summaryrefslogtreecommitdiff
path: root/Cython/Compiler/TypeInference.py
blob: 4ae3ab155621d7e77891dc4f07894d54d59c604f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
from __future__ import absolute_import

from .Errors import error, message
from . import ExprNodes
from . import Nodes
from . import Builtin
from . import PyrexTypes
from .. import Utils
from .PyrexTypes import py_object_type, unspecified_type
from .Visitor import CythonTransform, EnvTransform

try:
    reduce
except NameError:
    from functools import reduce


class TypedExprNode(ExprNodes.ExprNode):
    # Used for declaring assignments of a specified type without a known entry.
    subexprs = []

    def __init__(self, type, pos=None):
        super(TypedExprNode, self).__init__(pos, type=type)

object_expr = TypedExprNode(py_object_type)


class MarkParallelAssignments(EnvTransform):
    # Collects assignments inside parallel blocks prange, with parallel.
    # Perhaps it's better to move it to ControlFlowAnalysis.

    # tells us whether we're in a normal loop
    in_loop = False

    parallel_errors = False

    def __init__(self, context):
        # Track the parallel block scopes (with parallel, for i in prange())
        self.parallel_block_stack = []
        super(MarkParallelAssignments, self).__init__(context)

    def mark_assignment(self, lhs, rhs, inplace_op=None):
        if isinstance(lhs, (ExprNodes.NameNode, Nodes.PyArgDeclNode)):
            if lhs.entry is None:
                # TODO: This shouldn't happen...
                return

            if self.parallel_block_stack:
                parallel_node = self.parallel_block_stack[-1]
                previous_assignment = parallel_node.assignments.get(lhs.entry)

                # If there was a previous assignment to the variable, keep the
                # previous assignment position
                if previous_assignment:
                    pos, previous_inplace_op = previous_assignment

                    if (inplace_op and previous_inplace_op and
                            inplace_op != previous_inplace_op):
                        # x += y; x *= y
                        t = (inplace_op, previous_inplace_op)
                        error(lhs.pos,
                              "Reduction operator '%s' is inconsistent "
                              "with previous reduction operator '%s'" % t)
                else:
                    pos = lhs.pos

                parallel_node.assignments[lhs.entry] = (pos, inplace_op)
                parallel_node.assigned_nodes.append(lhs)

        elif isinstance(lhs, ExprNodes.SequenceNode):
            for i, arg in enumerate(lhs.args):
                if not rhs or arg.is_starred:
                    item_node = None
                else:
                    item_node = rhs.inferable_item_node(i)
                self.mark_assignment(arg, item_node)
        else:
            # Could use this info to infer cdef class attributes...
            pass

    def visit_WithTargetAssignmentStatNode(self, node):
        self.mark_assignment(node.lhs, node.with_node.enter_call)
        self.visitchildren(node)
        return node

    def visit_SingleAssignmentNode(self, node):
        self.mark_assignment(node.lhs, node.rhs)
        self.visitchildren(node)
        return node

    def visit_CascadedAssignmentNode(self, node):
        for lhs in node.lhs_list:
            self.mark_assignment(lhs, node.rhs)
        self.visitchildren(node)
        return node

    def visit_InPlaceAssignmentNode(self, node):
        self.mark_assignment(node.lhs, node.create_binop_node(), node.operator)
        self.visitchildren(node)
        return node

    def visit_ForInStatNode(self, node):
        # TODO: Remove redundancy with range optimization...
        is_special = False
        sequence = node.iterator.sequence
        target = node.target
        if isinstance(sequence, ExprNodes.SimpleCallNode):
            function = sequence.function
            if sequence.self is None and function.is_name:
                entry = self.current_env().lookup(function.name)
                if not entry or entry.is_builtin:
                    if function.name == 'reversed' and len(sequence.args) == 1:
                        sequence = sequence.args[0]
                    elif function.name == 'enumerate' and len(sequence.args) == 1:
                        if target.is_sequence_constructor and len(target.args) == 2:
                            iterator = sequence.args[0]
                            if iterator.is_name:
                                iterator_type = iterator.infer_type(self.current_env())
                                if iterator_type.is_builtin_type:
                                    # assume that builtin types have a length within Py_ssize_t
                                    self.mark_assignment(
                                        target.args[0],
                                        ExprNodes.IntNode(target.pos, value='PY_SSIZE_T_MAX',
                                                          type=PyrexTypes.c_py_ssize_t_type))
                                    target = target.args[1]
                                    sequence = sequence.args[0]
        if isinstance(sequence, ExprNodes.SimpleCallNode):
            function = sequence.function
            if sequence.self is None and function.is_name:
                entry = self.current_env().lookup(function.name)
                if not entry or entry.is_builtin:
                    if function.name in ('range', 'xrange'):
                        is_special = True
                        for arg in sequence.args[:2]:
                            self.mark_assignment(target, arg)
                        if len(sequence.args) > 2:
                            self.mark_assignment(
                                target,
                                ExprNodes.binop_node(node.pos,
                                                     '+',
                                                     sequence.args[0],
                                                     sequence.args[2]))
        if not is_special:
            # A for-loop basically translates to subsequent calls to
            # __getitem__(), so using an IndexNode here allows us to
            # naturally infer the base type of pointers, C arrays,
            # Python strings, etc., while correctly falling back to an
            # object type when the base type cannot be handled.
            self.mark_assignment(target, ExprNodes.IndexNode(
                node.pos,
                base=sequence,
                index=ExprNodes.IntNode(target.pos, value='PY_SSIZE_T_MAX',
                                        type=PyrexTypes.c_py_ssize_t_type)))

        self.visitchildren(node)
        return node

    def visit_ForFromStatNode(self, node):
        self.mark_assignment(node.target, node.bound1)
        if node.step is not None:
            self.mark_assignment(node.target,
                    ExprNodes.binop_node(node.pos,
                                         '+',
                                         node.bound1,
                                         node.step))
        self.visitchildren(node)
        return node

    def visit_WhileStatNode(self, node):
        self.visitchildren(node)
        return node

    def visit_ExceptClauseNode(self, node):
        if node.target is not None:
            self.mark_assignment(node.target, object_expr)
        self.visitchildren(node)
        return node

    def visit_FromCImportStatNode(self, node):
        return node  # Can't be assigned to...

    def visit_FromImportStatNode(self, node):
        for name, target in node.items:
            if name != "*":
                self.mark_assignment(target, object_expr)
        self.visitchildren(node)
        return node

    def visit_DefNode(self, node):
        # use fake expressions with the right result type
        if node.star_arg:
            self.mark_assignment(
                node.star_arg, TypedExprNode(Builtin.tuple_type, node.pos))
        if node.starstar_arg:
            self.mark_assignment(
                node.starstar_arg, TypedExprNode(Builtin.dict_type, node.pos))
        EnvTransform.visit_FuncDefNode(self, node)
        return node

    def visit_DelStatNode(self, node):
        for arg in node.args:
            self.mark_assignment(arg, arg)
        self.visitchildren(node)
        return node

    def visit_ParallelStatNode(self, node):
        if self.parallel_block_stack:
            node.parent = self.parallel_block_stack[-1]
        else:
            node.parent = None

        nested = False
        if node.is_prange:
            if not node.parent:
                node.is_parallel = True
            else:
                node.is_parallel = (node.parent.is_prange or not
                                    node.parent.is_parallel)
                nested = node.parent.is_prange
        else:
            node.is_parallel = True
            # Note: nested with parallel() blocks are handled by
            # ParallelRangeTransform!
            # nested = node.parent
            nested = node.parent and node.parent.is_prange

        self.parallel_block_stack.append(node)

        nested = nested or len(self.parallel_block_stack) > 2
        if not self.parallel_errors and nested and not node.is_prange:
            error(node.pos, "Only prange() may be nested")
            self.parallel_errors = True

        if node.is_prange:
            child_attrs = node.child_attrs
            node.child_attrs = ['body', 'target', 'args']
            self.visitchildren(node)
            node.child_attrs = child_attrs

            self.parallel_block_stack.pop()
            if node.else_clause:
                node.else_clause = self.visit(node.else_clause)
        else:
            self.visitchildren(node)
            self.parallel_block_stack.pop()

        self.parallel_errors = False
        return node

    def visit_YieldExprNode(self, node):
        if self.parallel_block_stack:
            error(node.pos, "'%s' not allowed in parallel sections" % node.expr_keyword)
        return node

    def visit_ReturnStatNode(self, node):
        node.in_parallel = bool(self.parallel_block_stack)
        return node


class MarkOverflowingArithmetic(CythonTransform):

    # It may be possible to integrate this with the above for
    # performance improvements (though likely not worth it).

    might_overflow = False

    def __call__(self, root):
        self.env_stack = []
        self.env = root.scope
        return super(MarkOverflowingArithmetic, self).__call__(root)

    def visit_safe_node(self, node):
        self.might_overflow, saved = False, self.might_overflow
        self.visitchildren(node)
        self.might_overflow = saved
        return node

    def visit_neutral_node(self, node):
        self.visitchildren(node)
        return node

    def visit_dangerous_node(self, node):
        self.might_overflow, saved = True, self.might_overflow
        self.visitchildren(node)
        self.might_overflow = saved
        return node

    def visit_FuncDefNode(self, node):
        self.env_stack.append(self.env)
        self.env = node.local_scope
        self.visit_safe_node(node)
        self.env = self.env_stack.pop()
        return node

    def visit_NameNode(self, node):
        if self.might_overflow:
            entry = node.entry or self.env.lookup(node.name)
            if entry:
                entry.might_overflow = True
        return node

    def visit_BinopNode(self, node):
        if node.operator in '&|^':
            return self.visit_neutral_node(node)
        else:
            return self.visit_dangerous_node(node)

    def visit_SimpleCallNode(self, node):
        if node.function.is_name and node.function.name == 'abs':
            # Overflows for minimum value of fixed size ints.
            return self.visit_dangerous_node(node)
        else:
            return self.visit_neutral_node(node)

    visit_UnopNode = visit_neutral_node

    visit_UnaryMinusNode = visit_dangerous_node

    visit_InPlaceAssignmentNode = visit_dangerous_node

    visit_Node = visit_safe_node

    def visit_assignment(self, lhs, rhs):
        if (isinstance(rhs, ExprNodes.IntNode)
                and isinstance(lhs, ExprNodes.NameNode)
                and Utils.long_literal(rhs.value)):
            entry = lhs.entry or self.env.lookup(lhs.name)
            if entry:
                entry.might_overflow = True

    def visit_SingleAssignmentNode(self, node):
        self.visit_assignment(node.lhs, node.rhs)
        self.visitchildren(node)
        return node

    def visit_CascadedAssignmentNode(self, node):
        for lhs in node.lhs_list:
            self.visit_assignment(lhs, node.rhs)
        self.visitchildren(node)
        return node

class PyObjectTypeInferer(object):
    """
    If it's not declared, it's a PyObject.
    """
    def infer_types(self, scope):
        """
        Given a dict of entries, map all unspecified types to a specified type.
        """
        for name, entry in scope.entries.items():
            if entry.type is unspecified_type:
                entry.type = py_object_type

class SimpleAssignmentTypeInferer(object):
    """
    Very basic type inference.

    Note: in order to support cross-closure type inference, this must be
    applies to nested scopes in top-down order.
    """
    def set_entry_type(self, entry, entry_type, scope):
        for e in entry.all_entries():
            e.type = entry_type
            if e.type.is_memoryviewslice:
                # memoryview slices crash if they don't get initialized
                e.init = e.type.default_value
            if e.type.is_cpp_class:
                if scope.directives['cpp_locals']:
                    e.make_cpp_optional()
                else:
                    e.type.check_nullary_constructor(entry.pos)

    def infer_types(self, scope):
        enabled = scope.directives['infer_types']
        verbose = scope.directives['infer_types.verbose']

        if enabled == True:
            spanning_type = aggressive_spanning_type
        elif enabled is None:  # safe mode
            spanning_type = safe_spanning_type
        else:
            for entry in scope.entries.values():
                if entry.type is unspecified_type:
                    self.set_entry_type(entry, py_object_type, scope)
            return

        # Set of assignments
        assignments = set()
        assmts_resolved = set()
        dependencies = {}
        assmt_to_names = {}

        for name, entry in scope.entries.items():
            for assmt in entry.cf_assignments:
                names = assmt.type_dependencies()
                assmt_to_names[assmt] = names
                assmts = set()
                for node in names:
                    assmts.update(node.cf_state)
                dependencies[assmt] = assmts
            if entry.type is unspecified_type:
                assignments.update(entry.cf_assignments)
            else:
                assmts_resolved.update(entry.cf_assignments)

        def infer_name_node_type(node):
            types = [assmt.inferred_type for assmt in node.cf_state]
            if not types:
                node_type = py_object_type
            else:
                entry = node.entry
                node_type = spanning_type(
                    types, entry.might_overflow, scope)
            node.inferred_type = node_type

        def infer_name_node_type_partial(node):
            types = [assmt.inferred_type for assmt in node.cf_state
                     if assmt.inferred_type is not None]
            if not types:
                return
            entry = node.entry
            return spanning_type(types, entry.might_overflow, scope)

        def inferred_types(entry):
            has_none = False
            has_pyobjects = False
            types = []
            for assmt in entry.cf_assignments:
                if assmt.rhs.is_none:
                    has_none = True
                else:
                    rhs_type = assmt.inferred_type
                    if rhs_type and rhs_type.is_pyobject:
                        has_pyobjects = True
                    types.append(rhs_type)
            # Ignore None assignments as long as there are concrete Python type assignments.
            # but include them if None is the only assigned Python object.
            if has_none and not has_pyobjects:
                types.append(py_object_type)
            return types

        def resolve_assignments(assignments):
            resolved = set()
            for assmt in assignments:
                deps = dependencies[assmt]
                # All assignments are resolved
                if assmts_resolved.issuperset(deps):
                    for node in assmt_to_names[assmt]:
                        infer_name_node_type(node)
                    # Resolve assmt
                    inferred_type = assmt.infer_type()
                    assmts_resolved.add(assmt)
                    resolved.add(assmt)
            assignments.difference_update(resolved)
            return resolved

        def partial_infer(assmt):
            partial_types = []
            for node in assmt_to_names[assmt]:
                partial_type = infer_name_node_type_partial(node)
                if partial_type is None:
                    return False
                partial_types.append((node, partial_type))
            for node, partial_type in partial_types:
                node.inferred_type = partial_type
            assmt.infer_type()
            return True

        partial_assmts = set()
        def resolve_partial(assignments):
            # try to handle circular references
            partials = set()
            for assmt in assignments:
                if assmt in partial_assmts:
                    continue
                if partial_infer(assmt):
                    partials.add(assmt)
                    assmts_resolved.add(assmt)
            partial_assmts.update(partials)
            return partials

        # Infer assignments
        while True:
            if not resolve_assignments(assignments):
                if not resolve_partial(assignments):
                    break
        inferred = set()
        # First pass
        for entry in scope.entries.values():
            if entry.type is not unspecified_type:
                continue
            entry_type = py_object_type
            if assmts_resolved.issuperset(entry.cf_assignments):
                types = inferred_types(entry)
                if types and all(types):
                    entry_type = spanning_type(
                        types, entry.might_overflow, scope)
                    inferred.add(entry)
            self.set_entry_type(entry, entry_type, scope)

        def reinfer():
            dirty = False
            for entry in inferred:
                for assmt in entry.cf_assignments:
                    assmt.infer_type()
                types = inferred_types(entry)
                new_type = spanning_type(types, entry.might_overflow, scope)
                if new_type != entry.type:
                    self.set_entry_type(entry, new_type, scope)
                    dirty = True
            return dirty

        # types propagation
        while reinfer():
            pass

        if verbose:
            for entry in inferred:
                message(entry.pos, "inferred '%s' to be of type '%s'" % (
                    entry.name, entry.type))


def find_spanning_type(type1, type2):
    if type1 is type2:
        result_type = type1
    elif type1 is PyrexTypes.c_bint_type or type2 is PyrexTypes.c_bint_type:
        # type inference can break the coercion back to a Python bool
        # if it returns an arbitrary int type here
        return py_object_type
    else:
        result_type = PyrexTypes.spanning_type(type1, type2)
    if result_type in (PyrexTypes.c_double_type, PyrexTypes.c_float_type,
                       Builtin.float_type):
        # Python's float type is just a C double, so it's safe to
        # use the C type instead
        return PyrexTypes.c_double_type
    return result_type

def simply_type(result_type):
    if result_type.is_reference:
        result_type = result_type.ref_base_type
    if result_type.is_cv_qualified:
        result_type = result_type.cv_base_type
    if result_type.is_array:
        result_type = PyrexTypes.c_ptr_type(result_type.base_type)
    return result_type

def aggressive_spanning_type(types, might_overflow, scope):
    return simply_type(reduce(find_spanning_type, types))

def safe_spanning_type(types, might_overflow, scope):
    result_type = simply_type(reduce(find_spanning_type, types))
    if result_type.is_pyobject:
        # In theory, any specific Python type is always safe to
        # infer. However, inferring str can cause some existing code
        # to break, since we are also now much more strict about
        # coercion from str to char *. See trac #553.
        if result_type.name == 'str':
            return py_object_type
        else:
            return result_type
    elif result_type is PyrexTypes.c_double_type:
        # Python's float type is just a C double, so it's safe to use
        # the C type instead
        return result_type
    elif result_type is PyrexTypes.c_bint_type:
        # find_spanning_type() only returns 'bint' for clean boolean
        # operations without other int types, so this is safe, too
        return result_type
    elif result_type.is_pythran_expr:
        return result_type
    elif result_type.is_ptr:
        # Any pointer except (signed|unsigned|) char* can't implicitly
        # become a PyObject, and inferring char* is now accepted, too.
        return result_type
    elif result_type.is_cpp_class:
        # These can't implicitly become Python objects either.
        return result_type
    elif result_type.is_struct:
        # Though we have struct -> object for some structs, this is uncommonly
        # used, won't arise in pure Python, and there shouldn't be side
        # effects, so I'm declaring this safe.
        return result_type
    elif result_type.is_memoryviewslice:
        return result_type
    # TODO: double complex should be OK as well, but we need
    # to make sure everything is supported.
    elif (result_type.is_int or result_type.is_enum) and not might_overflow:
        return result_type
    elif (not result_type.can_coerce_to_pyobject(scope)
            and not result_type.is_error):
        return result_type
    return py_object_type


def get_type_inferer():
    return SimpleAssignmentTypeInferer()