt_dict['i'])
        code.funcstate.release_temp(fmt_dict['nsteps'])

        self.release_closure_privates(code)

    def generate_loop(self, code, fmt_dict):
        code.putln("#ifdef _OPENMP")

        if not self.is_parallel:
            code.put("#pragma omp for")
            self.privatization_insertion_point = code.insertion_point()
            reduction_codepoint = self.parent.privatization_insertion_point
        else:
            code.put("#pragma omp parallel")
            self.privatization_insertion_point = code.insertion_point()
            reduction_codepoint = self.privatization_insertion_point
            code.putln("")
            code.putln("#endif /* _OPENMP */")

            code.begin_block() # pragma omp parallel begin block

            # Initialize the GIL if needed for this thread
            self.begin_parallel_block(code)

            code.putln("#ifdef _OPENMP")
            code.put("#pragma omp for")

        for entry, (op, lastprivate) in self.privates.iteritems():
            # Don't declare the index variable as a reduction
            if op and op in "+*-&^|" and entry != self.target.entry:
                if entry.type.is_pyobject:
                    error(self.pos, "Python objects cannot be reductions")
                else:
                    #code.put(" reduction(%s:%s)" % (op, entry.cname))
                    # This is the only way reductions + nesting works in gcc4.5
                    reduction_codepoint.put(
                                " reduction(%s:%s)" % (op, entry.cname))
            else:
                if entry == self.target.entry:
                    code.put(" firstprivate(%s)" % entry.cname)
                    code.put(" lastprivate(%s)" % entry.cname)
                    continue

                if not entry.type.is_pyobject:
                    if lastprivate:
                        private = 'lastprivate'
                    else:
                        private = 'private'

                    code.put(" %s(%s)" % (private, entry.cname))

        if self.schedule:
            code.put(" schedule(%s)" % self.schedule)

        self.put_num_threads(reduction_codepoint)

        code.putln("")
        code.putln("#endif /* _OPENMP */")

        code.put("for (%(i)s = 0; %(i)s < %(nsteps)s; %(i)s++)" % fmt_dict)
        code.begin_block() # for loop block

        guard_around_body_codepoint = code.insertion_point()

        # Start if guard block around the body. This may be unnecessary, but
        # at least it doesn't spoil indentation
        code.begin_block()

        code.putln("%(target)s = %(start)s + %(step)s * %(i)s;" % fmt_dict)
        self.initialize_privates_to_nan(code, exclude=self.target.entry)

        if self.is_parallel:
            code.funcstate.start_collecting_temps()

        self.body.generate_execution_code(code)
        self.trap_parallel_exit(code, should_flush=True)
        self.privatize_temps(code)

        if self.breaking_label_used:
            # Put a guard around the loop body in case return, break or
            # exceptions might be used
            guard_around_body_codepoint.putln("if (%s < 2)" % Naming.parallel_why)

        code.end_block() # end guard around loop body
        code.end_block() # end for loop block

        if self.is_parallel:
            # Release the GIL and deallocate the thread state
            self.end_parallel_block(code)
            code.end_block() # pragma omp parallel end block


class CnameDecoratorNode(StatNode):
    """
    This node is for the cname decorator in CythonUtilityCode:

        @cname('the_cname')
        cdef func(...):
            ...

    In case of a cdef class the cname specifies the objstruct_cname.

    node        the node to which the cname decorator is applied
    cname       the cname the node should get
    """

    child_attrs = ['node']

    def analyse_declarations(self, env):
        self.node.analyse_declarations(env)

        self.is_function = isinstance(self.node, FuncDefNode)
        is_struct_or_enum = isinstance(self.node, (CStructOrUnionDefNode,
                                                   CEnumDefNode))
        e = self.node.entry

        if self.is_function:
            e.cname = self.cname
            e.func_cname = self.cname
        elif is_struct_or_enum:
            e.cname = e.type.cname = self.cname
        else:
            scope = self.node.scope

            e.cname = self.cname
            e.type.objstruct_cname = self.cname + '_obj'
            e.type.typeobj_cname = Naming.typeobj_prefix + self.cname
            e.type.typeptr_cname = self.cname + '_type'

            e.as_variable.cname = py_object_type.cast_code(e.type.typeptr_cname)

            scope.scope_prefix = self.cname + "_"

            for name, entry in scope.entries.iteritems():
                if entry.func_cname:
                    entry.func_cname = '%s_%s' % (self.cname, entry.cname)

    def analyse_expressions(self, env):
        self.node.analyse_expressions(env)

    def generate_function_definitions(self, env, code):
        "Ensure a prototype for every @cname method in the right place"
        if self.is_function and env.is_c_class_scope:
            # method in cdef class, generate a prototype in the header
            h_code = code.globalstate['utility_code_proto']

            if isinstance(self.node, DefNode):
                self.node.generate_function_header(
                            h_code, with_pymethdef=False, proto_only=True)
            else:
                import ModuleNode
                entry = self.node.entry
                cname = entry.cname
                entry.cname = entry.func_cname

                ModuleNode.generate_cfunction_declaration(
                        entry,
                        env.global_scope(),
                        h_code,
                        definition=True)

                entry.cname = cname

        self.node.generate_function_definitions(env, code)

    def generate_execution_code(self, code):
        self.node.generate_execution_code(code)


#------------------------------------------------------------------------------------
#
#  Runtime support code
#
#------------------------------------------------------------------------------------

utility_function_predeclarations = \
"""
/* inline attribute */
#ifndef CYTHON_INLINE
  #if defined(__GNUC__)
    #define CYTHON_INLINE __inline__
  #elif defined(_MSC_VER)
    #define CYTHON_INLINE __inline
  #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
    #define CYTHON_INLINE inline
  #else
    #define CYTHON_INLINE
  #endif
#endif

/* unused attribute */
#ifndef CYTHON_UNUSED
# if defined(__GNUC__)
#   if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4))
#     define CYTHON_UNUSED __attribute__ ((__unused__))
#   else
#     define CYTHON_UNUSED
#   endif
# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER))
#   define CYTHON_UNUSED __attribute__ ((__unused__))
# else
#   define CYTHON_UNUSED
# endif
#endif

typedef struct {PyObject **p; char *s; const long n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; /*proto*/

"""

if Options.gcc_branch_hints:
    branch_prediction_macros = \
    """
#ifdef __GNUC__
  /* Test for GCC > 2.95 */
  #if __GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))
    #define likely(x)   __builtin_expect(!!(x), 1)
    #define unlikely(x) __builtin_expect(!!(x), 0)
  #else /* __GNUC__ > 2 ... */
    #define likely(x)   (x)
    #define unlikely(x) (x)
  #endif /* __GNUC__ > 2 ... */
#else /* __GNUC__ */
  #define likely(x)   (x)
  #define unlikely(x) (x)
#endif /* __GNUC__ */
    """
else:
    branch_prediction_macros = \
    """
#define likely(x)   (x)
#define unlikely(x) (x)
    """

#get_name_predeclaration = \
#"static PyObject *__Pyx_GetName(PyObject *dict, char *name); /*proto*/"

#get_name_interned_predeclaration = \
#"static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name); /*proto*/"

#------------------------------------------------------------------------------------

printing_utility_code = UtilityCode(
proto = """
static int __Pyx_Print(PyObject*, PyObject *, int); /*proto*/
#if PY_MAJOR_VERSION >= 3
static PyObject* %s = 0;
static PyObject* %s = 0;
#endif
""" % (Naming.print_function, Naming.print_function_kwargs),
cleanup = """
#if PY_MAJOR_VERSION >= 3
Py_CLEAR(%s);
Py_CLEAR(%s);
#endif
""" % (Naming.print_function, Naming.print_function_kwargs),
impl = r"""
#if PY_MAJOR_VERSION < 3
static PyObject *__Pyx_GetStdout(void) {
    PyObject *f = PySys_GetObject((char *)"stdout");
    if (!f) {
        PyErr_SetString(PyExc_RuntimeError, "lost sys.stdout");
    }
    return f;
}

static int __Pyx_Print(PyObject* f, PyObject *arg_tuple, int newline) {
    PyObject* v;
    int i;

    if (!f) {
        if (!(f = __Pyx_GetStdout()))
            return -1;
    }
    for (i=0; i < PyTuple_GET_SIZE(arg_tuple); i++) {
        if (PyFile_SoftSpace(f, 1)) {
            if (PyFile_WriteString(" ", f) < 0)
                return -1;
        }
        v = PyTuple_GET_ITEM(arg_tuple, i);
        if (PyFile_WriteObject(v, f, Py_PRINT_RAW) < 0)
            return -1;
        if (PyString_Check(v)) {
            char *s = PyString_AsString(v);
            Py_ssize_t len = PyString_Size(v);
            if (len > 0 &&
                isspace(Py_CHARMASK(s[len-1])) &&
                s[len-1] != ' ')
                    PyFile_SoftSpace(f, 0);
        }
    }
    if (newline) {
        if (PyFile_WriteString("\n", f) < 0)
            return -1;
        PyFile_SoftSpace(f, 0);
    }
    return 0;
}

#else /* Python 3 has a print function */

static int __Pyx_Print(PyObject* stream, PyObject *arg_tuple, int newline) {
    PyObject* kwargs = 0;
    PyObject* result = 0;
    PyObject* end_string;
    if (unlikely(!%(PRINT_FUNCTION)s)) {
        %(PRINT_FUNCTION)s = __Pyx_GetAttrString(%(BUILTINS)s, "print");
        if (!%(PRINT_FUNCTION)s)
            return -1;
    }
    if (stream) {
        kwargs = PyDict_New();
        if (unlikely(!kwargs))
            return -1;
        if (unlikely(PyDict_SetItemString(kwargs, "file", stream) < 0))
            goto bad;
        if (!newline) {
            end_string = PyUnicode_FromStringAndSize(" ", 1);
            if (unlikely(!end_string))
                goto bad;
            if (PyDict_SetItemString(kwargs, "end", end_string) < 0) {
                Py_DECREF(end_string);
                goto bad;
            }
            Py_DECREF(end_string);
        }
    } else if (!newline) {
        if (unlikely(!%(PRINT_KWARGS)s)) {
            %(PRINT_KWARGS)s = PyDict_New();
            if (unlikely(!%(PRINT_KWARGS)s))
                return -1;
            end_string = PyUnicode_FromStringAndSize(" ", 1);
            if (unlikely(!end_string))
                return -1;
            if (PyDict_SetItemString(%(PRINT_KWARGS)s, "end", end_string) < 0) {
                Py_DECREF(end_string);
                return -1;
            }
            Py_DECREF(end_string);
        }
        kwargs = %(PRINT_KWARGS)s;
    }
    result = PyObject_Call(%(PRINT_FUNCTION)s, arg_tuple, kwargs);
    if (unlikely(kwargs) && (kwargs != %(PRINT_KWARGS)s))
        Py_DECREF(kwargs);
    if (!result)
        return -1;
    Py_DECREF(result);
    return 0;
bad:
    if (kwargs != %(PRINT_KWARGS)s)
        Py_XDECREF(kwargs);
    return -1;
}

#endif
""" % {'BUILTINS'       : Naming.builtins_cname,
       'PRINT_FUNCTION' : Naming.print_function,
       'PRINT_KWARGS'   : Naming.print_function_kwargs}
)


printing_one_utility_code = UtilityCode(
proto = """
static int __Pyx_PrintOne(PyObject* stream, PyObject *o); /*proto*/
""",
impl = r"""
#if PY_MAJOR_VERSION < 3

static int __Pyx_PrintOne(PyObject* f, PyObject *o) {
    if (!f) {
        if (!(f = __Pyx_GetStdout()))
            return -1;
    }
    if (PyFile_SoftSpace(f, 0)) {
        if (PyFile_WriteString(" ", f) < 0)
            return -1;
    }
    if (PyFile_WriteObject(o, f, Py_PRINT_RAW) < 0)
        return -1;
    if (PyFile_WriteString("\n", f) < 0)
        return -1;
    return 0;
    /* the line below is just to avoid compiler
     * compiler warnings about unused functions */
    return __Pyx_Print(f, NULL, 0);
}

#else /* Python 3 has a print function */

static int __Pyx_PrintOne(PyObject* stream, PyObject *o) {
    int res;
    PyObject* arg_tuple = PyTuple_New(1);
    if (unlikely(!arg_tuple))
        return -1;
    Py_INCREF(o);
    PyTuple_SET_ITEM(arg_tuple, 0, o);
    res = __Pyx_Print(stream, arg_tuple, 1);
    Py_DECREF(arg_tuple);
    return res;
}

#endif
""",
requires=[printing_utility_code])



#------------------------------------------------------------------------------------

# Exception raising code
#
# Exceptions are raised by __Pyx_Raise() and stored as plain
# type/value/tb in PyThreadState->curexc_*.  When being caught by an
# 'except' statement, curexc_* is moved over to exc_* by
# __Pyx_GetException()

restore_exception_utility_code = UtilityCode(
proto = """
static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb); /*proto*/
static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb); /*proto*/
""",
impl = """
static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb) {
    PyObject *tmp_type, *tmp_value, *tmp_tb;
    PyThreadState *tstate = PyThreadState_GET();

    tmp_type = tstate->curexc_type;
    tmp_value = tstate->curexc_value;
    tmp_tb = tstate->curexc_traceback;
    tstate->curexc_type = type;
    tstate->curexc_value = value;
    tstate->curexc_traceback = tb;
    Py_XDECREF(tmp_type);
    Py_XDECREF(tmp_value);
    Py_XDECREF(tmp_tb);
}

static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb) {
    PyThreadState *tstate = PyThreadState_GET();
    *type = tstate->curexc_type;
    *value = tstate->curexc_value;
    *tb = tstate->curexc_traceback;

    tstate->curexc_type = 0;
    tstate->curexc_value = 0;
    tstate->curexc_traceback = 0;
}

""")

# The following function is based on do_raise() from ceval.c. There
# are separate versions for Python2 and Python3 as exception handling
# has changed quite a lot between the two versions.

raise_utility_code = UtilityCode(
proto = """
static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /*proto*/
""",
impl = """
#if PY_MAJOR_VERSION < 3
static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) {
    /* cause is unused */
    Py_XINCREF(type);
    Py_XINCREF(value);
    Py_XINCREF(tb);
    /* First, check the traceback argument, replacing None with NULL. */
    if (tb == Py_None) {
        Py_DECREF(tb);
        tb = 0;
    }
    else if (tb != NULL && !PyTraceBack_Check(tb)) {
        PyErr_SetString(PyExc_TypeError,
            "raise: arg 3 must be a traceback or None");
        goto raise_error;
    }
    /* Next, replace a missing value with None */
    if (value == NULL) {
        value = Py_None;
        Py_INCREF(value);
    }
    #if PY_VERSION_HEX < 0x02050000
    if (!PyClass_Check(type))
    #else
    if (!PyType_Check(type))
    #endif
    {
        /* Raising an instance.  The value should be a dummy. */
        if (value != Py_None) {
            PyErr_SetString(PyExc_TypeError,
                "instance exception may not have a separate value");
            goto raise_error;
        }
        /* Normalize to raise <class>, <instance> */
        Py_DECREF(value);
        value = type;
        #if PY_VERSION_HEX < 0x02050000
            if (PyInstance_Check(type)) {
                type = (PyObject*) ((PyInstanceObject*)type)->in_class;
                Py_INCREF(type);
            }
            else {
                type = 0;
                PyErr_SetString(PyExc_TypeError,
                    "raise: exception must be an old-style class or instance");
                goto raise_error;
            }
        #else
            type = (PyObject*) Py_TYPE(type);
            Py_INCREF(type);
            if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) {
                PyErr_SetString(PyExc_TypeError,
                    "raise: exception class must be a subclass of BaseException");
                goto raise_error;
            }
        #endif
    }

    __Pyx_ErrRestore(type, value, tb);
    return;
raise_error:
    Py_XDECREF(value);
    Py_XDECREF(type);
    Py_XDECREF(tb);
    return;
}

#else /* Python 3+ */

static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) {
    if (tb == Py_None) {
        tb = 0;
    } else if (tb && !PyTraceBack_Check(tb)) {
        PyErr_SetString(PyExc_TypeError,
            "raise: arg 3 must be a traceback or None");
        goto bad;
    }
    if (value == Py_None)
        value = 0;

    if (PyExceptionInstance_Check(type)) {
        if (value) {
            PyErr_SetString(PyExc_TypeError,
                "instance exception may not have a separate value");
            goto bad;
        }
        value = type;
        type = (PyObject*) Py_TYPE(value);
    } else if (!PyExceptionClass_Check(type)) {
        PyErr_SetString(PyExc_TypeError,
            "raise: exception class must be a subclass of BaseException");
        goto bad;
    }

    if (cause) {
        PyObject *fixed_cause;
        if (PyExceptionClass_Check(cause)) {
            fixed_cause = PyObject_CallObject(cause, NULL);
            if (fixed_cause == NULL)
                goto bad;
        }
        else if (PyExceptionInstance_Check(cause)) {
            fixed_cause = cause;
            Py_INCREF(fixed_cause);
        }
        else {
            PyErr_SetString(PyExc_TypeError,
                            "exception causes must derive from "
                            "BaseException");
            goto bad;
        }
        if (!value) {
            value = PyObject_CallObject(type, NULL);
        }
        PyException_SetCause(value, fixed_cause);
    }

    PyErr_SetObject(type, value);

    if (tb) {
        PyThreadState *tstate = PyThreadState_GET();
        PyObject* tmp_tb = tstate->curexc_traceback;
        if (tb != tmp_tb) {
            Py_INCREF(tb);
            tstate->curexc_traceback = tb;
            Py_XDECREF(tmp_tb);
        }
    }

bad:
    return;
}
#endif
""",
requires=[restore_exception_utility_code])

#------------------------------------------------------------------------------------

get_exception_utility_code = UtilityCode(
proto = """
static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); /*proto*/
""",
impl = """
static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) {
    PyObject *local_type, *local_value, *local_tb;
    PyObject *tmp_type, *tmp_value, *tmp_tb;
    PyThreadState *tstate = PyThreadState_GET();
    local_type = tstate->curexc_type;
    local_value = tstate->curexc_value;
    local_tb = tstate->curexc_traceback;
    tstate->curexc_type = 0;
    tstate->curexc_value = 0;
    tstate->curexc_traceback = 0;
    PyErr_NormalizeException(&local_type, &local_value, &local_tb);
    if (unlikely(tstate->curexc_type))
        goto bad;
    #if PY_MAJOR_VERSION >= 3
    if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0))
        goto bad;
    #endif
    *type = local_type;
    *value = local_value;
    *tb = local_tb;
    Py_INCREF(local_type);
    Py_INCREF(local_value);
    Py_INCREF(local_tb);
    tmp_type = tstate->exc_type;
    tmp_value = tstate->exc_value;
    tmp_tb = tstate->exc_traceback;
    tstate->exc_type = local_type;
    tstate->exc_value = local_value;
    tstate->exc_traceback = local_tb;
    /* Make sure tstate is in a consistent state when we XDECREF
       these objects (XDECREF may run arbitrary code). */
    Py_XDECREF(tmp_type);
    Py_XDECREF(tmp_value);
    Py_XDECREF(tmp_tb);
    return 0;
bad:
    *type = 0;
    *value = 0;
    *tb = 0;
    Py_XDECREF(local_type);
    Py_XDECREF(local_value);
    Py_XDECREF(local_tb);
    return -1;
}

""")

#------------------------------------------------------------------------------------

get_exception_tuple_utility_code = UtilityCode(proto="""
static PyObject *__Pyx_GetExceptionTuple(void); /*proto*/
""",
# I doubt that calling __Pyx_GetException() here is correct as it moves
# the exception from tstate->curexc_* to tstate->exc_*, which prevents
# exception handlers later on from receiving it.
impl = """
static PyObject *__Pyx_GetExceptionTuple(void) {
    PyObject *type = NULL, *value = NULL, *tb = NULL;
    if (__Pyx_GetException(&type, &value, &tb) == 0) {
        PyObject* exc_info = PyTuple_New(3);
        if (exc_info) {
            Py_INCREF(type);
            Py_INCREF(value);
            Py_INCREF(tb);
            PyTuple_SET_ITEM(exc_info, 0, type);
            PyTuple_SET_ITEM(exc_info, 1, value);
            PyTuple_SET_ITEM(exc_info, 2, tb);
            return exc_info;
        }
    }
    return NULL;
}
""",
requires=[get_exception_utility_code])

#------------------------------------------------------------------------------------

reset_exception_utility_code = UtilityCode(
proto = """
static CYTHON_INLINE void __Pyx_ExceptionSave(PyObject **type, PyObject **value, PyObject **tb); /*proto*/
static void __Pyx_ExceptionReset(PyObject *type, PyObject *value, PyObject *tb); /*proto*/
""",
impl = """
static CYTHON_INLINE void __Pyx_ExceptionSave(PyObject **type, PyObject **value, PyObject **tb) {
    PyThreadState *tstate = PyThreadState_GET();
    *type = tstate->exc_type;
    *value = tstate->exc_value;
    *tb = tstate->exc_traceback;
    Py_XINCREF(*type);
    Py_XINCREF(*value);
    Py_XINCREF(*tb);
}

static void __Pyx_ExceptionReset(PyObject *type, PyObject *value, PyObject *tb) {
    PyObject *tmp_type, *tmp_value, *tmp_tb;
    PyThreadState *tstate = PyThreadState_GET();
    tmp_type = tstate->exc_type;
    tmp_value = tstate->exc_value;
    tmp_tb = tstate->exc_traceback;
    tstate->exc_type = type;
    tstate->exc_value = value;
    tstate->exc_traceback = tb;
    Py_XDECREF(tmp_type);
    Py_XDECREF(tmp_value);
    Py_XDECREF(tmp_tb);
}
""")

#------------------------------------------------------------------------------------

swap_exception_utility_code = UtilityCode(
proto = """
static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb); /*proto*/
""",
impl = """
static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) {
    PyObject *tmp_type, *tmp_value, *tmp_tb;
    PyThreadState *tstate = PyThreadState_GET();

    tmp_type = tstate->exc_type;
    tmp_value = tstate->exc_value;
    tmp_tb = tstate->exc_traceback;

    tstate->exc_type = *type;
    tstate->exc_value = *value;
    tstate->exc_traceback = *tb;

    *type = tmp_type;
    *value = tmp_value;
    *tb = tmp_tb;
}
""")

#------------------------------------------------------------------------------------

arg_type_test_utility_code = UtilityCode(
proto = """
static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed,
    const char *name, int exact); /*proto*/
""",
impl = """
static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed,
    const char *name, int exact)
{
    if (!type) {
        PyErr_Format(PyExc_SystemError, "Missing type object");
        return 0;
    }
    if (none_allowed && obj == Py_None) return 1;
    else if (exact) {
        if (Py_TYPE(obj) == type) return 1;
    }
    else {
        if (PyObject_TypeCheck(obj, type)) return 1;
    }
    PyErr_Format(PyExc_TypeError,
        "Argument '%s' has incorrect type (expected %s, got %s)",
        name, type->tp_name, Py_TYPE(obj)->tp_name);
    return 0;
}
""")

#------------------------------------------------------------------------------------
#
#  __Pyx_RaiseArgtupleInvalid raises the correct exception when too
#  many or too few positional arguments were found.  This handles
#  Py_ssize_t formatting correctly.

raise_argtuple_invalid_utility_code = UtilityCode(
proto = """
static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact,
    Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /*proto*/
""",
impl = """
static void __Pyx_RaiseArgtupleInvalid(
    const char* func_name,
    int exact,
    Py_ssize_t num_min,
    Py_ssize_t num_max,
    Py_ssize_t num_found)
{
    Py_ssize_t num_expected;
    const char *more_or_less;

    if (num_found < num_min) {
        num_expected = num_min;
        more_or_less = "at least";
    } else {
        num_expected = num_max;
        more_or_less = "at most";
    }
    if (exact) {
        more_or_less = "exactly";
    }
    PyErr_Format(PyExc_TypeError,
                 "%s() takes %s %"PY_FORMAT_SIZE_T"d positional argument%s (%"PY_FORMAT_SIZE_T"d given)",
                 func_name, more_or_less, num_expected,
                 (num_expected == 1) ? "" : "s", num_found);
}
""")

raise_keyword_required_utility_code = UtilityCode(
proto = """
static CYTHON_INLINE void __Pyx_RaiseKeywordRequired(const char* func_name, PyObject* kw_name); /*proto*/
""",
impl = """
static CYTHON_INLINE void __Pyx_RaiseKeywordRequired(
    const char* func_name,
    PyObject* kw_name)
{
    PyErr_Format(PyExc_TypeError,
        #if PY_MAJOR_VERSION >= 3
        "%s() needs keyword-only argument %U", func_name, kw_name);
        #else
        "%s() needs keyword-only argument %s", func_name,
        PyString_AS_STRING(kw_name));
        #endif
}
""")

raise_double_keywords_utility_code = UtilityCode(
proto = """
static void __Pyx_RaiseDoubleKeywordsError(
    const char* func_name, PyObject* kw_name); /*proto*/
""",
impl = """
static void __Pyx_RaiseDoubleKeywordsError(
    const char* func_name,
    PyObject* kw_name)
{
    PyErr_Format(PyExc_TypeError,
        #if PY_MAJOR_VERSION >= 3
        "%s() got multiple values for keyword argument '%U'", func_name, kw_name);
        #else
        "%s() got multiple values for keyword argument '%s'", func_name,
        PyString_AS_STRING(kw_name));
        #endif
}
""")

#------------------------------------------------------------------------------------
#
#  __Pyx_CheckKeywordStrings raises an error if non-string keywords
#  were passed to a function, or if any keywords were passed to a
#  function that does not accept them.

keyword_string_check_utility_code = UtilityCode(
proto = """
static CYTHON_INLINE int __Pyx_CheckKeywordStrings(PyObject *kwdict,
    const char* function_name, int kw_allowed); /*proto*/
""",
impl = """
static CYTHON_INLINE int __Pyx_CheckKeywordStrings(
    PyObject *kwdict,
    const char* function_name,
    int kw_allowed)
{
    PyObject* key = 0;
    Py_ssize_t pos = 0;
    while (PyDict_Next(kwdict, &pos, &key, 0)) {
        #if PY_MAJOR_VERSION < 3
        if (unlikely(!PyString_CheckExact(key)) && unlikely(!PyString_Check(key)))
        #else
        if (unlikely(!PyUnicode_CheckExact(key)) && unlikely(!PyUnicode_Check(key)))
        #endif
            goto invalid_keyword_type;
    }
    if ((!kw_allowed) && unlikely(key))
        goto invalid_keyword;
    return 1;
invalid_keyword_type:
    PyErr_Format(PyExc_TypeError,
        "%s() keywords must be strings", function_name);
    return 0;
invalid_keyword:
    PyErr_Format(PyExc_TypeError,
    #if PY_MAJOR_VERSION < 3
        "%s() got an unexpected keyword argument '%s'",
        function_name, PyString_AsString(key));
    #else
        "%s() got an unexpected keyword argument '%U'",
        function_name, key);
    #endif
    return 0;
}
""")

#------------------------------------------------------------------------------------
#
#  __Pyx_ParseOptionalKeywords copies the optional/unknown keyword
#  arguments from the kwds dict into kwds2.  If kwds2 is NULL, unknown
#  keywords will raise an invalid keyword error.
#
#  Three kinds of errors are checked: 1) non-string keywords, 2)
#  unexpected keywords and 3) overlap with positional arguments.
#
#  If num_posargs is greater 0, it denotes the number of positional
#  arguments that were passed and that must therefore not appear
#  amongst the keywords as well.
#
#  This method does not check for required keyword arguments.
#

parse_keywords_utility_code = UtilityCode(
proto = """
static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[], \
    PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, \
    const char* function_name); /*proto*/
""",
impl = """
static int __Pyx_ParseOptionalKeywords(
    PyObject *kwds,
    PyObject **argnames[],
    PyObject *kwds2,
    PyObject *values[],
    Py_ssize_t num_pos_args,
    const char* function_name)
{
    PyObject *key = 0, *value = 0;
    Py_ssize_t pos = 0;
    PyObject*** name;
    PyObject*** first_kw_arg = argnames + num_pos_args;

    while (PyDict_Next(kwds, &pos, &key, &value)) {
        name = first_kw_arg;
        while (*name && (**name != key)) name++;
        if (*name) {
            values[name-argnames] = value;
        } else {
            #if PY_MAJOR_VERSION < 3
            if (unlikely(!PyString_CheckExact(key)) && unlikely(!PyString_Check(key))) {
            #else
            if (unlikely(!PyUnicode_CheckExact(key)) && unlikely(!PyUnicode_Check(key))) {
            #endif
                goto invalid_keyword_type;
            } else {
                for (name = first_kw_arg; *name; name++) {
                    #if PY_MAJOR_VERSION >= 3
                    if (PyUnicode_GET_SIZE(**name) == PyUnicode_GET_SIZE(key) &&
                        PyUnicode_Compare(**name, key) == 0) break;
                    #else
                    if (PyString_GET_SIZE(**name) == PyString_GET_SIZE(key) &&
                        _PyString_Eq(**name, key)) break;
                    #endif
                }
                if (*name) {
                    values[name-argnames] = value;
                } else {
                    /* unexpected keyword found */
                    for (name=argnames; name != first_kw_arg; name++) {
                        if (**name == key) goto arg_passed_twice;
                        #if PY_MAJOR_VERSION >= 3
                        if (PyUnicode_GET_SIZE(**name) == PyUnicode_GET_SIZE(key) &&
                            PyUnicode_Compare(**name, key) == 0) goto arg_passed_twice;
                        #else
                        if (PyString_GET_SIZE(**name) == PyString_GET_SIZE(key) &&
                            _PyString_Eq(**name, key)) goto arg_passed_twice;
                        #endif
                    }
                    if (kwds2) {
                        if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad;
                    } else {
                        goto invalid_keyword;
                    }
                }
            }
        }
    }
    return 0;
arg_passed_twice:
    __Pyx_RaiseDoubleKeywordsError(function_name, **name);
    goto bad;
invalid_keyword_type:
    PyErr_Format(PyExc_TypeError,
        "%s() keywords must be strings", function_name);
    goto bad;
invalid_keyword:
    PyErr_Format(PyExc_TypeError,
    #if PY_MAJOR_VERSION < 3
        "%s() got an unexpected keyword argument '%s'",
        function_name, PyString_AsString(key));
    #else
        "%s() got an unexpected keyword argument '%U'",
        function_name, key);
    #endif
bad:
    return -1;
}
""",
requires=[raise_double_keywords_utility_code])

#------------------------------------------------------------------------------------

traceback_utility_code = UtilityCode(
    proto = """
static void __Pyx_AddTraceback(const char *funcname, int %(CLINENO)s,
                               int %(LINENO)s, const char *%(FILENAME)s); /*proto*/
""" % {
    'FILENAME': Naming.filename_cname,
    'LINENO':  Naming.lineno_cname,
    'CLINENO':  Naming.clineno_cname,
},

    impl = """
#include "compile.h"
#include "frameobject.h"
#include "traceback.h"

static void __Pyx_AddTraceback(const char *funcname, int %(CLINENO)s,
                               int %(LINENO)s, const char *%(FILENAME)s) {
    PyObject *py_srcfile = 0;
    PyObject *py_funcname = 0;
    PyObject *py_globals = 0;
    PyCodeObject *py_code = 0;
    PyFrameObject *py_frame = 0;

    #if PY_MAJOR_VERSION < 3
    py_srcfile = PyString_FromString(%(FILENAME)s);
    #else
    py_srcfile = PyUnicode_FromString(%(FILENAME)s);
    #endif
    if (!py_srcfile) goto bad;
    if (%(CLINENO)s) {
        #if PY_MAJOR_VERSION < 3
        py_funcname = PyString_FromFormat( "%%s (%%s:%%d)", funcname, %(CFILENAME)s, %(CLINENO)s);
        #else
        py_funcname = PyUnicode_FromFormat( "%%s (%%s:%%d)", funcname, %(CFILENAME)s, %(CLINENO)s);
        #endif
    }
    else {
        #if PY_MAJOR_VERSION < 3
        py_funcname = PyString_FromString(funcname);
        #else
        py_funcname = PyUnicode_FromString(funcname);
        #endif
    }
    if (!py_funcname) goto bad;
    py_globals = PyModule_GetDict(%(GLOBALS)s);
    if (!py_globals) goto bad;
    py_code = __Pyx_PyCode_New(
        0,            /*int argcount,*/
        0,            /*int kwonlyargcount,*/
        0,            /*int nlocals,*/
        0,            /*int stacksize,*/
        0,            /*int flags,*/
        %(EMPTY_BYTES)s, /*PyObject *code,*/
        %(EMPTY_TUPLE)s,  /*PyObject *consts,*/
        %(EMPTY_TUPLE)s,  /*PyObject *names,*/
        %(EMPTY_TUPLE)s,  /*PyObject *varnames,*/
        %(EMPTY_TUPLE)s,  /*PyObject *freevars,*/
        %(EMPTY_TUPLE)s,  /*PyObject *cellvars,*/
        py_srcfile,   /*PyObject *filename,*/
        py_funcname,  /*PyObject *name,*/
        %(LINENO)s,   /*int firstlineno,*/
        %(EMPTY_BYTES)s  /*PyObject *lnotab*/
    );
    if (!py_code) goto bad;
    py_frame = PyFrame_New(
        PyThreadState_GET(), /*PyThreadState *tstate,*/
        py_code,             /*PyCodeObject *code,*/
        py_globals,          /*PyObject *globals,*/
        0                    /*PyObject *locals*/
    );
    if (!py_frame) goto bad;
    py_frame->f_lineno = %(LINENO)s;
    PyTraceBack_Here(py_frame);
bad:
    Py_XDECREF(py_srcfile);
    Py_XDECREF(py_funcname);
    Py_XDECREF(py_code);
    Py_XDECREF(py_frame);
}
""" % {
    'FILENAME': Naming.filename_cname,
    'LINENO':  Naming.lineno_cname,
    'CFILENAME': Naming.cfilenm_cname,
    'CLINENO':  Naming.clineno_cname,
    'GLOBALS': Naming.module_cname,
    'EMPTY_TUPLE' : Naming.empty_tuple,
    'EMPTY_BYTES' : Naming.empty_bytes,
})

#------------------------------------------------------------------------------------

unraisable_exception_utility_code = UtilityCode(
proto = """
static void __Pyx_WriteUnraisable(const char *name, int clineno,
                                  int lineno, const char *filename); /*proto*/
""",
impl = """
static void __Pyx_WriteUnraisable(const char *name, int clineno,
                                  int lineno, const char *filename) {
    PyObject *old_exc, *old_val, *old_tb;
    PyObject *ctx;
    __Pyx_ErrFetch(&old_exc, &old_val, &old_tb);
    #if PY_MAJOR_VERSION < 3
    ctx = PyString_FromString(name);
    #else
    ctx = PyUnicode_FromString(name);
    #endif
    __Pyx_ErrRestore(old_exc, old_val, old_tb);
    if (!ctx) {
        PyErr_WriteUnraisable(Py_None);
    } else {
        PyErr_WriteUnraisable(ctx);
        Py_DECREF(ctx);
    }
}
""",
requires=[restore_exception_utility_code])

#------------------------------------------------------------------------------------

set_vtable_utility_code = UtilityCode(
proto = """
static int __Pyx_SetVtable(PyObject *dict, void *vtable); /*proto*/
""",
impl = """
static int __Pyx_SetVtable(PyObject *dict, void *vtable) {
#if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION==3&&PY_MINOR_VERSION==0)
    PyObject *ob = PyCapsule_New(vtable, 0, 0);
#else
    PyObject *ob = PyCObject_FromVoidPtr(vtable, 0);
#endif
    if (!ob)
        goto bad;
    if (PyDict_SetItemString(dict, "__pyx_vtable__", ob) < 0)
        goto bad;
    Py_DECREF(ob);
    return 0;
bad:
    Py_XDECREF(ob);
    return -1;
}
""")

#------------------------------------------------------------------------------------

get_vtable_utility_code = UtilityCode(
proto = """
static void* __Pyx_GetVtable(PyObject *dict); /*proto*/
""",
impl = r"""
static void* __Pyx_GetVtable(PyObject *dict) {
    void* ptr;
    PyObject *ob = PyMapping_GetItemString(dict, (char *)"__pyx_vtable__");
    if (!ob)
        goto bad;
#if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION==3&&PY_MINOR_VERSION==0)
    ptr = PyCapsule_GetPointer(ob, 0);
#else
    ptr = PyCObject_AsVoidPtr(ob);
#endif
    if (!ptr && !PyErr_Occurred())
        PyErr_SetString(PyExc_RuntimeError, "invalid vtable found for imported type");
    Py_DECREF(ob);
    return ptr;
bad:
    Py_XDECREF(ob);
    return NULL;
}
""")

#------------------------------------------------------------------------------------

init_string_tab_utility_code = UtilityCode(
proto = """
static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /*proto*/
""",
impl = """
static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) {
    while (t->p) {
        #if PY_MAJOR_VERSION < 3
        if (t->is_unicode) {
            *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL);
        } else if (t->intern) {
            *t->p = PyString_InternFromString(t->s);
        } else {
            *t->p = PyString_FromStringAndSize(t->s, t->n - 1);
        }
        #else  /* Python 3+ has unicode identifiers */
        if (t->is_unicode | t->is_str) {
            if (t->intern) {
                *t->p = PyUnicode_InternFromString(t->s);
            } else if (t->encoding) {
                *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL);
            } else {
                *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1);
            }
        } else {
            *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1);
        }
        #endif
        if (!*t->p)
            return -1;
        ++t;
    }
    return 0;
}
""")

#------------------------------------------------------------------------------------

force_init_threads_utility_code = UtilityCode(
proto="""
#ifndef __PYX_FORCE_INIT_THREADS
  #define __PYX_FORCE_INIT_THREADS 0
#endif
""")

init_threads = UtilityCode(
    init="PyEval_InitThreads();\n",
)

#------------------------------------------------------------------------------------

# Note that cPython ignores PyTrace_EXCEPTION,
# but maybe some other profilers don't.

profile_utility_code = UtilityCode(proto="""
#ifndef CYTHON_PROFILE
  #define CYTHON_PROFILE 1
#endif

#ifndef CYTHON_PROFILE_REUSE_FRAME
  #define CYTHON_PROFILE_REUSE_FRAME 0
#endif

#if CYTHON_PROFILE

  #include "compile.h"
  #include "frameobject.h"
  #include "traceback.h"

  #if CYTHON_PROFILE_REUSE_FRAME
    #define CYTHON_FRAME_MODIFIER static
    #define CYTHON_FRAME_DEL
  #else
    #define CYTHON_FRAME_MODIFIER
    #define CYTHON_FRAME_DEL Py_DECREF(%(FRAME)s)
  #endif

  #define __Pyx_TraceDeclarations                                  \\
  static PyCodeObject *%(FRAME_CODE)s = NULL;                      \\
  CYTHON_FRAME_MODIFIER PyFrameObject *%(FRAME)s = NULL;           \\
  int __Pyx_use_tracing = 0;

  #define __Pyx_TraceCall(funcname, srcfile, firstlineno)                            \\
  if (unlikely(PyThreadState_GET()->use_tracing && PyThreadState_GET()->c_profilefunc)) {      \\
      __Pyx_use_tracing = __Pyx_TraceSetupAndCall(&%(FRAME_CODE)s, &%(FRAME)s, funcname, srcfile, firstlineno);  \\
  }

  #define __Pyx_TraceException()                                                           \\
  if (unlikely(__Pyx_use_tracing( && PyThreadState_GET()->use_tracing && PyThreadState_GET()->c_profilefunc) {  \\
      PyObject *exc_info = __Pyx_GetExceptionTuple();                                      \\
      if (exc_info) {                                                                      \\
          PyThreadState_GET()->c_profilefunc(                                              \\
              PyThreadState_GET()->c_profileobj, %(FRAME)s, PyTrace_EXCEPTION, exc_info);  \\
          Py_DECREF(exc_info);                                                             \\
      }                                                                                    \\
  }

  #define __Pyx_TraceReturn(result)                                                  \\
  if (unlikely(__Pyx_use_tracing) && PyThreadState_GET()->use_tracing && PyThreadState_GET()->c_profilefunc) {  \\
      PyThreadState_GET()->c_profilefunc(                                            \\
          PyThreadState_GET()->c_profileobj, %(FRAME)s, PyTrace_RETURN, (PyObject*)result);     \\
      CYTHON_FRAME_DEL;                                                               \\
  }

  static PyCodeObject *__Pyx_createFrameCodeObject(const char *funcname, const char *srcfile, int firstlineno); /*proto*/
  static int __Pyx_TraceSetupAndCall(PyCodeObject** code, PyFrameObject** frame, const char *funcname, const char *srcfile, int firstlineno); /*proto*/

#else

  #define __Pyx_TraceDeclarations
  #define __Pyx_TraceCall(funcname, srcfile, firstlineno)
  #define __Pyx_TraceException()
  #define __Pyx_TraceReturn(result)

#endif /* CYTHON_PROFILE */
"""
% {
    "FRAME": Naming.frame_cname,
    "FRAME_CODE": Naming.frame_code_cname,
},
impl = """

#if CYTHON_PROFILE

static int __Pyx_TraceSetupAndCall(PyCodeObject** code,
                                   PyFrameObject** frame,
                                   const char *funcname,
                                   const char *srcfile,
                                   int firstlineno) {
    if (*frame == NULL || !CYTHON_PROFILE_REUSE_FRAME) {
        if (*code == NULL) {
            *code = __Pyx_createFrameCodeObject(funcname, srcfile, firstlineno);
            if (*code == NULL) return 0;
        }
        *frame = PyFrame_New(
            PyThreadState_GET(),            /*PyThreadState *tstate*/
            *code,                          /*PyCodeObject *code*/
            PyModule_GetDict(%(MODULE)s),      /*PyObject *globals*/
            0                               /*PyObject *locals*/
        );
        if (*frame == NULL) return 0;
    }
    else {
        (*frame)->f_tstate = PyThreadState_GET();
    }
    return PyThreadState_GET()->c_profilefunc(PyThreadState_GET()->c_profileobj, *frame, PyTrace_CALL, NULL) == 0;
}

static PyCodeObject *__Pyx_createFrameCodeObject(const char *funcname, const char *srcfile, int firstlineno) {
    PyObject *py_srcfile = 0;
    PyObject *py_funcname = 0;
    PyCodeObject *py_code = 0;

    #if PY_MAJOR_VERSION < 3
    py_funcname = PyString_FromString(funcname);
    py_srcfile = PyString_FromString(srcfile);
    #else
    py_funcname = PyUnicode_FromString(funcname);
    py_srcfile = PyUnicode_FromString(srcfile);
    #endif
    if (!py_funcname | !py_srcfile) goto bad;

    py_code = PyCode_New(
        0,                /*int argcount,*/
        #if PY_MAJOR_VERSION >= 3
        0,                /*int kwonlyargcount,*/
        #endif
        0,                /*int nlocals,*/
        0,                /*int stacksize,*/
        0,                /*int flags,*/
        %(EMPTY_BYTES)s,  /*PyObject *code,*/
        %(EMPTY_TUPLE)s,  /*PyObject *consts,*/
        %(EMPTY_TUPLE)s,  /*PyObject *names,*/
        %(EMPTY_TUPLE)s,  /*PyObject *varnames,*/
        %(EMPTY_TUPLE)s,  /*PyObject *freevars,*/
        %(EMPTY_TUPLE)s,  /*PyObject *cellvars,*/
        py_srcfile,       /*PyObject *filename,*/
        py_funcname,      /*PyObject *name,*/
        firstlineno,      /*int firstlineno,*/
        %(EMPTY_BYTES)s   /*PyObject *lnotab*/
    );

bad:
    Py_XDECREF(py_srcfile);
    Py_XDECREF(py_funcname);

    return py_code;
}

#endif /* CYTHON_PROFILE */
""" % {
    'EMPTY_TUPLE' : Naming.empty_tuple,
    'EMPTY_BYTES' : Naming.empty_bytes,
    "MODULE": Naming.module_cname,
})

################ Utility code for cython.parallel stuff ################

invalid_values_utility_code = UtilityCode(
proto="""\
#include <string.h>

void __pyx_init_nan(void);

static float %(PYX_NAN)s;
"""  % vars(Naming),

init="""
/* Initialize NaN. The sign is irrelevant, an exponent with all bits 1 and
   a nonzero mantissa means NaN. If the first bit in the mantissa is 1, it is
   a quiet NaN. */
    memset(&%(PYX_NAN)s, 0xFF, sizeof(%(PYX_NAN)s));
""" % vars(Naming))