summaryrefslogtreecommitdiff
path: root/Cython/Compiler/ParseTreeTransforms.py
blob: aa6d05b36453e2f6894e731212da01d127c33da0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
from __future__ import absolute_import

import cython
cython.declare(PyrexTypes=object, Naming=object, ExprNodes=object, Nodes=object,
               Options=object, UtilNodes=object, LetNode=object,
               LetRefNode=object, TreeFragment=object, EncodedString=object,
               error=object, warning=object, copy=object, _unicode=object)

import copy
import hashlib

from . import PyrexTypes
from . import Naming
from . import ExprNodes
from . import Nodes
from . import Options
from . import Builtin
from . import Errors

from .Visitor import VisitorTransform, TreeVisitor
from .Visitor import CythonTransform, EnvTransform, ScopeTrackingTransform
from .UtilNodes import LetNode, LetRefNode
from .TreeFragment import TreeFragment
from .StringEncoding import EncodedString, _unicode
from .Errors import error, warning, CompileError, InternalError
from .Code import UtilityCode


class SkipDeclarations(object):
    """
    Variable and function declarations can often have a deep tree structure,
    and yet most transformations don't need to descend to this depth.

    Declaration nodes are removed after AnalyseDeclarationsTransform, so there
    is no need to use this for transformations after that point.
    """
    def visit_CTypeDefNode(self, node):
        return node

    def visit_CVarDefNode(self, node):
        return node

    def visit_CDeclaratorNode(self, node):
        return node

    def visit_CBaseTypeNode(self, node):
        return node

    def visit_CEnumDefNode(self, node):
        return node

    def visit_CStructOrUnionDefNode(self, node):
        return node

    def visit_CppClassNode(self, node):
        if node.visibility != "extern":
            # Need to traverse methods.
            self.visitchildren(node)
        return node


class NormalizeTree(CythonTransform):
    """
    This transform fixes up a few things after parsing
    in order to make the parse tree more suitable for
    transforms.

    a) After parsing, blocks with only one statement will
    be represented by that statement, not by a StatListNode.
    When doing transforms this is annoying and inconsistent,
    as one cannot in general remove a statement in a consistent
    way and so on. This transform wraps any single statements
    in a StatListNode containing a single statement.

    b) The PassStatNode is a noop and serves no purpose beyond
    plugging such one-statement blocks; i.e., once parsed a
`    "pass" can just as well be represented using an empty
    StatListNode. This means less special cases to worry about
    in subsequent transforms (one always checks to see if a
    StatListNode has no children to see if the block is empty).
    """

    def __init__(self, context):
        super(NormalizeTree, self).__init__(context)
        self.is_in_statlist = False
        self.is_in_expr = False

    def visit_ModuleNode(self, node):
        self.visitchildren(node)
        if not isinstance(node.body, Nodes.StatListNode):
            # This can happen when the body only consists of a single (unused) declaration and no statements.
            node.body = Nodes.StatListNode(pos=node.pos, stats=[node.body])
        return node

    def visit_ExprNode(self, node):
        stacktmp = self.is_in_expr
        self.is_in_expr = True
        self.visitchildren(node)
        self.is_in_expr = stacktmp
        return node

    def visit_StatNode(self, node, is_listcontainer=False):
        stacktmp = self.is_in_statlist
        self.is_in_statlist = is_listcontainer
        self.visitchildren(node)
        self.is_in_statlist = stacktmp
        if not self.is_in_statlist and not self.is_in_expr:
            return Nodes.StatListNode(pos=node.pos, stats=[node])
        else:
            return node

    def visit_StatListNode(self, node):
        self.is_in_statlist = True
        self.visitchildren(node)
        self.is_in_statlist = False
        return node

    def visit_ParallelAssignmentNode(self, node):
        return self.visit_StatNode(node, True)

    def visit_CEnumDefNode(self, node):
        return self.visit_StatNode(node, True)

    def visit_CStructOrUnionDefNode(self, node):
        return self.visit_StatNode(node, True)

    def visit_PassStatNode(self, node):
        """Eliminate PassStatNode"""
        if not self.is_in_statlist:
            return Nodes.StatListNode(pos=node.pos, stats=[])
        else:
            return []

    def visit_ExprStatNode(self, node):
        """Eliminate useless string literals"""
        if node.expr.is_string_literal:
            return self.visit_PassStatNode(node)
        else:
            return self.visit_StatNode(node)

    def visit_CDeclaratorNode(self, node):
        return node


class PostParseError(CompileError): pass

# error strings checked by unit tests, so define them
ERR_CDEF_INCLASS = 'Cannot assign default value to fields in cdef classes, structs or unions'
ERR_BUF_DEFAULTS = 'Invalid buffer defaults specification (see docs)'
ERR_INVALID_SPECIALATTR_TYPE = 'Special attributes must not have a type declared'
class PostParse(ScopeTrackingTransform):
    """
    Basic interpretation of the parse tree, as well as validity
    checking that can be done on a very basic level on the parse
    tree (while still not being a problem with the basic syntax,
    as such).

    Specifically:
    - Default values to cdef assignments are turned into single
    assignments following the declaration (everywhere but in class
    bodies, where they raise a compile error)

    - Interpret some node structures into Python runtime values.
    Some nodes take compile-time arguments (currently:
    TemplatedTypeNode[args] and __cythonbufferdefaults__ = {args}),
    which should be interpreted. This happens in a general way
    and other steps should be taken to ensure validity.

    Type arguments cannot be interpreted in this way.

    - For __cythonbufferdefaults__ the arguments are checked for
    validity.

    TemplatedTypeNode has its directives interpreted:
    Any first positional argument goes into the "dtype" attribute,
    any "ndim" keyword argument goes into the "ndim" attribute and
    so on. Also it is checked that the directive combination is valid.
    - __cythonbufferdefaults__ attributes are parsed and put into the
    type information.

    Note: Currently Parsing.py does a lot of interpretation and
    reorganization that can be refactored into this transform
    if a more pure Abstract Syntax Tree is wanted.
    """
    def __init__(self, context):
        super(PostParse, self).__init__(context)
        self.specialattribute_handlers = {
            '__cythonbufferdefaults__' : self.handle_bufferdefaults
        }

    def visit_LambdaNode(self, node):
        # unpack a lambda expression into the corresponding DefNode
        collector = YieldNodeCollector()
        collector.visitchildren(node.result_expr)
        if collector.has_yield or collector.has_await or isinstance(node.result_expr, ExprNodes.YieldExprNode):
            body = Nodes.ExprStatNode(
                node.result_expr.pos, expr=node.result_expr)
        else:
            body = Nodes.ReturnStatNode(
                node.result_expr.pos, value=node.result_expr)
        node.def_node = Nodes.DefNode(
            node.pos, name=node.name,
            args=node.args, star_arg=node.star_arg,
            starstar_arg=node.starstar_arg,
            body=body, doc=None)
        self.visitchildren(node)
        return node

    def visit_GeneratorExpressionNode(self, node):
        # unpack a generator expression into the corresponding DefNode
        collector = YieldNodeCollector()
        collector.visitchildren(node.loop)
        node.def_node = Nodes.DefNode(
            node.pos, name=node.name, doc=None,
            args=[], star_arg=None, starstar_arg=None,
            body=node.loop, is_async_def=collector.has_await)
        self.visitchildren(node)
        return node

    def visit_ComprehensionNode(self, node):
        # enforce local scope also in Py2 for async generators (seriously, that's a Py3.6 feature...)
        if not node.has_local_scope:
            collector = YieldNodeCollector()
            collector.visitchildren(node.loop)
            if collector.has_await:
                node.has_local_scope = True
        self.visitchildren(node)
        return node

    # cdef variables
    def handle_bufferdefaults(self, decl):
        if not isinstance(decl.default, ExprNodes.DictNode):
            raise PostParseError(decl.pos, ERR_BUF_DEFAULTS)
        self.scope_node.buffer_defaults_node = decl.default
        self.scope_node.buffer_defaults_pos = decl.pos

    def visit_CVarDefNode(self, node):
        # This assumes only plain names and pointers are assignable on
        # declaration. Also, it makes use of the fact that a cdef decl
        # must appear before the first use, so we don't have to deal with
        # "i = 3; cdef int i = i" and can simply move the nodes around.
        try:
            self.visitchildren(node)
            stats = [node]
            newdecls = []
            for decl in node.declarators:
                declbase = decl
                while isinstance(declbase, Nodes.CPtrDeclaratorNode):
                    declbase = declbase.base
                if isinstance(declbase, Nodes.CNameDeclaratorNode):
                    if declbase.default is not None:
                        if self.scope_type in ('cclass', 'pyclass', 'struct'):
                            if isinstance(self.scope_node, Nodes.CClassDefNode):
                                handler = self.specialattribute_handlers.get(decl.name)
                                if handler:
                                    if decl is not declbase:
                                        raise PostParseError(decl.pos, ERR_INVALID_SPECIALATTR_TYPE)
                                    handler(decl)
                                    continue  # Remove declaration
                            raise PostParseError(decl.pos, ERR_CDEF_INCLASS)
                        first_assignment = self.scope_type != 'module'
                        stats.append(Nodes.SingleAssignmentNode(node.pos,
                            lhs=ExprNodes.NameNode(node.pos, name=declbase.name),
                            rhs=declbase.default, first=first_assignment))
                        declbase.default = None
                newdecls.append(decl)
            node.declarators = newdecls
            return stats
        except PostParseError as e:
            # An error in a cdef clause is ok, simply remove the declaration
            # and try to move on to report more errors
            self.context.nonfatal_error(e)
            return None

    # Split parallel assignments (a,b = b,a) into separate partial
    # assignments that are executed rhs-first using temps.  This
    # restructuring must be applied before type analysis so that known
    # types on rhs and lhs can be matched directly.  It is required in
    # the case that the types cannot be coerced to a Python type in
    # order to assign from a tuple.

    def visit_SingleAssignmentNode(self, node):
        self.visitchildren(node)
        return self._visit_assignment_node(node, [node.lhs, node.rhs])

    def visit_CascadedAssignmentNode(self, node):
        self.visitchildren(node)
        return self._visit_assignment_node(node, node.lhs_list + [node.rhs])

    def _visit_assignment_node(self, node, expr_list):
        """Flatten parallel assignments into separate single
        assignments or cascaded assignments.
        """
        if sum([ 1 for expr in expr_list
                 if expr.is_sequence_constructor or expr.is_string_literal ]) < 2:
            # no parallel assignments => nothing to do
            return node

        expr_list_list = []
        flatten_parallel_assignments(expr_list, expr_list_list)
        temp_refs = []
        eliminate_rhs_duplicates(expr_list_list, temp_refs)

        nodes = []
        for expr_list in expr_list_list:
            lhs_list = expr_list[:-1]
            rhs = expr_list[-1]
            if len(lhs_list) == 1:
                node = Nodes.SingleAssignmentNode(rhs.pos,
                    lhs = lhs_list[0], rhs = rhs)
            else:
                node = Nodes.CascadedAssignmentNode(rhs.pos,
                    lhs_list = lhs_list, rhs = rhs)
            nodes.append(node)

        if len(nodes) == 1:
            assign_node = nodes[0]
        else:
            assign_node = Nodes.ParallelAssignmentNode(nodes[0].pos, stats = nodes)

        if temp_refs:
            duplicates_and_temps = [ (temp.expression, temp)
                                     for temp in temp_refs ]
            sort_common_subsequences(duplicates_and_temps)
            for _, temp_ref in duplicates_and_temps[::-1]:
                assign_node = LetNode(temp_ref, assign_node)

        return assign_node

    def _flatten_sequence(self, seq, result):
        for arg in seq.args:
            if arg.is_sequence_constructor:
                self._flatten_sequence(arg, result)
            else:
                result.append(arg)
        return result

    def visit_DelStatNode(self, node):
        self.visitchildren(node)
        node.args = self._flatten_sequence(node, [])
        return node

    def visit_ExceptClauseNode(self, node):
        if node.is_except_as:
            # except-as must delete NameNode target at the end
            del_target = Nodes.DelStatNode(
                node.pos,
                args=[ExprNodes.NameNode(
                    node.target.pos, name=node.target.name)],
                ignore_nonexisting=True)
            node.body = Nodes.StatListNode(
                node.pos,
                stats=[Nodes.TryFinallyStatNode(
                    node.pos,
                    body=node.body,
                    finally_clause=Nodes.StatListNode(
                        node.pos,
                        stats=[del_target]))])
        self.visitchildren(node)
        return node

    def visit_AssertStatNode(self, node):
        """Extract the exception raising into a RaiseStatNode to simplify GIL handling.
        """
        if node.exception is None:
            node.exception = Nodes.RaiseStatNode(
                node.pos,
                exc_type=ExprNodes.NameNode(node.pos, name=EncodedString("AssertionError")),
                exc_value=node.value,
                exc_tb=None,
                cause=None,
                builtin_exc_name="AssertionError",
                wrap_tuple_value=True,
            )
            node.value = None
        self.visitchildren(node)
        return node


def eliminate_rhs_duplicates(expr_list_list, ref_node_sequence):
    """Replace rhs items by LetRefNodes if they appear more than once.
    Creates a sequence of LetRefNodes that set up the required temps
    and appends them to ref_node_sequence.  The input list is modified
    in-place.
    """
    seen_nodes = set()
    ref_nodes = {}
    def find_duplicates(node):
        if node.is_literal or node.is_name:
            # no need to replace those; can't include attributes here
            # as their access is not necessarily side-effect free
            return
        if node in seen_nodes:
            if node not in ref_nodes:
                ref_node = LetRefNode(node)
                ref_nodes[node] = ref_node
                ref_node_sequence.append(ref_node)
        else:
            seen_nodes.add(node)
            if node.is_sequence_constructor:
                for item in node.args:
                    find_duplicates(item)

    for expr_list in expr_list_list:
        rhs = expr_list[-1]
        find_duplicates(rhs)
    if not ref_nodes:
        return

    def substitute_nodes(node):
        if node in ref_nodes:
            return ref_nodes[node]
        elif node.is_sequence_constructor:
            node.args = list(map(substitute_nodes, node.args))
        return node

    # replace nodes inside of the common subexpressions
    for node in ref_nodes:
        if node.is_sequence_constructor:
            node.args = list(map(substitute_nodes, node.args))

    # replace common subexpressions on all rhs items
    for expr_list in expr_list_list:
        expr_list[-1] = substitute_nodes(expr_list[-1])

def sort_common_subsequences(items):
    """Sort items/subsequences so that all items and subsequences that
    an item contains appear before the item itself.  This is needed
    because each rhs item must only be evaluated once, so its value
    must be evaluated first and then reused when packing sequences
    that contain it.

    This implies a partial order, and the sort must be stable to
    preserve the original order as much as possible, so we use a
    simple insertion sort (which is very fast for short sequences, the
    normal case in practice).
    """
    def contains(seq, x):
        for item in seq:
            if item is x:
                return True
            elif item.is_sequence_constructor and contains(item.args, x):
                return True
        return False
    def lower_than(a,b):
        return b.is_sequence_constructor and contains(b.args, a)

    for pos, item in enumerate(items):
        key = item[1]  # the ResultRefNode which has already been injected into the sequences
        new_pos = pos
        for i in range(pos-1, -1, -1):
            if lower_than(key, items[i][0]):
                new_pos = i
        if new_pos != pos:
            for i in range(pos, new_pos, -1):
                items[i] = items[i-1]
            items[new_pos] = item

def unpack_string_to_character_literals(literal):
    chars = []
    pos = literal.pos
    stype = literal.__class__
    sval = literal.value
    sval_type = sval.__class__
    for char in sval:
        cval = sval_type(char)
        chars.append(stype(pos, value=cval, constant_result=cval))
    return chars

def flatten_parallel_assignments(input, output):
    #  The input is a list of expression nodes, representing the LHSs
    #  and RHS of one (possibly cascaded) assignment statement.  For
    #  sequence constructors, rearranges the matching parts of both
    #  sides into a list of equivalent assignments between the
    #  individual elements.  This transformation is applied
    #  recursively, so that nested structures get matched as well.
    rhs = input[-1]
    if (not (rhs.is_sequence_constructor or isinstance(rhs, ExprNodes.UnicodeNode))
            or not sum([lhs.is_sequence_constructor for lhs in input[:-1]])):
        output.append(input)
        return

    complete_assignments = []

    if rhs.is_sequence_constructor:
        rhs_args = rhs.args
    elif rhs.is_string_literal:
        rhs_args = unpack_string_to_character_literals(rhs)

    rhs_size = len(rhs_args)
    lhs_targets = [[] for _ in range(rhs_size)]
    starred_assignments = []
    for lhs in input[:-1]:
        if not lhs.is_sequence_constructor:
            if lhs.is_starred:
                error(lhs.pos, "starred assignment target must be in a list or tuple")
            complete_assignments.append(lhs)
            continue
        lhs_size = len(lhs.args)
        starred_targets = sum([1 for expr in lhs.args if expr.is_starred])
        if starred_targets > 1:
            error(lhs.pos, "more than 1 starred expression in assignment")
            output.append([lhs,rhs])
            continue
        elif lhs_size - starred_targets > rhs_size:
            error(lhs.pos, "need more than %d value%s to unpack"
                  % (rhs_size, (rhs_size != 1) and 's' or ''))
            output.append([lhs,rhs])
            continue
        elif starred_targets:
            map_starred_assignment(lhs_targets, starred_assignments,
                                   lhs.args, rhs_args)
        elif lhs_size < rhs_size:
            error(lhs.pos, "too many values to unpack (expected %d, got %d)"
                  % (lhs_size, rhs_size))
            output.append([lhs,rhs])
            continue
        else:
            for targets, expr in zip(lhs_targets, lhs.args):
                targets.append(expr)

    if complete_assignments:
        complete_assignments.append(rhs)
        output.append(complete_assignments)

    # recursively flatten partial assignments
    for cascade, rhs in zip(lhs_targets, rhs_args):
        if cascade:
            cascade.append(rhs)
            flatten_parallel_assignments(cascade, output)

    # recursively flatten starred assignments
    for cascade in starred_assignments:
        if cascade[0].is_sequence_constructor:
            flatten_parallel_assignments(cascade, output)
        else:
            output.append(cascade)

def map_starred_assignment(lhs_targets, starred_assignments, lhs_args, rhs_args):
    # Appends the fixed-position LHS targets to the target list that
    # appear left and right of the starred argument.
    #
    # The starred_assignments list receives a new tuple
    # (lhs_target, rhs_values_list) that maps the remaining arguments
    # (those that match the starred target) to a list.

    # left side of the starred target
    for i, (targets, expr) in enumerate(zip(lhs_targets, lhs_args)):
        if expr.is_starred:
            starred = i
            lhs_remaining = len(lhs_args) - i - 1
            break
        targets.append(expr)
    else:
        raise InternalError("no starred arg found when splitting starred assignment")

    # right side of the starred target
    for i, (targets, expr) in enumerate(zip(lhs_targets[-lhs_remaining:],
                                            lhs_args[starred + 1:])):
        targets.append(expr)

    # the starred target itself, must be assigned a (potentially empty) list
    target = lhs_args[starred].target  # unpack starred node
    starred_rhs = rhs_args[starred:]
    if lhs_remaining:
        starred_rhs = starred_rhs[:-lhs_remaining]
    if starred_rhs:
        pos = starred_rhs[0].pos
    else:
        pos = target.pos
    starred_assignments.append([
        target, ExprNodes.ListNode(pos=pos, args=starred_rhs)])


class PxdPostParse(CythonTransform, SkipDeclarations):
    """
    Basic interpretation/validity checking that should only be
    done on pxd trees.

    A lot of this checking currently happens in the parser; but
    what is listed below happens here.

    - "def" functions are let through only if they fill the
    getbuffer/releasebuffer slots

    - cdef functions are let through only if they are on the
    top level and are declared "inline"
    """
    ERR_INLINE_ONLY = "function definition in pxd file must be declared 'cdef inline'"
    ERR_NOGO_WITH_INLINE = "inline function definition in pxd file cannot be '%s'"

    def __call__(self, node):
        self.scope_type = 'pxd'
        return super(PxdPostParse, self).__call__(node)

    def visit_CClassDefNode(self, node):
        old = self.scope_type
        self.scope_type = 'cclass'
        self.visitchildren(node)
        self.scope_type = old
        return node

    def visit_FuncDefNode(self, node):
        # FuncDefNode always come with an implementation (without
        # an imp they are CVarDefNodes..)
        err = self.ERR_INLINE_ONLY

        if (isinstance(node, Nodes.DefNode) and self.scope_type == 'cclass'
                and node.name in ('__getbuffer__', '__releasebuffer__')):
            err = None  # allow these slots

        if isinstance(node, Nodes.CFuncDefNode):
            if (u'inline' in node.modifiers and
                    self.scope_type in ('pxd', 'cclass')):
                node.inline_in_pxd = True
                if node.visibility != 'private':
                    err = self.ERR_NOGO_WITH_INLINE % node.visibility
                elif node.api:
                    err = self.ERR_NOGO_WITH_INLINE % 'api'
                else:
                    err = None  # allow inline function
            else:
                err = self.ERR_INLINE_ONLY

        if err:
            self.context.nonfatal_error(PostParseError(node.pos, err))
            return None
        else:
            return node


class TrackNumpyAttributes(VisitorTransform, SkipDeclarations):
    # TODO: Make name handling as good as in InterpretCompilerDirectives() below - probably best to merge the two.
    def __init__(self):
        super(TrackNumpyAttributes, self).__init__()
        self.numpy_module_names = set()

    def visit_CImportStatNode(self, node):
        if node.module_name == u"numpy":
            self.numpy_module_names.add(node.as_name or u"numpy")
        return node

    def visit_AttributeNode(self, node):
        self.visitchildren(node)
        obj = node.obj
        if (obj.is_name and obj.name in self.numpy_module_names) or obj.is_numpy_attribute:
            node.is_numpy_attribute = True
        return node

    visit_Node = VisitorTransform.recurse_to_children


class InterpretCompilerDirectives(CythonTransform):
    """
    After parsing, directives can be stored in a number of places:
    - #cython-comments at the top of the file (stored in ModuleNode)
    - Command-line arguments overriding these
    - @cython.directivename decorators
    - with cython.directivename: statements
    - replaces "cython.compiled" with BoolNode(value=True)
      allowing unreachable blocks to be removed at a fairly early stage
      before cython typing rules are forced on applied

    This transform is responsible for interpreting these various sources
    and store the directive in two ways:
    - Set the directives attribute of the ModuleNode for global directives.
    - Use a CompilerDirectivesNode to override directives for a subtree.

    (The first one is primarily to not have to modify with the tree
    structure, so that ModuleNode stay on top.)

    The directives are stored in dictionaries from name to value in effect.
    Each such dictionary is always filled in for all possible directives,
    using default values where no value is given by the user.

    The available directives are controlled in Options.py.

    Note that we have to run this prior to analysis, and so some minor
    duplication of functionality has to occur: We manually track cimports
    and which names the "cython" module may have been imported to.
    """
    unop_method_nodes = {
        'typeof': ExprNodes.TypeofNode,

        'operator.address': ExprNodes.AmpersandNode,
        'operator.dereference': ExprNodes.DereferenceNode,
        'operator.preincrement' : ExprNodes.inc_dec_constructor(True, '++'),
        'operator.predecrement' : ExprNodes.inc_dec_constructor(True, '--'),
        'operator.postincrement': ExprNodes.inc_dec_constructor(False, '++'),
        'operator.postdecrement': ExprNodes.inc_dec_constructor(False, '--'),
        'operator.typeid'       : ExprNodes.TypeidNode,

        # For backwards compatibility.
        'address': ExprNodes.AmpersandNode,
    }

    binop_method_nodes = {
        'operator.comma'        : ExprNodes.c_binop_constructor(','),
    }

    special_methods = {
        'declare', 'union', 'struct', 'typedef',
        'sizeof', 'cast', 'pointer', 'compiled',
        'NULL', 'fused_type', 'parallel',
    }
    special_methods.update(unop_method_nodes)

    valid_parallel_directives = {
        "parallel",
        "prange",
        "threadid",
        #"threadsavailable",
    }

    def __init__(self, context, compilation_directive_defaults):
        super(InterpretCompilerDirectives, self).__init__(context)
        self.cython_module_names = set()
        self.directive_names = {'staticmethod': 'staticmethod'}
        self.parallel_directives = {}
        directives = copy.deepcopy(Options.get_directive_defaults())
        for key, value in compilation_directive_defaults.items():
            directives[_unicode(key)] = copy.deepcopy(value)
        self.directives = directives

    def check_directive_scope(self, pos, directive, scope):
        legal_scopes = Options.directive_scopes.get(directive, None)
        if legal_scopes and scope not in legal_scopes:
            self.context.nonfatal_error(PostParseError(pos, 'The %s compiler directive '
                                        'is not allowed in %s scope' % (directive, scope)))
            return False
        else:
            if directive not in Options.directive_types:
                error(pos, "Invalid directive: '%s'." % (directive,))
            return True

    # Set up processing and handle the cython: comments.
    def visit_ModuleNode(self, node):
        for key in sorted(node.directive_comments):
            if not self.check_directive_scope(node.pos, key, 'module'):
                self.wrong_scope_error(node.pos, key, 'module')
                del node.directive_comments[key]

        self.module_scope = node.scope

        self.directives.update(node.directive_comments)
        node.directives = self.directives
        node.parallel_directives = self.parallel_directives
        self.visitchildren(node)
        node.cython_module_names = self.cython_module_names
        return node

    # The following four functions track imports and cimports that
    # begin with "cython"
    def is_cython_directive(self, name):
        return (name in Options.directive_types or
                name in self.special_methods or
                PyrexTypes.parse_basic_type(name))

    def is_parallel_directive(self, full_name, pos):
        """
        Checks to see if fullname (e.g. cython.parallel.prange) is a valid
        parallel directive. If it is a star import it also updates the
        parallel_directives.
        """
        result = (full_name + ".").startswith("cython.parallel.")

        if result:
            directive = full_name.split('.')
            if full_name == u"cython.parallel":
                self.parallel_directives[u"parallel"] = u"cython.parallel"
            elif full_name == u"cython.parallel.*":
                for name in self.valid_parallel_directives:
                    self.parallel_directives[name] = u"cython.parallel.%s" % name
            elif (len(directive) != 3 or
                  directive[-1] not in self.valid_parallel_directives):
                error(pos, "No such directive: %s" % full_name)

            self.module_scope.use_utility_code(
                UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c"))

        return result

    def visit_CImportStatNode(self, node):
        module_name = node.module_name
        if module_name == u"cython.cimports":
            error(node.pos, "Cannot cimport the 'cython.cimports' package directly, only submodules.")
        if module_name.startswith(u"cython.cimports."):
            if node.as_name and node.as_name != u'cython':
                node.module_name = module_name[len(u"cython.cimports."):]
                return node
            error(node.pos,
                  "Python cimports must use 'from cython.cimports... import ...'"
                  " or 'import ... as ...', not just 'import ...'")

        if module_name == u"cython":
            self.cython_module_names.add(node.as_name or u"cython")
        elif module_name.startswith(u"cython."):
            if module_name.startswith(u"cython.parallel."):
                error(node.pos, node.module_name + " is not a module")
            if module_name == u"cython.parallel":
                if node.as_name and node.as_name != u"cython":
                    self.parallel_directives[node.as_name] = module_name
                else:
                    self.cython_module_names.add(u"cython")
                    self.parallel_directives[
                                    u"cython.parallel"] = module_name
                self.module_scope.use_utility_code(
                    UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c"))
            elif node.as_name:
                self.directive_names[node.as_name] = module_name[7:]
            else:
                self.cython_module_names.add(u"cython")
            # if this cimport was a compiler directive, we don't
            # want to leave the cimport node sitting in the tree
            return None
        return node

    def visit_FromCImportStatNode(self, node):
        module_name = node.module_name
        if module_name == u"cython.cimports" or module_name.startswith(u"cython.cimports."):
            # only supported for convenience
            return self._create_cimport_from_import(
                node.pos, module_name, node.relative_level, node.imported_names)
        elif not node.relative_level and (
                module_name == u"cython" or module_name.startswith(u"cython.")):
            submodule = (module_name + u".")[7:]
            newimp = []

            for pos, name, as_name, kind in node.imported_names:
                full_name = submodule + name
                qualified_name = u"cython." + full_name

                if self.is_parallel_directive(qualified_name, node.pos):
                    # from cython cimport parallel, or
                    # from cython.parallel cimport parallel, prange, ...
                    self.parallel_directives[as_name or name] = qualified_name
                elif self.is_cython_directive(full_name):
                    self.directive_names[as_name or name] = full_name
                    if kind is not None:
                        self.context.nonfatal_error(PostParseError(pos,
                            "Compiler directive imports must be plain imports"))
                else:
                    newimp.append((pos, name, as_name, kind))

            if not newimp:
                return None

            node.imported_names = newimp
        return node

    def visit_FromImportStatNode(self, node):
        import_node = node.module
        module_name = import_node.module_name.value
        if module_name == u"cython.cimports" or module_name.startswith(u"cython.cimports."):
            imported_names = []
            for name, name_node in node.items:
                imported_names.append(
                    (name_node.pos, name, None if name == name_node.name else name_node.name, None))
            return self._create_cimport_from_import(
                node.pos, module_name, import_node.level, imported_names)
        elif module_name == u"cython" or module_name.startswith(u"cython."):
            submodule = (module_name + u".")[7:]
            newimp = []
            for name, name_node in node.items:
                full_name = submodule + name
                qualified_name = u"cython." + full_name
                if self.is_parallel_directive(qualified_name, node.pos):
                    self.parallel_directives[name_node.name] = qualified_name
                elif self.is_cython_directive(full_name):
                    self.directive_names[name_node.name] = full_name
                else:
                    newimp.append((name, name_node))
            if not newimp:
                return None
            node.items = newimp
        return node

    def _create_cimport_from_import(self, node_pos, module_name, level, imported_names):
        if module_name == u"cython.cimports" or module_name.startswith(u"cython.cimports."):
            module_name = EncodedString(module_name[len(u"cython.cimports."):])  # may be empty

        if module_name:
            # from cython.cimports.a.b import x, y, z  =>  from a.b cimport x, y, z
            return Nodes.FromCImportStatNode(
                node_pos, module_name=module_name,
                relative_level=level,
                imported_names=imported_names)
        else:
            # from cython.cimports import x, y, z  =>  cimport x; cimport y; cimport z
            return [
                Nodes.CImportStatNode(
                    pos,
                    module_name=dotted_name,
                    as_name=as_name,
                    is_absolute=level == 0)
                for pos, dotted_name, as_name, _ in imported_names
            ]

    def visit_SingleAssignmentNode(self, node):
        if isinstance(node.rhs, ExprNodes.ImportNode):
            module_name = node.rhs.module_name.value
            is_special_module = (module_name + u".").startswith((u"cython.parallel.", u"cython.cimports."))
            if module_name != u"cython" and not is_special_module:
                return node

            node = Nodes.CImportStatNode(node.pos, module_name=module_name, as_name=node.lhs.name)
            node = self.visit_CImportStatNode(node)
        else:
            self.visitchildren(node)

        return node

    def visit_NameNode(self, node):
        if node.name in self.cython_module_names:
            node.is_cython_module = True
        else:
            directive = self.directive_names.get(node.name)
            if directive is not None:
                node.cython_attribute = directive
        if node.as_cython_attribute() == "compiled":
            return ExprNodes.BoolNode(node.pos, value=True)  # replace early so unused branches can be dropped
                # before they have a chance to cause compile-errors
        return node

    def visit_AttributeNode(self, node):
        self.visitchildren(node)
        if node.as_cython_attribute() == "compiled":
            return ExprNodes.BoolNode(node.pos, value=True)  # replace early so unused branches can be dropped
                # before they have a chance to cause compile-errors
        return node

    def visit_AnnotationNode(self, node):
        # for most transforms annotations are left unvisited (because they're unevaluated)
        # however, it is important to pick up compiler directives from them
        if node.expr:
            self.visitchildren(node.expr)
        return node

    def visit_NewExprNode(self, node):
        self.visit(node.cppclass)
        self.visitchildren(node)
        return node

    def try_to_parse_directives(self, node):
        # If node is the contents of an directive (in a with statement or
        # decorator), returns a list of (directivename, value) pairs.
        # Otherwise, returns None
        if isinstance(node, ExprNodes.CallNode):
            self.visit(node.function)
            optname = node.function.as_cython_attribute()
            if optname:
                directivetype = Options.directive_types.get(optname)
                if directivetype:
                    args, kwds = node.explicit_args_kwds()
                    directives = []
                    key_value_pairs = []
                    if kwds is not None and directivetype is not dict:
                        for keyvalue in kwds.key_value_pairs:
                            key, value = keyvalue
                            sub_optname = "%s.%s" % (optname, key.value)
                            if Options.directive_types.get(sub_optname):
                                directives.append(self.try_to_parse_directive(sub_optname, [value], None, keyvalue.pos))
                            else:
                                key_value_pairs.append(keyvalue)
                        if not key_value_pairs:
                            kwds = None
                        else:
                            kwds.key_value_pairs = key_value_pairs
                        if directives and not kwds and not args:
                            return directives
                    directives.append(self.try_to_parse_directive(optname, args, kwds, node.function.pos))
                    return directives
        elif isinstance(node, (ExprNodes.AttributeNode, ExprNodes.NameNode)):
            self.visit(node)
            optname = node.as_cython_attribute()
            if optname:
                directivetype = Options.directive_types.get(optname)
                if directivetype is bool:
                    arg = ExprNodes.BoolNode(node.pos, value=True)
                    return [self.try_to_parse_directive(optname, [arg], None, node.pos)]
                elif directivetype is None:
                    return [(optname, None)]
                else:
                    raise PostParseError(
                        node.pos, "The '%s' directive should be used as a function call." % optname)
        return None

    def try_to_parse_directive(self, optname, args, kwds, pos):
        if optname == 'np_pythran' and not self.context.cpp:
            raise PostParseError(pos, 'The %s directive can only be used in C++ mode.' % optname)
        elif optname == 'exceptval':
            # default: exceptval(None, check=True)
            arg_error = len(args) > 1
            check = True
            if kwds and kwds.key_value_pairs:
                kw = kwds.key_value_pairs[0]
                if (len(kwds.key_value_pairs) == 1 and
                        kw.key.is_string_literal and kw.key.value == 'check' and
                        isinstance(kw.value, ExprNodes.BoolNode)):
                    check = kw.value.value
                else:
                    arg_error = True
            if arg_error:
                raise PostParseError(
                    pos, 'The exceptval directive takes 0 or 1 positional arguments and the boolean keyword "check"')
            return ('exceptval', (args[0] if args else None, check))

        directivetype = Options.directive_types.get(optname)
        if len(args) == 1 and isinstance(args[0], ExprNodes.NoneNode):
            return optname, Options.get_directive_defaults()[optname]
        elif directivetype is bool:
            if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.BoolNode):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time boolean argument' % optname)
            return (optname, args[0].value)
        elif directivetype is int:
            if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.IntNode):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time integer argument' % optname)
            return (optname, int(args[0].value))
        elif directivetype is str:
            if kwds is not None or len(args) != 1 or not isinstance(
                    args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time string argument' % optname)
            return (optname, str(args[0].value))
        elif directivetype is type:
            if kwds is not None or len(args) != 1:
                raise PostParseError(pos,
                    'The %s directive takes one type argument' % optname)
            return (optname, args[0])
        elif directivetype is dict:
            if len(args) != 0:
                raise PostParseError(pos,
                    'The %s directive takes no prepositional arguments' % optname)
            return optname, dict([(key.value, value) for key, value in kwds.key_value_pairs])
        elif directivetype is list:
            if kwds and len(kwds.key_value_pairs) != 0:
                raise PostParseError(pos,
                    'The %s directive takes no keyword arguments' % optname)
            return optname, [ str(arg.value) for arg in args ]
        elif callable(directivetype):
            if kwds is not None or len(args) != 1 or not isinstance(
                    args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time string argument' % optname)
            return (optname, directivetype(optname, str(args[0].value)))
        else:
            assert False

    def visit_with_directives(self, node, directives):
        if not directives:
            return self.visit_Node(node)

        old_directives = self.directives
        new_directives = Options.copy_inherited_directives(old_directives, **directives)

        if new_directives == old_directives:
            return self.visit_Node(node)

        self.directives = new_directives
        retbody = self.visit_Node(node)
        self.directives = old_directives

        if not isinstance(retbody, Nodes.StatListNode):
            retbody = Nodes.StatListNode(node.pos, stats=[retbody])
        return Nodes.CompilerDirectivesNode(
            pos=retbody.pos, body=retbody, directives=new_directives)

    # Handle decorators
    def visit_FuncDefNode(self, node):
        directives = self._extract_directives(node, 'function')
        return self.visit_with_directives(node, directives)

    def visit_CVarDefNode(self, node):
        directives = self._extract_directives(node, 'function')
        for name, value in directives.items():
            if name == 'locals':
                node.directive_locals = value
            elif name not in ('final', 'staticmethod'):
                self.context.nonfatal_error(PostParseError(
                    node.pos,
                    "Cdef functions can only take cython.locals(), "
                    "staticmethod, or final decorators, got %s." % name))
        return self.visit_with_directives(node, directives)

    def visit_CClassDefNode(self, node):
        directives = self._extract_directives(node, 'cclass')
        return self.visit_with_directives(node, directives)

    def visit_CppClassNode(self, node):
        directives = self._extract_directives(node, 'cppclass')
        return self.visit_with_directives(node, directives)

    def visit_PyClassDefNode(self, node):
        directives = self._extract_directives(node, 'class')
        return self.visit_with_directives(node, directives)

    def _extract_directives(self, node, scope_name):
        if not node.decorators:
            return {}
        # Split the decorators into two lists -- real decorators and directives
        directives = []
        realdecs = []
        both = []
        # Decorators coming first take precedence.
        for dec in node.decorators[::-1]:
            new_directives = self.try_to_parse_directives(dec.decorator)
            if new_directives is not None:
                for directive in new_directives:
                    if self.check_directive_scope(node.pos, directive[0], scope_name):
                        name, value = directive
                        if self.directives.get(name, object()) != value:
                            directives.append(directive)
                        if directive[0] == 'staticmethod':
                            both.append(dec)
                    # Adapt scope type based on decorators that change it.
                    if directive[0] == 'cclass' and scope_name == 'class':
                        scope_name = 'cclass'
            else:
                realdecs.append(dec)
        if realdecs and (scope_name == 'cclass' or
                         isinstance(node, (Nodes.CClassDefNode, Nodes.CVarDefNode))):
            raise PostParseError(realdecs[0].pos, "Cdef functions/classes cannot take arbitrary decorators.")
        node.decorators = realdecs[::-1] + both[::-1]
        # merge or override repeated directives
        optdict = {}
        for directive in directives:
            name, value = directive
            if name in optdict:
                old_value = optdict[name]
                # keywords and arg lists can be merged, everything
                # else overrides completely
                if isinstance(old_value, dict):
                    old_value.update(value)
                elif isinstance(old_value, list):
                    old_value.extend(value)
                else:
                    optdict[name] = value
            else:
                optdict[name] = value
        return optdict

    # Handle with-statements
    def visit_WithStatNode(self, node):
        directive_dict = {}
        for directive in self.try_to_parse_directives(node.manager) or []:
            if directive is not None:
                if node.target is not None:
                    self.context.nonfatal_error(
                        PostParseError(node.pos, "Compiler directive with statements cannot contain 'as'"))
                else:
                    name, value = directive
                    if name in ('nogil', 'gil'):
                        # special case: in pure mode, "with nogil" spells "with cython.nogil"
                        node = Nodes.GILStatNode(node.pos, state = name, body = node.body)
                        return self.visit_Node(node)
                    if self.check_directive_scope(node.pos, name, 'with statement'):
                        directive_dict[name] = value
        if directive_dict:
            return self.visit_with_directives(node.body, directive_dict)
        return self.visit_Node(node)


class ParallelRangeTransform(CythonTransform, SkipDeclarations):
    """
    Transform cython.parallel stuff. The parallel_directives come from the
    module node, set there by InterpretCompilerDirectives.

        x = cython.parallel.threadavailable()   -> ParallelThreadAvailableNode
        with nogil, cython.parallel.parallel(): -> ParallelWithBlockNode
            print cython.parallel.threadid()    -> ParallelThreadIdNode
            for i in cython.parallel.prange(...):  -> ParallelRangeNode
                ...
    """

    # a list of names, maps 'cython.parallel.prange' in the code to
    # ['cython', 'parallel', 'prange']
    parallel_directive = None

    # Indicates whether a namenode in an expression is the cython module
    namenode_is_cython_module = False

    # Keep track of whether we are the context manager of a 'with' statement
    in_context_manager_section = False

    # One of 'prange' or 'with parallel'. This is used to disallow closely
    # nested 'with parallel:' blocks
    state = None

    directive_to_node = {
        u"cython.parallel.parallel": Nodes.ParallelWithBlockNode,
        # u"cython.parallel.threadsavailable": ExprNodes.ParallelThreadsAvailableNode,
        u"cython.parallel.threadid": ExprNodes.ParallelThreadIdNode,
        u"cython.parallel.prange": Nodes.ParallelRangeNode,
    }

    def node_is_parallel_directive(self, node):
        return node.name in self.parallel_directives or node.is_cython_module

    def get_directive_class_node(self, node):
        """
        Figure out which parallel directive was used and return the associated
        Node class.

        E.g. for a cython.parallel.prange() call we return ParallelRangeNode
        """
        if self.namenode_is_cython_module:
            directive = '.'.join(self.parallel_directive)
        else:
            directive = self.parallel_directives[self.parallel_directive[0]]
            directive = '%s.%s' % (directive,
                                   '.'.join(self.parallel_directive[1:]))
            directive = directive.rstrip('.')

        cls = self.directive_to_node.get(directive)
        if cls is None and not (self.namenode_is_cython_module and
                                self.parallel_directive[0] != 'parallel'):
            error(node.pos, "Invalid directive: %s" % directive)

        self.namenode_is_cython_module = False
        self.parallel_directive = None

        return cls

    def visit_ModuleNode(self, node):
        """
        If any parallel directives were imported, copy them over and visit
        the AST
        """
        if node.parallel_directives:
            self.parallel_directives = node.parallel_directives
            return self.visit_Node(node)

        # No parallel directives were imported, so they can't be used :)
        return node

    def visit_NameNode(self, node):
        if self.node_is_parallel_directive(node):
            self.parallel_directive = [node.name]
            self.namenode_is_cython_module = node.is_cython_module
        return node

    def visit_AttributeNode(self, node):
        self.visitchildren(node)
        if self.parallel_directive:
            self.parallel_directive.append(node.attribute)
        return node

    def visit_CallNode(self, node):
        self.visit(node.function)
        if not self.parallel_directive:
            self.visitchildren(node, exclude=('function',))
            return node

        # We are a parallel directive, replace this node with the
        # corresponding ParallelSomethingSomething node

        if isinstance(node, ExprNodes.GeneralCallNode):
            args = node.positional_args.args
            kwargs = node.keyword_args
        else:
            args = node.args
            kwargs = {}

        parallel_directive_class = self.get_directive_class_node(node)
        if parallel_directive_class:
            # Note: in case of a parallel() the body is set by
            # visit_WithStatNode
            node = parallel_directive_class(node.pos, args=args, kwargs=kwargs)

        return node

    def visit_WithStatNode(self, node):
        "Rewrite with cython.parallel.parallel() blocks"
        newnode = self.visit(node.manager)

        if isinstance(newnode, Nodes.ParallelWithBlockNode):
            if self.state == 'parallel with':
                error(node.manager.pos,
                      "Nested parallel with blocks are disallowed")

            self.state = 'parallel with'
            body = self.visit(node.body)
            self.state = None

            newnode.body = body
            return newnode
        elif self.parallel_directive:
            parallel_directive_class = self.get_directive_class_node(node)

            if not parallel_directive_class:
                # There was an error, stop here and now
                return None

            if parallel_directive_class is Nodes.ParallelWithBlockNode:
                error(node.pos, "The parallel directive must be called")
                return None

        node.body = self.visit(node.body)
        return node

    def visit_ForInStatNode(self, node):
        "Rewrite 'for i in cython.parallel.prange(...):'"
        self.visit(node.iterator)
        self.visit(node.target)

        in_prange = isinstance(node.iterator.sequence,
                               Nodes.ParallelRangeNode)
        previous_state = self.state

        if in_prange:
            # This will replace the entire ForInStatNode, so copy the
            # attributes
            parallel_range_node = node.iterator.sequence

            parallel_range_node.target = node.target
            parallel_range_node.body = node.body
            parallel_range_node.else_clause = node.else_clause

            node = parallel_range_node

            if not isinstance(node.target, ExprNodes.NameNode):
                error(node.target.pos,
                      "Can only iterate over an iteration variable")

            self.state = 'prange'

        self.visit(node.body)
        self.state = previous_state
        self.visit(node.else_clause)
        return node

    def visit(self, node):
        "Visit a node that may be None"
        if node is not None:
            return super(ParallelRangeTransform, self).visit(node)


class WithTransform(CythonTransform, SkipDeclarations):
    def visit_WithStatNode(self, node):
        self.visitchildren(node, 'body')
        pos = node.pos
        is_async = node.is_async
        body, target, manager = node.body, node.target, node.manager
        node.enter_call = ExprNodes.SimpleCallNode(
            pos, function=ExprNodes.AttributeNode(
                pos, obj=ExprNodes.CloneNode(manager),
                attribute=EncodedString('__aenter__' if is_async else '__enter__'),
                is_special_lookup=True),
            args=[],
            is_temp=True)

        if is_async:
            node.enter_call = ExprNodes.AwaitExprNode(pos, arg=node.enter_call)

        if target is not None:
            body = Nodes.StatListNode(
                pos, stats=[
                    Nodes.WithTargetAssignmentStatNode(
                        pos, lhs=target, with_node=node),
                    body])

        excinfo_target = ExprNodes.TupleNode(pos, slow=True, args=[
            ExprNodes.ExcValueNode(pos) for _ in range(3)])
        except_clause = Nodes.ExceptClauseNode(
            pos, body=Nodes.IfStatNode(
                pos, if_clauses=[
                    Nodes.IfClauseNode(
                        pos, condition=ExprNodes.NotNode(
                            pos, operand=ExprNodes.WithExitCallNode(
                                pos, with_stat=node,
                                test_if_run=False,
                                args=excinfo_target,
                                await_expr=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)),
                        body=Nodes.ReraiseStatNode(pos),
                    ),
                ],
                else_clause=None),
            pattern=None,
            target=None,
            excinfo_target=excinfo_target,
        )

        node.body = Nodes.TryFinallyStatNode(
            pos, body=Nodes.TryExceptStatNode(
                pos, body=body,
                except_clauses=[except_clause],
                else_clause=None,
            ),
            finally_clause=Nodes.ExprStatNode(
                pos, expr=ExprNodes.WithExitCallNode(
                    pos, with_stat=node,
                    test_if_run=True,
                    args=ExprNodes.TupleNode(
                        pos, args=[ExprNodes.NoneNode(pos) for _ in range(3)]),
                    await_expr=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)),
            handle_error_case=False,
        )
        return node

    def visit_ExprNode(self, node):
        # With statements are never inside expressions.
        return node


class DecoratorTransform(ScopeTrackingTransform, SkipDeclarations):
    """
    Transforms method decorators in cdef classes into nested calls or properties.

    Python-style decorator properties are transformed into a PropertyNode
    with up to the three getter, setter and deleter DefNodes.
    The functional style isn't supported yet.
    """
    _properties = None

    _map_property_attribute = {
        'getter': EncodedString('__get__'),
        'setter': EncodedString('__set__'),
        'deleter': EncodedString('__del__'),
    }.get

    def visit_CClassDefNode(self, node):
        if self._properties is None:
            self._properties = []
        self._properties.append({})
        node = super(DecoratorTransform, self).visit_CClassDefNode(node)
        self._properties.pop()
        return node

    def visit_PropertyNode(self, node):
        # Low-level warning for other code until we can convert all our uses over.
        level = 2 if isinstance(node.pos[0], str) else 0
        warning(node.pos, "'property %s:' syntax is deprecated, use '@property'" % node.name, level)
        return node

    def visit_CFuncDefNode(self, node):
        node = self.visit_FuncDefNode(node)
        if self.scope_type != 'cclass' or self.scope_node.visibility != "extern" or not node.decorators:
            return node

        ret_node = node
        decorator_node = self._find_property_decorator(node)
        if decorator_node:
            if decorator_node.decorator.is_name:
                name = node.declared_name()
                if name:
                    ret_node = self._add_property(node, name, decorator_node)
            else:
                error(decorator_node.pos, "C property decorator can only be @property")

        if node.decorators:
            return self._reject_decorated_property(node, node.decorators[0])
        return ret_node

    def visit_DefNode(self, node):
        scope_type = self.scope_type
        node = self.visit_FuncDefNode(node)
        if scope_type != 'cclass' or not node.decorators:
            return node

        # transform @property decorators
        decorator_node = self._find_property_decorator(node)
        if decorator_node is not None:
            decorator = decorator_node.decorator
            if decorator.is_name:
                return self._add_property(node, node.name, decorator_node)
            else:
                handler_name = self._map_property_attribute(decorator.attribute)
                if handler_name:
                    if decorator.obj.name != node.name:
                        # CPython does not generate an error or warning, but not something useful either.
                        error(decorator_node.pos,
                              "Mismatching property names, expected '%s', got '%s'" % (
                                  decorator.obj.name, node.name))
                    elif len(node.decorators) > 1:
                        return self._reject_decorated_property(node, decorator_node)
                    else:
                        return self._add_to_property(node, handler_name, decorator_node)

        # we clear node.decorators, so we need to set the
        # is_staticmethod/is_classmethod attributes now
        for decorator in node.decorators:
            func = decorator.decorator
            if func.is_name:
                node.is_classmethod |= func.name == 'classmethod'
                node.is_staticmethod |= func.name == 'staticmethod'

        # transform normal decorators
        decs = node.decorators
        node.decorators = None
        return self.chain_decorators(node, decs, node.name)

    def _find_property_decorator(self, node):
        properties = self._properties[-1]
        for decorator_node in node.decorators[::-1]:
            decorator = decorator_node.decorator
            if decorator.is_name and decorator.name == 'property':
                # @property
                return decorator_node
            elif decorator.is_attribute and decorator.obj.name in properties:
                # @prop.setter etc.
                return decorator_node
        return None

    @staticmethod
    def _reject_decorated_property(node, decorator_node):
        # restrict transformation to outermost decorator as wrapped properties will probably not work
        for deco in node.decorators:
            if deco != decorator_node:
                error(deco.pos, "Property methods with additional decorators are not supported")
        return node

    def _add_property(self, node, name, decorator_node):
        if len(node.decorators) > 1:
            return self._reject_decorated_property(node, decorator_node)
        node.decorators.remove(decorator_node)
        properties = self._properties[-1]
        is_cproperty = isinstance(node, Nodes.CFuncDefNode)
        body = Nodes.StatListNode(node.pos, stats=[node])
        if is_cproperty:
            if name in properties:
                error(node.pos, "C property redeclared")
            if 'inline' not in node.modifiers:
                error(node.pos, "C property method must be declared 'inline'")
            prop = Nodes.CPropertyNode(node.pos, doc=node.doc, name=name, body=body)
        elif name in properties:
            prop = properties[name]
            if prop.is_cproperty:
                error(node.pos, "C property redeclared")
            else:
                node.name = EncodedString("__get__")
                prop.pos = node.pos
                prop.doc = node.doc
                prop.body.stats = [node]
            return None
        else:
            node.name = EncodedString("__get__")
            prop = Nodes.PropertyNode(
                node.pos, name=name, doc=node.doc, body=body)
        properties[name] = prop
        return prop

    def _add_to_property(self, node, name, decorator):
        properties = self._properties[-1]
        prop = properties[node.name]
        if prop.is_cproperty:
            error(node.pos, "C property redeclared")
            return None
        node.name = name
        node.decorators.remove(decorator)
        stats = prop.body.stats
        for i, stat in enumerate(stats):
            if stat.name == name:
                stats[i] = node
                break
        else:
            stats.append(node)
        return None

    @staticmethod
    def chain_decorators(node, decorators, name):
        """
        Decorators are applied directly in DefNode and PyClassDefNode to avoid
        reassignments to the function/class name - except for cdef class methods.
        For those, the reassignment is required as methods are originally
        defined in the PyMethodDef struct.

        The IndirectionNode allows DefNode to override the decorator.
        """
        decorator_result = ExprNodes.NameNode(node.pos, name=name)
        for decorator in decorators[::-1]:
            decorator_result = ExprNodes.SimpleCallNode(
                decorator.pos,
                function=decorator.decorator,
                args=[decorator_result])

        name_node = ExprNodes.NameNode(node.pos, name=name)
        reassignment = Nodes.SingleAssignmentNode(
            node.pos,
            lhs=name_node,
            rhs=decorator_result)

        reassignment = Nodes.IndirectionNode([reassignment])
        node.decorator_indirection = reassignment
        return [node, reassignment]


class CnameDirectivesTransform(CythonTransform, SkipDeclarations):
    """
    Only part of the CythonUtilityCode pipeline. Must be run before
    DecoratorTransform in case this is a decorator for a cdef class.
    It filters out @cname('my_cname') decorators and rewrites them to
    CnameDecoratorNodes.
    """

    def handle_function(self, node):
        if not getattr(node, 'decorators', None):
            return self.visit_Node(node)

        for i, decorator in enumerate(node.decorators):
            decorator = decorator.decorator

            if (isinstance(decorator, ExprNodes.CallNode) and
                    decorator.function.is_name and
                    decorator.function.name == 'cname'):
                args, kwargs = decorator.explicit_args_kwds()

                if kwargs:
                    raise AssertionError(
                            "cname decorator does not take keyword arguments")

                if len(args) != 1:
                    raise AssertionError(
                            "cname decorator takes exactly one argument")

                if not (args[0].is_literal and
                        args[0].type == Builtin.str_type):
                    raise AssertionError(
                            "argument to cname decorator must be a string literal")

                cname = args[0].compile_time_value(None)
                del node.decorators[i]
                node = Nodes.CnameDecoratorNode(pos=node.pos, node=node,
                                                cname=cname)
                break

        return self.visit_Node(node)

    visit_FuncDefNode = handle_function
    visit_CClassDefNode = handle_function
    visit_CEnumDefNode = handle_function
    visit_CStructOrUnionDefNode = handle_function


class ForwardDeclareTypes(CythonTransform):
    """
    Declare all global cdef names that we allow referencing in other places,
    before declaring everything (else) in source code order.
    """

    def visit_CompilerDirectivesNode(self, node):
        env = self.module_scope
        old = env.directives
        env.directives = node.directives
        self.visitchildren(node)
        env.directives = old
        return node

    def visit_ModuleNode(self, node):
        self.module_scope = node.scope
        self.module_scope.directives = node.directives
        self.visitchildren(node)
        return node

    def visit_CDefExternNode(self, node):
        old_cinclude_flag = self.module_scope.in_cinclude
        self.module_scope.in_cinclude = 1
        self.visitchildren(node)
        self.module_scope.in_cinclude = old_cinclude_flag
        return node

    def visit_CEnumDefNode(self, node):
        node.declare(self.module_scope)
        return node

    def visit_CStructOrUnionDefNode(self, node):
        if node.name not in self.module_scope.entries:
            node.declare(self.module_scope)
        return node

    def visit_CClassDefNode(self, node):
        if node.class_name not in self.module_scope.entries:
            node.declare(self.module_scope)
        # Expand fused methods of .pxd declared types to construct the final vtable order.
        type = self.module_scope.entries[node.class_name].type
        if type is not None and type.is_extension_type and not type.is_builtin_type and type.scope:
            scope = type.scope
            for entry in scope.cfunc_entries:
                if entry.type and entry.type.is_fused:
                    entry.type.get_all_specialized_function_types()
        return node

    def visit_FuncDefNode(self, node):
        # no traversal needed
        return node

    def visit_PyClassDefNode(self, node):
        # no traversal needed
        return node


class AnalyseDeclarationsTransform(EnvTransform):

    basic_property = TreeFragment(u"""
property NAME:
    def __get__(self):
        return ATTR
    def __set__(self, value):
        ATTR = value
    """, level='c_class', pipeline=[NormalizeTree(None)])
    basic_pyobject_property = TreeFragment(u"""
property NAME:
    def __get__(self):
        return ATTR
    def __set__(self, value):
        ATTR = value
    def __del__(self):
        ATTR = None
    """, level='c_class', pipeline=[NormalizeTree(None)])
    basic_property_ro = TreeFragment(u"""
property NAME:
    def __get__(self):
        return ATTR
    """, level='c_class', pipeline=[NormalizeTree(None)])

    struct_or_union_wrapper = TreeFragment(u"""
cdef class NAME:
    cdef TYPE value
    def __init__(self, MEMBER=None):
        cdef int count
        count = 0
        INIT_ASSIGNMENTS
        if IS_UNION and count > 1:
            raise ValueError, "At most one union member should be specified."
    def __str__(self):
        return STR_FORMAT % MEMBER_TUPLE
    def __repr__(self):
        return REPR_FORMAT % MEMBER_TUPLE
    """, pipeline=[NormalizeTree(None)])

    init_assignment = TreeFragment(u"""
if VALUE is not None:
    ATTR = VALUE
    count += 1
    """, pipeline=[NormalizeTree(None)])

    fused_function = None
    in_lambda = 0

    def __call__(self, root):
        # needed to determine if a cdef var is declared after it's used.
        self.seen_vars_stack = []
        self.fused_error_funcs = set()
        super_class = super(AnalyseDeclarationsTransform, self)
        self._super_visit_FuncDefNode = super_class.visit_FuncDefNode
        return super_class.__call__(root)

    def visit_NameNode(self, node):
        self.seen_vars_stack[-1].add(node.name)
        return node

    def visit_ModuleNode(self, node):
        # Pickling support requires injecting module-level nodes.
        self.extra_module_declarations = []
        self.seen_vars_stack.append(set())
        node.analyse_declarations(self.current_env())
        self.visitchildren(node)
        self.seen_vars_stack.pop()
        node.body.stats.extend(self.extra_module_declarations)
        return node

    def visit_LambdaNode(self, node):
        self.in_lambda += 1
        node.analyse_declarations(self.current_env())
        self.visitchildren(node)
        self.in_lambda -= 1
        return node

    def visit_CClassDefNode(self, node):
        node = self.visit_ClassDefNode(node)
        if node.scope and node.scope.implemented and node.body:
            stats = []
            for entry in node.scope.var_entries:
                if entry.needs_property:
                    property = self.create_Property(entry)
                    property.analyse_declarations(node.scope)
                    self.visit(property)
                    stats.append(property)
            if stats:
                node.body.stats += stats
            if (node.visibility != 'extern'
                    and not node.scope.lookup('__reduce__')
                    and not node.scope.lookup('__reduce_ex__')):
                self._inject_pickle_methods(node)
        return node

    def _inject_pickle_methods(self, node):
        env = self.current_env()
        if node.scope.directives['auto_pickle'] is False:   # None means attempt it.
            # Old behavior of not doing anything.
            return
        auto_pickle_forced = node.scope.directives['auto_pickle'] is True

        all_members = []
        cls = node.entry.type
        cinit = None
        inherited_reduce = None
        while cls is not None:
            all_members.extend(e for e in cls.scope.var_entries if e.name not in ('__weakref__', '__dict__'))
            cinit = cinit or cls.scope.lookup('__cinit__')
            inherited_reduce = inherited_reduce or cls.scope.lookup('__reduce__') or cls.scope.lookup('__reduce_ex__')
            cls = cls.base_type
        all_members.sort(key=lambda e: e.name)

        if inherited_reduce:
            # This is not failsafe, as we may not know whether a cimported class defines a __reduce__.
            # This is why we define __reduce_cython__ and only replace __reduce__
            # (via ExtensionTypes.SetupReduce utility code) at runtime on class creation.
            return

        non_py = [
            e for e in all_members
            if not e.type.is_pyobject and (not e.type.can_coerce_to_pyobject(env)
                                           or not e.type.can_coerce_from_pyobject(env))
        ]

        structs = [e for e in all_members if e.type.is_struct_or_union]

        if cinit or non_py or (structs and not auto_pickle_forced):
            if cinit:
                # TODO(robertwb): We could allow this if __cinit__ has no require arguments.
                msg = 'no default __reduce__ due to non-trivial __cinit__'
            elif non_py:
                msg = "%s cannot be converted to a Python object for pickling" % ','.join("self.%s" % e.name for e in non_py)
            else:
                # Extern structs may be only partially defined.
                # TODO(robertwb): Limit the restriction to extern
                # (and recursively extern-containing) structs.
                msg = ("Pickling of struct members such as %s must be explicitly requested "
                       "with @auto_pickle(True)" % ','.join("self.%s" % e.name for e in structs))

            if auto_pickle_forced:
                error(node.pos, msg)

            pickle_func = TreeFragment(u"""
                def __reduce_cython__(self):
                    raise TypeError, "%(msg)s"
                def __setstate_cython__(self, __pyx_state):
                    raise TypeError, "%(msg)s"
                """ % {'msg': msg},
                level='c_class', pipeline=[NormalizeTree(None)]).substitute({})
            pickle_func.analyse_declarations(node.scope)
            self.visit(pickle_func)
            node.body.stats.append(pickle_func)

        else:
            for e in all_members:
                if not e.type.is_pyobject:
                    e.type.create_to_py_utility_code(env)
                    e.type.create_from_py_utility_code(env)
            all_members_names = sorted([e.name for e in all_members])
            checksum = '0x%s' % hashlib.sha1(' '.join(all_members_names).encode('utf-8')).hexdigest()[:7]
            unpickle_func_name = '__pyx_unpickle_%s' % node.punycode_class_name

            # TODO(robertwb): Move the state into the third argument
            # so it can be pickled *after* self is memoized.
            unpickle_func = TreeFragment(u"""
                def %(unpickle_func_name)s(__pyx_type, long __pyx_checksum, __pyx_state):
                    cdef object __pyx_PickleError
                    cdef object __pyx_result
                    if __pyx_checksum != %(checksum)s:
                        from pickle import PickleError as __pyx_PickleError
                        raise __pyx_PickleError, "Incompatible checksums (%%s vs %(checksum)s = (%(members)s))" %% __pyx_checksum
                    __pyx_result = %(class_name)s.__new__(__pyx_type)
                    if __pyx_state is not None:
                        %(unpickle_func_name)s__set_state(<%(class_name)s> __pyx_result, __pyx_state)
                    return __pyx_result

                cdef %(unpickle_func_name)s__set_state(%(class_name)s __pyx_result, tuple __pyx_state):
                    %(assignments)s
                    if len(__pyx_state) > %(num_members)d and hasattr(__pyx_result, '__dict__'):
                        __pyx_result.__dict__.update(__pyx_state[%(num_members)d])
                """ % {
                    'unpickle_func_name': unpickle_func_name,
                    'checksum': checksum,
                    'members': ', '.join(all_members_names),
                    'class_name': node.class_name,
                    'assignments': '; '.join(
                        '__pyx_result.%s = __pyx_state[%s]' % (v, ix)
                        for ix, v in enumerate(all_members_names)),
                    'num_members': len(all_members_names),
                }, level='module', pipeline=[NormalizeTree(None)]).substitute({})
            unpickle_func.analyse_declarations(node.entry.scope)
            self.visit(unpickle_func)
            self.extra_module_declarations.append(unpickle_func)

            pickle_func = TreeFragment(u"""
                def __reduce_cython__(self):
                    cdef tuple state
                    cdef object _dict
                    cdef bint use_setstate
                    state = (%(members)s)
                    _dict = getattr(self, '__dict__', None)
                    if _dict is not None:
                        state += (_dict,)
                        use_setstate = True
                    else:
                        use_setstate = %(any_notnone_members)s
                    if use_setstate:
                        return %(unpickle_func_name)s, (type(self), %(checksum)s, None), state
                    else:
                        return %(unpickle_func_name)s, (type(self), %(checksum)s, state)

                def __setstate_cython__(self, __pyx_state):
                    %(unpickle_func_name)s__set_state(self, __pyx_state)
                """ % {
                    'unpickle_func_name': unpickle_func_name,
                    'checksum': checksum,
                    'members': ', '.join('self.%s' % v for v in all_members_names) + (',' if len(all_members_names) == 1 else ''),
                    # Even better, we could check PyType_IS_GC.
                    'any_notnone_members' : ' or '.join(['self.%s is not None' % e.name for e in all_members if e.type.is_pyobject] or ['False']),
                },
                level='c_class', pipeline=[NormalizeTree(None)]).substitute({})
            pickle_func.analyse_declarations(node.scope)
            self.enter_scope(node, node.scope)  # functions should be visited in the class scope
            self.visit(pickle_func)
            self.exit_scope()
            node.body.stats.append(pickle_func)

    def _handle_fused_def_decorators(self, old_decorators, env, node):
        """
        Create function calls to the decorators and reassignments to
        the function.
        """
        # Delete staticmethod and classmethod decorators, this is
        # handled directly by the fused function object.
        decorators = []
        for decorator in old_decorators:
            func = decorator.decorator
            if (not func.is_name or
                    func.name not in ('staticmethod', 'classmethod') or
                    env.lookup_here(func.name)):
                # not a static or classmethod
                decorators.append(decorator)

        if decorators:
            transform = DecoratorTransform(self.context)
            def_node = node.node
            _, reassignments = transform.chain_decorators(
                def_node, decorators, def_node.name)
            reassignments.analyse_declarations(env)
            node = [node, reassignments]

        return node

    def _handle_def(self, decorators, env, node):
        "Handle def or cpdef fused functions"
        # Create PyCFunction nodes for each specialization
        node.stats.insert(0, node.py_func)
        node.py_func = self.visit(node.py_func)
        node.update_fused_defnode_entry(env)
        # For the moment, fused functions do not support METH_FASTCALL
        node.py_func.entry.signature.use_fastcall = False
        pycfunc = ExprNodes.PyCFunctionNode.from_defnode(node.py_func, binding=True)
        pycfunc = ExprNodes.ProxyNode(pycfunc.coerce_to_temp(env))
        node.resulting_fused_function = pycfunc
        # Create assignment node for our def function
        node.fused_func_assignment = self._create_assignment(
            node.py_func, ExprNodes.CloneNode(pycfunc), env)

        if decorators:
            node = self._handle_fused_def_decorators(decorators, env, node)

        return node

    def _create_fused_function(self, env, node):
        "Create a fused function for a DefNode with fused arguments"
        from . import FusedNode

        if self.fused_function or self.in_lambda:
            if self.fused_function not in self.fused_error_funcs:
                if self.in_lambda:
                    error(node.pos, "Fused lambdas not allowed")
                else:
                    error(node.pos, "Cannot nest fused functions")

            self.fused_error_funcs.add(self.fused_function)

            node.body = Nodes.PassStatNode(node.pos)
            for arg in node.args:
                if arg.type.is_fused:
                    arg.type = arg.type.get_fused_types()[0]

            return node

        decorators = getattr(node, 'decorators', None)
        node = FusedNode.FusedCFuncDefNode(node, env)
        self.fused_function = node
        self.visitchildren(node)
        self.fused_function = None
        if node.py_func:
            node = self._handle_def(decorators, env, node)

        return node

    def _handle_fused(self, node):
        if node.is_generator and node.has_fused_arguments:
            node.has_fused_arguments = False
            error(node.pos, "Fused generators not supported")
            node.gbody = Nodes.StatListNode(node.pos,
                                            stats=[],
                                            body=Nodes.PassStatNode(node.pos))

        return node.has_fused_arguments

    def visit_FuncDefNode(self, node):
        """
        Analyse a function and its body, as that hasn't happened yet.  Also
        analyse the directive_locals set by @cython.locals().

        Then, if we are a function with fused arguments, replace the function
        (after it has declared itself in the symbol table!) with a
        FusedCFuncDefNode, and analyse its children (which are in turn normal
        functions). If we're a normal function, just analyse the body of the
        function.
        """
        env = self.current_env()

        self.seen_vars_stack.append(set())
        lenv = node.local_scope
        node.declare_arguments(lenv)

        # @cython.locals(...)
        for var, type_node in node.directive_locals.items():
            if not lenv.lookup_here(var):   # don't redeclare args
                type = type_node.analyse_as_type(lenv)
                if type and type.is_fused and lenv.fused_to_specific:
                    type = type.specialize(lenv.fused_to_specific)
                if type:
                    lenv.declare_var(var, type, type_node.pos)
                else:
                    error(type_node.pos, "Not a type")

        if self._handle_fused(node):
            node = self._create_fused_function(env, node)
        else:
            node.body.analyse_declarations(lenv)
            self._super_visit_FuncDefNode(node)

        self.seen_vars_stack.pop()
        return node

    def visit_DefNode(self, node):
        node = self.visit_FuncDefNode(node)
        env = self.current_env()
        if isinstance(node, Nodes.DefNode) and node.is_wrapper:
            env = env.parent_scope
        if (not isinstance(node, Nodes.DefNode) or
                node.fused_py_func or node.is_generator_body or
                not node.needs_assignment_synthesis(env)):
            return node
        return [node, self._synthesize_assignment(node, env)]

    def visit_GeneratorBodyDefNode(self, node):
        return self.visit_FuncDefNode(node)

    def _synthesize_assignment(self, node, env):
        # Synthesize assignment node and put it right after defnode
        genv = env
        while genv.is_py_class_scope or genv.is_c_class_scope:
            genv = genv.outer_scope

        if genv.is_closure_scope:
            rhs = node.py_cfunc_node = ExprNodes.InnerFunctionNode(
                node.pos, def_node=node,
                pymethdef_cname=node.entry.pymethdef_cname,
                code_object=ExprNodes.CodeObjectNode(node))
        else:
            binding = self.current_directives.get('binding')
            rhs = ExprNodes.PyCFunctionNode.from_defnode(node, binding)
            node.code_object = rhs.code_object
            if node.is_generator:
                node.gbody.code_object = node.code_object

        if env.is_py_class_scope:
            rhs.binding = True

        node.is_cyfunction = rhs.binding
        return self._create_assignment(node, rhs, env)

    def _create_assignment(self, def_node, rhs, env):
        if def_node.decorators:
            for decorator in def_node.decorators[::-1]:
                rhs = ExprNodes.SimpleCallNode(
                    decorator.pos,
                    function = decorator.decorator,
                    args = [rhs])
            def_node.decorators = None

        assmt = Nodes.SingleAssignmentNode(
            def_node.pos,
            lhs=ExprNodes.NameNode(def_node.pos, name=def_node.name),
            rhs=rhs)
        assmt.analyse_declarations(env)
        return assmt

    def visit_ScopedExprNode(self, node):
        env = self.current_env()
        node.analyse_declarations(env)
        # the node may or may not have a local scope
        if node.has_local_scope:
            self.seen_vars_stack.append(set(self.seen_vars_stack[-1]))
            self.enter_scope(node, node.expr_scope)
            node.analyse_scoped_declarations(node.expr_scope)
            self.visitchildren(node)
            self.exit_scope()
            self.seen_vars_stack.pop()
        else:
            node.analyse_scoped_declarations(env)
            self.visitchildren(node)
        return node

    def visit_TempResultFromStatNode(self, node):
        self.visitchildren(node)
        node.analyse_declarations(self.current_env())
        return node

    def visit_CppClassNode(self, node):
        if node.visibility == 'extern':
            return None
        else:
            return self.visit_ClassDefNode(node)

    def visit_CStructOrUnionDefNode(self, node):
        # Create a wrapper node if needed.
        # We want to use the struct type information (so it can't happen
        # before this phase) but also create new objects to be declared
        # (so it can't happen later).
        # Note that we don't return the original node, as it is
        # never used after this phase.
        if True:  # private (default)
            return None

        self_value = ExprNodes.AttributeNode(
            pos = node.pos,
            obj = ExprNodes.NameNode(pos=node.pos, name=u"self"),
            attribute = EncodedString(u"value"))
        var_entries = node.entry.type.scope.var_entries
        attributes = []
        for entry in var_entries:
            attributes.append(ExprNodes.AttributeNode(pos = entry.pos,
                                                      obj = self_value,
                                                      attribute = entry.name))
        # __init__ assignments
        init_assignments = []
        for entry, attr in zip(var_entries, attributes):
            # TODO: branch on visibility
            init_assignments.append(self.init_assignment.substitute({
                    u"VALUE": ExprNodes.NameNode(entry.pos, name = entry.name),
                    u"ATTR": attr,
                }, pos = entry.pos))

        # create the class
        str_format = u"%s(%s)" % (node.entry.type.name, ("%s, " * len(attributes))[:-2])
        wrapper_class = self.struct_or_union_wrapper.substitute({
            u"INIT_ASSIGNMENTS": Nodes.StatListNode(node.pos, stats = init_assignments),
            u"IS_UNION": ExprNodes.BoolNode(node.pos, value = not node.entry.type.is_struct),
            u"MEMBER_TUPLE": ExprNodes.TupleNode(node.pos, args=attributes),
            u"STR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format)),
            u"REPR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format.replace("%s", "%r"))),
        }, pos = node.pos).stats[0]
        wrapper_class.class_name = node.name
        wrapper_class.shadow = True
        class_body = wrapper_class.body.stats

        # fix value type
        assert isinstance(class_body[0].base_type, Nodes.CSimpleBaseTypeNode)
        class_body[0].base_type.name = node.name

        # fix __init__ arguments
        init_method = class_body[1]
        assert isinstance(init_method, Nodes.DefNode) and init_method.name == '__init__'
        arg_template = init_method.args[1]
        if not node.entry.type.is_struct:
            arg_template.kw_only = True
        del init_method.args[1]
        for entry, attr in zip(var_entries, attributes):
            arg = copy.deepcopy(arg_template)
            arg.declarator.name = entry.name
            init_method.args.append(arg)

        # setters/getters
        for entry, attr in zip(var_entries, attributes):
            # TODO: branch on visibility
            if entry.type.is_pyobject:
                template = self.basic_pyobject_property
            else:
                template = self.basic_property
            property = template.substitute({
                    u"ATTR": attr,
                }, pos = entry.pos).stats[0]
            property.name = entry.name
            wrapper_class.body.stats.append(property)

        wrapper_class.analyse_declarations(self.current_env())
        return self.visit_CClassDefNode(wrapper_class)

    # Some nodes are no longer needed after declaration
    # analysis and can be dropped. The analysis was performed
    # on these nodes in a separate recursive process from the
    # enclosing function or module, so we can simply drop them.
    def visit_CDeclaratorNode(self, node):
        # necessary to ensure that all CNameDeclaratorNodes are visited.
        self.visitchildren(node)
        return node

    def visit_CTypeDefNode(self, node):
        return node

    def visit_CBaseTypeNode(self, node):
        return None

    def visit_CEnumDefNode(self, node):
        if node.visibility == 'public':
            return node
        else:
            return None

    def visit_CNameDeclaratorNode(self, node):
        if node.name in self.seen_vars_stack[-1]:
            entry = self.current_env().lookup(node.name)
            if (entry is None or entry.visibility != 'extern'
                    and not entry.scope.is_c_class_scope):
                error(node.pos, "cdef variable '%s' declared after it is used" % node.name)
        self.visitchildren(node)
        return node

    def visit_CVarDefNode(self, node):
        # to ensure all CNameDeclaratorNodes are visited.
        self.visitchildren(node)
        return None

    def visit_CnameDecoratorNode(self, node):
        child_node = self.visit(node.node)
        if not child_node:
            return None
        if type(child_node) is list:  # Assignment synthesized
            node.child_node = child_node[0]
            return [node] + child_node[1:]
        node.node = child_node
        return node

    def create_Property(self, entry):
        if entry.visibility == 'public':
            if entry.type.is_pyobject:
                template = self.basic_pyobject_property
            else:
                template = self.basic_property
        elif entry.visibility == 'readonly':
            template = self.basic_property_ro
        property = template.substitute({
                u"ATTR": ExprNodes.AttributeNode(pos=entry.pos,
                                                 obj=ExprNodes.NameNode(pos=entry.pos, name="self"),
                                                 attribute=entry.name),
            }, pos=entry.pos).stats[0]
        property.name = entry.name
        property.doc = entry.doc
        return property


class CalculateQualifiedNamesTransform(EnvTransform):
    """
    Calculate and store the '__qualname__' and the global
    module name on some nodes.
    """
    def visit_ModuleNode(self, node):
        self.module_name = self.global_scope().qualified_name
        self.qualified_name = []
        _super = super(CalculateQualifiedNamesTransform, self)
        self._super_visit_FuncDefNode = _super.visit_FuncDefNode
        self._super_visit_ClassDefNode = _super.visit_ClassDefNode
        self.visitchildren(node)
        return node

    def _set_qualname(self, node, name=None):
        if name:
            qualname = self.qualified_name[:]
            qualname.append(name)
        else:
            qualname = self.qualified_name
        node.qualname = EncodedString('.'.join(qualname))
        node.module_name = self.module_name

    def _append_entry(self, entry):
        if entry.is_pyglobal and not entry.is_pyclass_attr:
            self.qualified_name = [entry.name]
        else:
            self.qualified_name.append(entry.name)

    def visit_ClassNode(self, node):
        self._set_qualname(node, node.name)
        self.visitchildren(node)
        return node

    def visit_PyClassNamespaceNode(self, node):
        # class name was already added by parent node
        self._set_qualname(node)
        self.visitchildren(node)
        return node

    def visit_PyCFunctionNode(self, node):
        orig_qualified_name = self.qualified_name[:]
        if node.def_node.is_wrapper and self.qualified_name and self.qualified_name[-1] == '<locals>':
            self.qualified_name.pop()
            self._set_qualname(node)
        else:
            self._set_qualname(node, node.def_node.name)
        self.visitchildren(node)
        self.qualified_name = orig_qualified_name
        return node

    def visit_DefNode(self, node):
        if node.is_wrapper and self.qualified_name:
            assert self.qualified_name[-1] == '<locals>', self.qualified_name
            orig_qualified_name = self.qualified_name[:]
            self.qualified_name.pop()
            self._set_qualname(node)
            self._super_visit_FuncDefNode(node)
            self.qualified_name = orig_qualified_name
        else:
            self._set_qualname(node, node.name)
            self.visit_FuncDefNode(node)
        return node

    def visit_FuncDefNode(self, node):
        orig_qualified_name = self.qualified_name[:]
        if getattr(node, 'name', None) == '<lambda>':
            self.qualified_name.append('<lambda>')
        else:
            self._append_entry(node.entry)
        self.qualified_name.append('<locals>')
        self._super_visit_FuncDefNode(node)
        self.qualified_name = orig_qualified_name
        return node

    def visit_ClassDefNode(self, node):
        orig_qualified_name = self.qualified_name[:]
        entry = (getattr(node, 'entry', None) or             # PyClass
                 self.current_env().lookup_here(node.target.name))  # CClass
        self._append_entry(entry)
        self._super_visit_ClassDefNode(node)
        self.qualified_name = orig_qualified_name
        return node


class AnalyseExpressionsTransform(CythonTransform):

    def visit_ModuleNode(self, node):
        node.scope.infer_types()
        node.body = node.body.analyse_expressions(node.scope)
        self.visitchildren(node)
        return node

    def visit_FuncDefNode(self, node):
        node.local_scope.infer_types()
        node.body = node.body.analyse_expressions(node.local_scope)
        self.visitchildren(node)
        return node

    def visit_ScopedExprNode(self, node):
        if node.has_local_scope:
            node.expr_scope.infer_types()
            node = node.analyse_scoped_expressions(node.expr_scope)
        self.visitchildren(node)
        return node

    def visit_IndexNode(self, node):
        """
        Replace index nodes used to specialize cdef functions with fused
        argument types with the Attribute- or NameNode referring to the
        function. We then need to copy over the specialization properties to
        the attribute or name node.

        Because the indexing might be a Python indexing operation on a fused
        function, or (usually) a Cython indexing operation, we need to
        re-analyse the types.
        """
        self.visit_Node(node)
        if node.is_fused_index and not node.type.is_error:
            node = node.base
        return node


class FindInvalidUseOfFusedTypes(CythonTransform):

    def visit_FuncDefNode(self, node):
        # Errors related to use in functions with fused args will already
        # have been detected
        if not node.has_fused_arguments:
            if not node.is_generator_body and node.return_type.is_fused:
                error(node.pos, "Return type is not specified as argument type")
            else:
                self.visitchildren(node)

        return node

    def visit_ExprNode(self, node):
        if node.type and node.type.is_fused:
            error(node.pos, "Invalid use of fused types, type cannot be specialized")
        else:
            self.visitchildren(node)

        return node


class ExpandInplaceOperators(EnvTransform):

    def visit_InPlaceAssignmentNode(self, node):
        lhs = node.lhs
        rhs = node.rhs
        if lhs.type.is_cpp_class:
            # No getting around this exact operator here.
            return node
        if isinstance(lhs, ExprNodes.BufferIndexNode):
            # There is code to handle this case in InPlaceAssignmentNode
            return node

        env = self.current_env()
        def side_effect_free_reference(node, setting=False):
            if node.is_name:
                return node, []
            elif node.type.is_pyobject and not setting:
                node = LetRefNode(node)
                return node, [node]
            elif node.is_subscript:
                base, temps = side_effect_free_reference(node.base)
                index = LetRefNode(node.index)
                return ExprNodes.IndexNode(node.pos, base=base, index=index), temps + [index]
            elif node.is_attribute:
                obj, temps = side_effect_free_reference(node.obj)
                return ExprNodes.AttributeNode(node.pos, obj=obj, attribute=node.attribute), temps
            elif isinstance(node, ExprNodes.BufferIndexNode):
                raise ValueError("Don't allow things like attributes of buffer indexing operations")
            else:
                node = LetRefNode(node)
                return node, [node]
        try:
            lhs, let_ref_nodes = side_effect_free_reference(lhs, setting=True)
        except ValueError:
            return node
        dup = lhs.__class__(**lhs.__dict__)
        binop = ExprNodes.binop_node(node.pos,
                                     operator = node.operator,
                                     operand1 = dup,
                                     operand2 = rhs,
                                     inplace=True)
        # Manually analyse types for new node.
        lhs = lhs.analyse_target_types(env)
        dup.analyse_types(env)  # FIXME: no need to reanalyse the copy, right?
        binop.analyse_operation(env)
        node = Nodes.SingleAssignmentNode(
            node.pos,
            lhs = lhs,
            rhs=binop.coerce_to(lhs.type, env))
        # Use LetRefNode to avoid side effects.
        let_ref_nodes.reverse()
        for t in let_ref_nodes:
            node = LetNode(t, node)
        return node

    def visit_ExprNode(self, node):
        # In-place assignments can't happen within an expression.
        return node


class AdjustDefByDirectives(CythonTransform, SkipDeclarations):
    """
    Adjust function and class definitions by the decorator directives:

    @cython.cfunc
    @cython.cclass
    @cython.ccall
    @cython.inline
    @cython.nogil
    """

    def visit_ModuleNode(self, node):
        self.directives = node.directives
        self.in_py_class = False
        self.visitchildren(node)
        return node

    def visit_CompilerDirectivesNode(self, node):
        old_directives = self.directives
        self.directives = node.directives
        self.visitchildren(node)
        self.directives = old_directives
        return node

    def visit_DefNode(self, node):
        modifiers = []
        if 'inline' in self.directives:
            modifiers.append('inline')
        nogil = self.directives.get('nogil')
        except_val = self.directives.get('exceptval')
        return_type_node = self.directives.get('returns')
        if return_type_node is None and self.directives['annotation_typing']:
            return_type_node = node.return_type_annotation
            # for Python annotations, prefer safe exception handling by default
            if return_type_node is not None and except_val is None:
                except_val = (None, True)  # except *
        elif except_val is None:
            # backward compatible default: no exception check, unless there's also a "@returns" declaration
            except_val = (None, True if return_type_node else False)
        if 'ccall' in self.directives:
            node = node.as_cfunction(
                overridable=True, modifiers=modifiers, nogil=nogil,
                returns=return_type_node, except_val=except_val)
            return self.visit(node)
        if 'cfunc' in self.directives:
            if self.in_py_class:
                error(node.pos, "cfunc directive is not allowed here")
            else:
                node = node.as_cfunction(
                    overridable=False, modifiers=modifiers, nogil=nogil,
                    returns=return_type_node, except_val=except_val)
                return self.visit(node)
        if 'inline' in modifiers:
            error(node.pos, "Python functions cannot be declared 'inline'")
        if nogil:
            # TODO: turn this into a "with gil" declaration.
            error(node.pos, "Python functions cannot be declared 'nogil'")
        self.visitchildren(node)
        return node

    def visit_LambdaNode(self, node):
        # No directives should modify lambdas or generator expressions (and also nothing in them).
        return node

    def visit_PyClassDefNode(self, node):
        if 'cclass' in self.directives:
            node = node.as_cclass()
            return self.visit(node)
        else:
            old_in_pyclass = self.in_py_class
            self.in_py_class = True
            self.visitchildren(node)
            self.in_py_class = old_in_pyclass
            return node

    def visit_CClassDefNode(self, node):
        old_in_pyclass = self.in_py_class
        self.in_py_class = False
        self.visitchildren(node)
        self.in_py_class = old_in_pyclass
        return node


class AlignFunctionDefinitions(CythonTransform):
    """
    This class takes the signatures from a .pxd file and applies them to
    the def methods in a .py file.
    """

    def visit_ModuleNode(self, node):
        self.scope = node.scope
        self.visitchildren(node)
        return node

    def visit_PyClassDefNode(self, node):
        pxd_def = self.scope.lookup(node.name)
        if pxd_def:
            if pxd_def.is_cclass:
                return self.visit_CClassDefNode(node.as_cclass(), pxd_def)
            elif not pxd_def.scope or not pxd_def.scope.is_builtin_scope:
                error(node.pos, "'%s' redeclared" % node.name)
                if pxd_def.pos:
                    error(pxd_def.pos, "previous declaration here")
                return None
        return node

    def visit_CClassDefNode(self, node, pxd_def=None):
        if pxd_def is None:
            pxd_def = self.scope.lookup(node.class_name)
        if pxd_def:
            if not pxd_def.defined_in_pxd:
                return node
            outer_scope = self.scope
            self.scope = pxd_def.type.scope
        self.visitchildren(node)
        if pxd_def:
            self.scope = outer_scope
        return node

    def visit_DefNode(self, node):
        pxd_def = self.scope.lookup(node.name)
        if pxd_def and (not pxd_def.scope or not pxd_def.scope.is_builtin_scope):
            if not pxd_def.is_cfunction:
                error(node.pos, "'%s' redeclared" % node.name)
                if pxd_def.pos:
                    error(pxd_def.pos, "previous declaration here")
                return None
            node = node.as_cfunction(pxd_def)
        # Enable this when nested cdef functions are allowed.
        # self.visitchildren(node)
        return node

    def visit_ExprNode(self, node):
        # ignore lambdas and everything else that appears in expressions
        return node


class AutoCpdefFunctionDefinitions(CythonTransform):

    def visit_ModuleNode(self, node):
        self.directives = node.directives
        self.imported_names = set()  # hack, see visit_FromImportStatNode()
        self.scope = node.scope
        self.visitchildren(node)
        return node

    def visit_DefNode(self, node):
        if (self.scope.is_module_scope and self.directives['auto_cpdef']
                and node.name not in self.imported_names
                and node.is_cdef_func_compatible()):
            # FIXME: cpdef-ing should be done in analyse_declarations()
            node = node.as_cfunction(scope=self.scope)
        return node

    def visit_CClassDefNode(self, node, pxd_def=None):
        if pxd_def is None:
            pxd_def = self.scope.lookup(node.class_name)
        if pxd_def:
            if not pxd_def.defined_in_pxd:
                return node
            outer_scope = self.scope
            self.scope = pxd_def.type.scope
        self.visitchildren(node)
        if pxd_def:
            self.scope = outer_scope
        return node

    def visit_FromImportStatNode(self, node):
        # hack to prevent conditional import fallback functions from
        # being cdpef-ed (global Python variables currently conflict
        # with imports)
        if self.scope.is_module_scope:
            for name, _ in node.items:
                self.imported_names.add(name)
        return node

    def visit_ExprNode(self, node):
        # ignore lambdas and everything else that appears in expressions
        return node


class RemoveUnreachableCode(CythonTransform):
    def visit_StatListNode(self, node):
        if not self.current_directives['remove_unreachable']:
            return node
        self.visitchildren(node)
        for idx, stat in enumerate(node.stats):
            idx += 1
            if stat.is_terminator:
                if idx < len(node.stats):
                    if self.current_directives['warn.unreachable']:
                        warning(node.stats[idx].pos, "Unreachable code", 2)
                    node.stats = node.stats[:idx]
                node.is_terminator = True
                break
        return node

    def visit_IfClauseNode(self, node):
        self.visitchildren(node)
        if node.body.is_terminator:
            node.is_terminator = True
        return node

    def visit_IfStatNode(self, node):
        self.visitchildren(node)
        if node.else_clause and node.else_clause.is_terminator:
            for clause in node.if_clauses:
                if not clause.is_terminator:
                    break
            else:
                node.is_terminator = True
        return node

    def visit_TryExceptStatNode(self, node):
        self.visitchildren(node)
        if node.body.is_terminator and node.else_clause:
            if self.current_directives['warn.unreachable']:
                warning(node.else_clause.pos, "Unreachable code", 2)
            node.else_clause = None
        return node

    def visit_TryFinallyStatNode(self, node):
        self.visitchildren(node)
        if node.finally_clause.is_terminator:
            node.is_terminator = True
        return node


class YieldNodeCollector(TreeVisitor):

    def __init__(self):
        super(YieldNodeCollector, self).__init__()
        self.yields = []
        self.returns = []
        self.finallys = []
        self.excepts = []
        self.has_return_value = False
        self.has_yield = False
        self.has_await = False

    def visit_Node(self, node):
        self.visitchildren(node)

    def visit_YieldExprNode(self, node):
        self.yields.append(node)
        self.has_yield = True
        self.visitchildren(node)

    def visit_AwaitExprNode(self, node):
        self.yields.append(node)
        self.has_await = True
        self.visitchildren(node)

    def visit_ReturnStatNode(self, node):
        self.visitchildren(node)
        if node.value:
            self.has_return_value = True
        self.returns.append(node)

    def visit_TryFinallyStatNode(self, node):
        self.visitchildren(node)
        self.finallys.append(node)

    def visit_TryExceptStatNode(self, node):
        self.visitchildren(node)
        self.excepts.append(node)

    def visit_ClassDefNode(self, node):
        pass

    def visit_FuncDefNode(self, node):
        pass

    def visit_LambdaNode(self, node):
        pass

    def visit_GeneratorExpressionNode(self, node):
        pass

    def visit_CArgDeclNode(self, node):
        # do not look into annotations
        # FIXME: support (yield) in default arguments (currently crashes)
        pass


class MarkClosureVisitor(CythonTransform):

    def visit_ModuleNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        return node

    def visit_FuncDefNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        node.needs_closure = self.needs_closure
        self.needs_closure = True

        collector = YieldNodeCollector()
        collector.visitchildren(node)

        if node.is_async_def:
            coroutine_type = Nodes.AsyncDefNode
            if collector.has_yield:
                coroutine_type = Nodes.AsyncGenNode
                for yield_expr in collector.yields + collector.returns:
                    yield_expr.in_async_gen = True
            elif self.current_directives['iterable_coroutine']:
                coroutine_type = Nodes.IterableAsyncDefNode
        elif collector.has_await:
            found = next(y for y in collector.yields if y.is_await)
            error(found.pos, "'await' not allowed in generators (use 'yield')")
            return node
        elif collector.has_yield:
            coroutine_type = Nodes.GeneratorDefNode
        else:
            return node

        for i, yield_expr in enumerate(collector.yields, 1):
            yield_expr.label_num = i
        for retnode in collector.returns + collector.finallys + collector.excepts:
            retnode.in_generator = True

        gbody = Nodes.GeneratorBodyDefNode(
            pos=node.pos, name=node.name, body=node.body,
            is_async_gen_body=node.is_async_def and collector.has_yield)
        coroutine = coroutine_type(
            pos=node.pos, name=node.name, args=node.args,
            star_arg=node.star_arg, starstar_arg=node.starstar_arg,
            doc=node.doc, decorators=node.decorators,
            gbody=gbody, lambda_name=node.lambda_name,
            return_type_annotation=node.return_type_annotation)
        return coroutine

    def visit_CFuncDefNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        node.needs_closure = self.needs_closure
        self.needs_closure = True
        if node.needs_closure and node.overridable:
            error(node.pos, "closures inside cpdef functions not yet supported")
        return node

    def visit_LambdaNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        node.needs_closure = self.needs_closure
        self.needs_closure = True
        return node

    def visit_ClassDefNode(self, node):
        self.visitchildren(node)
        self.needs_closure = True
        return node


class CreateClosureClasses(CythonTransform):
    # Output closure classes in module scope for all functions
    # that really need it.

    def __init__(self, context):
        super(CreateClosureClasses, self).__init__(context)
        self.path = []
        self.in_lambda = False

    def visit_ModuleNode(self, node):
        self.module_scope = node.scope
        self.visitchildren(node)
        return node

    def find_entries_used_in_closures(self, node):
        from_closure = []
        in_closure = []
        for scope in node.local_scope.iter_local_scopes():
            for name, entry in scope.entries.items():
                if not name:
                    continue
                if entry.from_closure:
                    from_closure.append((name, entry))
                elif entry.in_closure:
                    in_closure.append((name, entry))
        return from_closure, in_closure

    def create_class_from_scope(self, node, target_module_scope, inner_node=None):
        # move local variables into closure
        if node.is_generator:
            for scope in node.local_scope.iter_local_scopes():
                for entry in scope.entries.values():
                    if not (entry.from_closure or entry.is_pyglobal or entry.is_cglobal):
                        entry.in_closure = True

        from_closure, in_closure = self.find_entries_used_in_closures(node)
        in_closure.sort()

        # Now from the beginning
        node.needs_closure = False
        node.needs_outer_scope = False

        func_scope = node.local_scope
        cscope = node.entry.scope
        while cscope.is_py_class_scope or cscope.is_c_class_scope:
            cscope = cscope.outer_scope

        if not from_closure and (self.path or inner_node):
            if not inner_node:
                if not node.py_cfunc_node:
                    raise InternalError("DefNode does not have assignment node")
                inner_node = node.py_cfunc_node
            inner_node.needs_closure_code = False
            node.needs_outer_scope = False

        if node.is_generator:
            pass
        elif not in_closure and not from_closure:
            return
        elif not in_closure:
            func_scope.is_passthrough = True
            func_scope.scope_class = cscope.scope_class
            node.needs_outer_scope = True
            return

        # entry.cname can contain periods (eg. a derived C method of a class).
        # We want to use the cname as part of a C struct name, so we replace
        # periods with double underscores.
        as_name = '%s_%s' % (
            target_module_scope.next_id(Naming.closure_class_prefix),
            node.entry.cname.replace('.','__'))
        as_name = EncodedString(as_name)

        entry = target_module_scope.declare_c_class(
            name=as_name, pos=node.pos, defining=True,
            implementing=True)
        entry.type.is_final_type = True

        func_scope.scope_class = entry
        class_scope = entry.type.scope
        class_scope.is_internal = True
        class_scope.is_closure_class_scope = True
        if node.is_async_def or node.is_generator:
            # Generators need their closure intact during cleanup as they resume to handle GeneratorExit
            class_scope.directives['no_gc_clear'] = True
        if Options.closure_freelist_size:
            class_scope.directives['freelist'] = Options.closure_freelist_size

        if from_closure:
            assert cscope.is_closure_scope
            class_scope.declare_var(pos=node.pos,
                                    name=Naming.outer_scope_cname,
                                    cname=Naming.outer_scope_cname,
                                    type=cscope.scope_class.type,
                                    is_cdef=True)
            node.needs_outer_scope = True
        for name, entry in in_closure:
            closure_entry = class_scope.declare_var(
                pos=entry.pos,
                name=entry.name if not entry.in_subscope else None,
                cname=entry.cname,
                type=entry.type,
                is_cdef=True)
            if entry.is_declared_generic:
                closure_entry.is_declared_generic = 1
        node.needs_closure = True
        # Do it here because other classes are already checked
        target_module_scope.check_c_class(func_scope.scope_class)

    def visit_LambdaNode(self, node):
        if not isinstance(node.def_node, Nodes.DefNode):
            # fused function, an error has been previously issued
            return node

        was_in_lambda = self.in_lambda
        self.in_lambda = True
        self.create_class_from_scope(node.def_node, self.module_scope, node)
        self.visitchildren(node)
        self.in_lambda = was_in_lambda
        return node

    def visit_FuncDefNode(self, node):
        if self.in_lambda:
            self.visitchildren(node)
            return node
        if node.needs_closure or self.path:
            self.create_class_from_scope(node, self.module_scope)
            self.path.append(node)
            self.visitchildren(node)
            self.path.pop()
        return node

    def visit_GeneratorBodyDefNode(self, node):
        self.visitchildren(node)
        return node

    def visit_CFuncDefNode(self, node):
        if not node.overridable:
            return self.visit_FuncDefNode(node)
        else:
            self.visitchildren(node)
            return node


class InjectGilHandling(VisitorTransform, SkipDeclarations):
    """
    Allow certain Python operations inside of nogil blocks by implicitly acquiring the GIL.

    Must run before the AnalyseDeclarationsTransform to make sure the GILStatNodes get
    set up, parallel sections know that the GIL is acquired inside of them, etc.
    """
    nogil = False

    # special node handling

    def _inject_gil_in_nogil(self, node):
        """Allow the (Python statement) node in nogil sections by wrapping it in a 'with gil' block."""
        if self.nogil:
            node = Nodes.GILStatNode(node.pos, state='gil', body=node)
        return node

    visit_RaiseStatNode = _inject_gil_in_nogil
    visit_PrintStatNode = _inject_gil_in_nogil  # sadly, not the function

    # further candidates:
    # def visit_ReraiseStatNode(self, node):

    # nogil tracking

    def visit_GILStatNode(self, node):
        was_nogil = self.nogil
        self.nogil = (node.state == 'nogil')
        self.visitchildren(node)
        self.nogil = was_nogil
        return node

    def visit_CFuncDefNode(self, node):
        was_nogil = self.nogil
        if isinstance(node.declarator, Nodes.CFuncDeclaratorNode):
            self.nogil = node.declarator.nogil and not node.declarator.with_gil
        self.visitchildren(node)
        self.nogil = was_nogil
        return node

    def visit_ParallelRangeNode(self, node):
        was_nogil = self.nogil
        self.nogil = node.nogil
        self.visitchildren(node)
        self.nogil = was_nogil
        return node

    def visit_ExprNode(self, node):
        # No special GIL handling inside of expressions for now.
        return node

    visit_Node = VisitorTransform.recurse_to_children


class GilCheck(VisitorTransform):
    """
    Call `node.gil_check(env)` on each node to make sure we hold the
    GIL when we need it.  Raise an error when on Python operations
    inside a `nogil` environment.

    Additionally, raise exceptions for closely nested with gil or with nogil
    statements. The latter would abort Python.
    """

    def __call__(self, root):
        self.env_stack = [root.scope]
        self.nogil = False

        # True for 'cdef func() nogil:' functions, as the GIL may be held while
        # calling this function (thus contained 'nogil' blocks may be valid).
        self.nogil_declarator_only = False
        return super(GilCheck, self).__call__(root)

    def _visit_scoped_children(self, node, gil_state):
        was_nogil = self.nogil
        outer_attrs = node.outer_attrs
        if outer_attrs and len(self.env_stack) > 1:
            self.nogil = self.env_stack[-2].nogil
            self.visitchildren(node, outer_attrs)

        self.nogil = gil_state
        self.visitchildren(node, attrs=None, exclude=outer_attrs)
        self.nogil = was_nogil

    def visit_FuncDefNode(self, node):
        self.env_stack.append(node.local_scope)
        inner_nogil = node.local_scope.nogil

        if inner_nogil:
            self.nogil_declarator_only = True

        if inner_nogil and node.nogil_check:
            node.nogil_check(node.local_scope)

        self._visit_scoped_children(node, inner_nogil)

        # This cannot be nested, so it doesn't need backup/restore
        self.nogil_declarator_only = False

        self.env_stack.pop()
        return node

    def visit_GILStatNode(self, node):
        if node.condition is not None:
            error(node.condition.pos,
                  "Non-constant condition in a "
                  "`with %s(<condition>)` statement" % node.state)
            return node

        if self.nogil and node.nogil_check:
            node.nogil_check()

        was_nogil = self.nogil
        is_nogil = (node.state == 'nogil')

        if was_nogil == is_nogil and not self.nogil_declarator_only:
            if not was_nogil:
                error(node.pos, "Trying to acquire the GIL while it is "
                                "already held.")
            else:
                error(node.pos, "Trying to release the GIL while it was "
                                "previously released.")

        if isinstance(node.finally_clause, Nodes.StatListNode):
            # The finally clause of the GILStatNode is a GILExitNode,
            # which is wrapped in a StatListNode. Just unpack that.
            node.finally_clause, = node.finally_clause.stats

        self._visit_scoped_children(node, is_nogil)
        return node

    def visit_ParallelRangeNode(self, node):
        if node.nogil:
            node.nogil = False
            node = Nodes.GILStatNode(node.pos, state='nogil', body=node)
            return self.visit_GILStatNode(node)

        if not self.nogil:
            error(node.pos, "prange() can only be used without the GIL")
            # Forget about any GIL-related errors that may occur in the body
            return None

        node.nogil_check(self.env_stack[-1])
        self.visitchildren(node)
        return node

    def visit_ParallelWithBlockNode(self, node):
        if not self.nogil:
            error(node.pos, "The parallel section may only be used without "
                            "the GIL")
            return None

        if node.nogil_check:
            # It does not currently implement this, but test for it anyway to
            # avoid potential future surprises
            node.nogil_check(self.env_stack[-1])

        self.visitchildren(node)
        return node

    def visit_TryFinallyStatNode(self, node):
        """
        Take care of try/finally statements in nogil code sections.
        """
        if not self.nogil or isinstance(node, Nodes.GILStatNode):
            return self.visit_Node(node)

        node.nogil_check = None
        node.is_try_finally_in_nogil = True
        self.visitchildren(node)
        return node

    def visit_Node(self, node):
        if self.env_stack and self.nogil and node.nogil_check:
            node.nogil_check(self.env_stack[-1])
        if node.outer_attrs:
            self._visit_scoped_children(node, self.nogil)
        else:
            self.visitchildren(node)
        if self.nogil:
            node.in_nogil_context = True
        return node


class CoerceCppTemps(EnvTransform, SkipDeclarations):
    """
    For temporary expression that are implemented using std::optional it's necessary the temps are
    assigned using `__pyx_t_x = value;` but accessed using `something = (*__pyx_t_x)`. This transform
    inserts a coercion node to take care of this, and runs absolutely last (once nothing else can be
    inserted into the tree)

    TODO: a possible alternative would be to split ExprNode.result() into ExprNode.rhs_rhs() and ExprNode.lhs_rhs()???
    """
    def visit_ModuleNode(self, node):
        if self.current_env().cpp:
            # skipping this makes it essentially free for C files
            self.visitchildren(node)
        return node

    def visit_ExprNode(self, node):
        self.visitchildren(node)
        if (self.current_env().directives['cpp_locals'] and
                node.is_temp and node.type.is_cpp_class and
                # Fake references are not replaced with "std::optional()".
                not node.type.is_fake_reference):
            node = ExprNodes.CppOptionalTempCoercion(node)

        return node


class TransformBuiltinMethods(EnvTransform):
    """
    Replace Cython's own cython.* builtins by the corresponding tree nodes.
    """

    def visit_SingleAssignmentNode(self, node):
        if node.declaration_only:
            return None
        else:
            self.visitchildren(node)
            return node

    def visit_AttributeNode(self, node):
        self.visitchildren(node)
        return self.visit_cython_attribute(node)

    def visit_NameNode(self, node):
        return self.visit_cython_attribute(node)

    def visit_cython_attribute(self, node):
        attribute = node.as_cython_attribute()
        if attribute:
            if attribute == u'__version__':
                from .. import __version__ as version
                node = ExprNodes.StringNode(node.pos, value=EncodedString(version))
            elif attribute == u'NULL':
                node = ExprNodes.NullNode(node.pos)
            elif attribute in (u'set', u'frozenset', u'staticmethod'):
                node = ExprNodes.NameNode(node.pos, name=EncodedString(attribute),
                                          entry=self.current_env().builtin_scope().lookup_here(attribute))
            elif PyrexTypes.parse_basic_type(attribute):
                pass
            elif self.context.cython_scope.lookup_qualified_name(attribute):
                pass
            else:
                error(node.pos, u"'%s' not a valid cython attribute or is being used incorrectly" % attribute)
        return node

    def visit_ExecStatNode(self, node):
        lenv = self.current_env()
        self.visitchildren(node)
        if len(node.args) == 1:
            node.args.append(ExprNodes.GlobalsExprNode(node.pos))
            if not lenv.is_module_scope:
                node.args.append(
                    ExprNodes.LocalsExprNode(
                        node.pos, self.current_scope_node(), lenv))
        return node

    def _inject_locals(self, node, func_name):
        # locals()/dir()/vars() builtins
        lenv = self.current_env()
        entry = lenv.lookup_here(func_name)
        if entry:
            # not the builtin
            return node
        pos = node.pos
        if func_name in ('locals', 'vars'):
            if func_name == 'locals' and len(node.args) > 0:
                error(self.pos, "Builtin 'locals()' called with wrong number of args, expected 0, got %d"
                      % len(node.args))
                return node
            elif func_name == 'vars':
                if len(node.args) > 1:
                    error(self.pos, "Builtin 'vars()' called with wrong number of args, expected 0-1, got %d"
                          % len(node.args))
                if len(node.args) > 0:
                    return node  # nothing to do
            return ExprNodes.LocalsExprNode(pos, self.current_scope_node(), lenv)
        else:  # dir()
            if len(node.args) > 1:
                error(self.pos, "Builtin 'dir()' called with wrong number of args, expected 0-1, got %d"
                      % len(node.args))
            if len(node.args) > 0:
                # optimised in Builtin.py
                return node
            if lenv.is_py_class_scope or lenv.is_module_scope:
                if lenv.is_py_class_scope:
                    pyclass = self.current_scope_node()
                    locals_dict = ExprNodes.CloneNode(pyclass.dict)
                else:
                    locals_dict = ExprNodes.GlobalsExprNode(pos)
                return ExprNodes.SortedDictKeysNode(locals_dict)
            local_names = sorted(var.name for var in lenv.entries.values() if var.name)
            items = [ExprNodes.IdentifierStringNode(pos, value=var)
                     for var in local_names]
            return ExprNodes.ListNode(pos, args=items)

    def visit_PrimaryCmpNode(self, node):
        # special case: for in/not-in test, we do not need to sort locals()
        self.visitchildren(node)
        if node.operator in 'not_in':  # in/not_in
            if isinstance(node.operand2, ExprNodes.SortedDictKeysNode):
                arg = node.operand2.arg
                if isinstance(arg, ExprNodes.NoneCheckNode):
                    arg = arg.arg
                node.operand2 = arg
        return node

    def visit_CascadedCmpNode(self, node):
        return self.visit_PrimaryCmpNode(node)

    def _inject_eval(self, node, func_name):
        lenv = self.current_env()
        entry = lenv.lookup(func_name)
        if len(node.args) != 1 or (entry and not entry.is_builtin):
            return node
        # Inject globals and locals
        node.args.append(ExprNodes.GlobalsExprNode(node.pos))
        if not lenv.is_module_scope:
            node.args.append(
                ExprNodes.LocalsExprNode(
                    node.pos, self.current_scope_node(), lenv))
        return node

    def _inject_super(self, node, func_name):
        lenv = self.current_env()
        entry = lenv.lookup_here(func_name)
        if entry or node.args:
            return node
        # Inject no-args super
        def_node = self.current_scope_node()
        if not isinstance(def_node, Nodes.DefNode) or not def_node.args or len(self.env_stack) < 2:
            return node
        class_node, class_scope = self.env_stack[-2]
        if class_scope.is_py_class_scope:
            def_node.requires_classobj = True
            class_node.class_cell.is_active = True
            node.args = [
                ExprNodes.ClassCellNode(
                    node.pos, is_generator=def_node.is_generator),
                ExprNodes.NameNode(node.pos, name=def_node.args[0].name)
                ]
        elif class_scope.is_c_class_scope:
            node.args = [
                ExprNodes.NameNode(
                    node.pos, name=class_node.scope.name,
                    entry=class_node.entry),
                ExprNodes.NameNode(node.pos, name=def_node.args[0].name)
                ]
        return node

    def visit_SimpleCallNode(self, node):
        # cython.foo
        function = node.function.as_cython_attribute()
        if function:
            if function in InterpretCompilerDirectives.unop_method_nodes:
                if len(node.args) != 1:
                    error(node.function.pos, u"%s() takes exactly one argument" % function)
                else:
                    node = InterpretCompilerDirectives.unop_method_nodes[function](
                        node.function.pos, operand=node.args[0])
            elif function in InterpretCompilerDirectives.binop_method_nodes:
                if len(node.args) != 2:
                    error(node.function.pos, u"%s() takes exactly two arguments" % function)
                else:
                    node = InterpretCompilerDirectives.binop_method_nodes[function](
                        node.function.pos, operand1=node.args[0], operand2=node.args[1])
            elif function == u'cast':
                if len(node.args) != 2:
                    error(node.function.pos,
                          u"cast() takes exactly two arguments and an optional typecheck keyword")
                else:
                    type = node.args[0].analyse_as_type(self.current_env())
                    if type:
                        node = ExprNodes.TypecastNode(
                            node.function.pos, type=type, operand=node.args[1], typecheck=False)
                    else:
                        error(node.args[0].pos, "Not a type")
            elif function == u'sizeof':
                if len(node.args) != 1:
                    error(node.function.pos, u"sizeof() takes exactly one argument")
                else:
                    type = node.args[0].analyse_as_type(self.current_env())
                    if type:
                        node = ExprNodes.SizeofTypeNode(node.function.pos, arg_type=type)
                    else:
                        node = ExprNodes.SizeofVarNode(node.function.pos, operand=node.args[0])
            elif function == 'cmod':
                if len(node.args) != 2:
                    error(node.function.pos, u"cmod() takes exactly two arguments")
                else:
                    node = ExprNodes.binop_node(node.function.pos, '%', node.args[0], node.args[1])
                    node.cdivision = True
            elif function == 'cdiv':
                if len(node.args) != 2:
                    error(node.function.pos, u"cdiv() takes exactly two arguments")
                else:
                    node = ExprNodes.binop_node(node.function.pos, '/', node.args[0], node.args[1])
                    node.cdivision = True
            elif function == u'set':
                node.function = ExprNodes.NameNode(node.pos, name=EncodedString('set'))
            elif function == u'staticmethod':
                node.function = ExprNodes.NameNode(node.pos, name=EncodedString('staticmethod'))
            elif self.context.cython_scope.lookup_qualified_name(function):
                pass
            else:
                error(node.function.pos,
                      u"'%s' not a valid cython language construct" % function)

        self.visitchildren(node)

        if isinstance(node, ExprNodes.SimpleCallNode) and node.function.is_name:
            func_name = node.function.name
            if func_name in ('dir', 'locals', 'vars'):
                return self._inject_locals(node, func_name)
            if func_name == 'eval':
                return self._inject_eval(node, func_name)
            if func_name == 'super':
                return self._inject_super(node, func_name)
        return node

    def visit_GeneralCallNode(self, node):
        function = node.function.as_cython_attribute()
        if function == u'cast':
            # NOTE: assuming simple tuple/dict nodes for positional_args and keyword_args
            args = node.positional_args.args
            kwargs = node.keyword_args.compile_time_value(None)
            if (len(args) != 2 or len(kwargs) > 1 or
                    (len(kwargs) == 1 and 'typecheck' not in kwargs)):
                error(node.function.pos,
                      u"cast() takes exactly two arguments and an optional typecheck keyword")
            else:
                type = args[0].analyse_as_type(self.current_env())
                if type:
                    typecheck = kwargs.get('typecheck', False)
                    node = ExprNodes.TypecastNode(
                        node.function.pos, type=type, operand=args[1], typecheck=typecheck)
                else:
                    error(args[0].pos, "Not a type")

        self.visitchildren(node)
        return node


class ReplaceFusedTypeChecks(VisitorTransform):
    """
    This is not a transform in the pipeline. It is invoked on the specific
    versions of a cdef function with fused argument types. It filters out any
    type branches that don't match. e.g.

        if fused_t is mytype:
            ...
        elif fused_t in other_fused_type:
            ...
    """
    def __init__(self, local_scope):
        super(ReplaceFusedTypeChecks, self).__init__()
        self.local_scope = local_scope
        # defer the import until now to avoid circular import time dependencies
        from .Optimize import ConstantFolding
        self.transform = ConstantFolding(reevaluate=True)

    def visit_IfStatNode(self, node):
        """
        Filters out any if clauses with false compile time type check
        expression.
        """
        self.visitchildren(node)
        return self.transform(node)

    def visit_GILStatNode(self, node):
        """
        Fold constant condition of GILStatNode.
        """
        self.visitchildren(node)
        return self.transform(node)

    def visit_PrimaryCmpNode(self, node):
        with Errors.local_errors(ignore=True):
            type1 = node.operand1.analyse_as_type(self.local_scope)
            type2 = node.operand2.analyse_as_type(self.local_scope)

        if type1 and type2:
            false_node = ExprNodes.BoolNode(node.pos, value=False)
            true_node = ExprNodes.BoolNode(node.pos, value=True)

            type1 = self.specialize_type(type1, node.operand1.pos)
            op = node.operator

            if op in ('is', 'is_not', '==', '!='):
                type2 = self.specialize_type(type2, node.operand2.pos)

                is_same = type1.same_as(type2)
                eq = op in ('is', '==')

                if (is_same and eq) or (not is_same and not eq):
                    return true_node

            elif op in ('in', 'not_in'):
                # We have to do an instance check directly, as operand2
                # needs to be a fused type and not a type with a subtype
                # that is fused. First unpack the typedef
                if isinstance(type2, PyrexTypes.CTypedefType):
                    type2 = type2.typedef_base_type

                if type1.is_fused:
                    error(node.operand1.pos, "Type is fused")
                elif not type2.is_fused:
                    error(node.operand2.pos,
                          "Can only use 'in' or 'not in' on a fused type")
                else:
                    types = PyrexTypes.get_specialized_types(type2)

                    for specialized_type in types:
                        if type1.same_as(specialized_type):
                            if op == 'in':
                                return true_node
                            else:
                                return false_node

                    if op == 'not_in':
                        return true_node

            return false_node

        return node

    def specialize_type(self, type, pos):
        try:
            return type.specialize(self.local_scope.fused_to_specific)
        except KeyError:
            error(pos, "Type is not specific")
            return type

    def visit_Node(self, node):
        self.visitchildren(node)
        return node


class DebugTransform(CythonTransform):
    """
    Write debug information for this Cython module.
    """

    def __init__(self, context, options, result):
        super(DebugTransform, self).__init__(context)
        self.visited = set()
        # our treebuilder and debug output writer
        # (see Cython.Debugger.debug_output.CythonDebugWriter)
        self.tb = self.context.gdb_debug_outputwriter
        #self.c_output_file = options.output_file
        self.c_output_file = result.c_file

        # Closure support, basically treat nested functions as if the AST were
        # never nested
        self.nested_funcdefs = []

        # tells visit_NameNode whether it should register step-into functions
        self.register_stepinto = False

    def visit_ModuleNode(self, node):
        self.tb.module_name = node.full_module_name
        attrs = dict(
            module_name=node.full_module_name,
            filename=node.pos[0].filename,
            c_filename=self.c_output_file)

        self.tb.start('Module', attrs)

        # serialize functions
        self.tb.start('Functions')
        # First, serialize functions normally...
        self.visitchildren(node)

        # ... then, serialize nested functions
        for nested_funcdef in self.nested_funcdefs:
            self.visit_FuncDefNode(nested_funcdef)

        self.register_stepinto = True
        self.serialize_modulenode_as_function(node)
        self.register_stepinto = False
        self.tb.end('Functions')

        # 2.3 compatibility. Serialize global variables
        self.tb.start('Globals')
        entries = {}

        for k, v in node.scope.entries.items():
            if (v.qualified_name not in self.visited and not
                    v.name.startswith('__pyx_') and not
                    v.type.is_cfunction and not
                    v.type.is_extension_type):
                entries[k]= v

        self.serialize_local_variables(entries)
        self.tb.end('Globals')
        # self.tb.end('Module') # end Module after the line number mapping in
        # Cython.Compiler.ModuleNode.ModuleNode._serialize_lineno_map
        return node

    def visit_FuncDefNode(self, node):
        self.visited.add(node.local_scope.qualified_name)

        if getattr(node, 'is_wrapper', False):
            return node

        if self.register_stepinto:
            self.nested_funcdefs.append(node)
            return node

        # node.entry.visibility = 'extern'
        if node.py_func is None:
            pf_cname = ''
        else:
            pf_cname = node.py_func.entry.func_cname

        # For functions defined using def, cname will be pyfunc_cname=__pyx_pf_*
        # For functions defined using cpdef or cdef, cname will be func_cname=__pyx_f_*
        # In all cases, cname will be the name of the function containing the actual code
        cname = node.entry.pyfunc_cname or node.entry.func_cname

        attrs = dict(
            name=node.entry.name or getattr(node, 'name', '<unknown>'),
            cname=cname,
            pf_cname=pf_cname,
            qualified_name=node.local_scope.qualified_name,
            lineno=str(node.pos[1]))

        self.tb.start('Function', attrs=attrs)

        self.tb.start('Locals')
        self.serialize_local_variables(node.local_scope.entries)
        self.tb.end('Locals')

        self.tb.start('Arguments')
        for arg in node.local_scope.arg_entries:
            self.tb.start(arg.name)
            self.tb.end(arg.name)
        self.tb.end('Arguments')

        self.tb.start('StepIntoFunctions')
        self.register_stepinto = True
        self.visitchildren(node)
        self.register_stepinto = False
        self.tb.end('StepIntoFunctions')
        self.tb.end('Function')

        return node

    def visit_NameNode(self, node):
        if (self.register_stepinto and
                node.type is not None and
                node.type.is_cfunction and
                getattr(node, 'is_called', False) and
                node.entry.func_cname is not None):
            # don't check node.entry.in_cinclude, as 'cdef extern: ...'
            # declared functions are not 'in_cinclude'.
            # This means we will list called 'cdef' functions as
            # "step into functions", but this is not an issue as they will be
            # recognized as Cython functions anyway.
            attrs = dict(name=node.entry.func_cname)
            self.tb.start('StepIntoFunction', attrs=attrs)
            self.tb.end('StepIntoFunction')

        self.visitchildren(node)
        return node

    def serialize_modulenode_as_function(self, node):
        """
        Serialize the module-level code as a function so the debugger will know
        it's a "relevant frame" and it will know where to set the breakpoint
        for 'break modulename'.
        """
        self._serialize_modulenode_as_function(node, dict(
            name=node.full_module_name.rpartition('.')[-1],
            cname=node.module_init_func_cname(),
            pf_cname='',
            # Ignore the qualified_name, breakpoints should be set using
            # `cy break modulename:lineno` for module-level breakpoints.
            qualified_name='',
            lineno='1',
            is_initmodule_function="True",
        ))

    def _serialize_modulenode_as_function(self, node, attrs):
        self.tb.start('Function', attrs=attrs)

        self.tb.start('Locals')
        self.serialize_local_variables(node.scope.entries)
        self.tb.end('Locals')

        self.tb.start('Arguments')
        self.tb.end('Arguments')

        self.tb.start('StepIntoFunctions')
        self.register_stepinto = True
        self.visitchildren(node)
        self.register_stepinto = False
        self.tb.end('StepIntoFunctions')

        self.tb.end('Function')

    def serialize_local_variables(self, entries):
        for entry in entries.values():
            if not entry.cname:
                # not a local variable
                continue
            if entry.type.is_pyobject:
                vartype = 'PythonObject'
            else:
                vartype = 'CObject'

            if entry.from_closure:
                # We're dealing with a closure where a variable from an outer
                # scope is accessed, get it from the scope object.
                cname = '%s->%s' % (Naming.cur_scope_cname,
                                    entry.outer_entry.cname)

                qname = '%s.%s.%s' % (entry.scope.outer_scope.qualified_name,
                                      entry.scope.name,
                                      entry.name)
            elif entry.in_closure:
                cname = '%s->%s' % (Naming.cur_scope_cname,
                                    entry.cname)
                qname = entry.qualified_name
            else:
                cname = entry.cname
                qname = entry.qualified_name

            if not entry.pos:
                # this happens for variables that are not in the user's code,
                # e.g. for the global __builtins__, __doc__, etc. We can just
                # set the lineno to 0 for those.
                lineno = '0'
            else:
                lineno = str(entry.pos[1])

            attrs = dict(
                name=entry.name,
                cname=cname,
                qualified_name=qname,
                type=vartype,
                lineno=lineno)

            self.tb.start('LocalVar', attrs)
            self.tb.end('LocalVar')