Developer’s Image Library Manual

By Denton Woods
Abysmal Software
June 2002

Table of Contents

gL A oo [U Tt o] o PP 1
I o T =TS = (U o TSSO P PO 2
Microsoft Visual CH+ SEUDcoieeiececiee et 2
DITECLONIES ...ttt sttt e e bt b e e saeesaesnee s 2

0 1S = 1] o 3
MSVC++ Bug WOrkaround.............cceeceereeieneeneeieseeseeseeseeseeneesseessesnens 4
MUIITAr@AAINGeceveeiee e sre e 4

(D T = (1o S 4
General GCC-Baset SEIUDo.voveieieriesiesieee e 4
BaSIC PrOoCEAUN ES.....c..oiuieiieieeie ettt st 6
INITTAHIZING DEVIL ...ttt 6
FIEHANAING .c.veieeeeeeee et e 7

[To [g To [170 =S TUSPS 7

SAVING IMAGES ... tiiiie ettt e et e re e s be e be e e reenneas 7

IMage Char ACLENISLICScieiuireeeeeereee e 8
IMage ManiPUIALiON..........ccueiiieciee e 8
y N 1= 0 1Y o TSR 8
BIUIMTING. .. n e 9
@011 7= PSSR 9
[0 (U= 4= 11 Lo o USSR 10
(€720 0 00T @0 1 = ox (o] o SRR 10

NN =0T Y USSP 10

NN 0T <SSO PRRPR 11
PIXEHIZBLION......oiteeiiee e e b et sre e 11
ShAIPENING ... 12
S 4T a1 T I =T =S 13
ST o T 0 =T 1= PSP PS 13
IVHIPIMBIIS ...ttt ettt bbbttt e et s e b snennenre s 13

N 0110 (0] 1SS

Developer's Image Library Manual 1

Introduction

Developer’s Image Library was previously called OpenlL, but due to trademark issues,
OpenlL isnow known as DevIL. DevlL isan open source programming library for
programmers to incorporate in to their own programs. DevlIL loads and saves a large
variety of images for use in a software developer’s program. This library is capable of
manipulating images in various ways and passing image information to display APIs,
such as OpenGL and Direct3D.

The purpose of this manual is to guide users in coding with the Developer’s Image
Library. This manual is for users proficient in C and with competent knowledge of the
integrated devel opment environment (IDE) or compiler they are using.

Library Reference

Several times throughout this document, the three different sub-libraries of DevIL are
referenced as L, ILU and ILUT. IL refersto the base library for loading, saving and
converting images. LU refers to the middle level library for image manipulation. 1LUT
refers to the high level library for displaying images. Functionsin IL, ILU and ILUT are
prefixed by ‘il’, ‘ilu” and ‘ilut’, respectively.

2 Developer's Image Library Manual

Library Setup

Microsoft Visual C++ Setup

DevIL setup for Windows is straightforward. Unzip DevIL in an empty directory. |f
using WinZip, check the “Use folder names’ box before unzipping. Use the -d command
line option if using pkunzip. Then double-click on the ImageLib.dsw file in the install
directory to load the DevIL workspace in Microsoft Visual C++ (MSV C++).

Directories
Y ou will need to change some directory settings in MSV C++ to get DevIL working.

1. Navigate to the Tools menu and select Options.
2. Click on the Directories tab.
3. Under Show directories for, select "Include files'.
4. Click the New button (to the left of the red 'X")
5. Typethe directory DeviL isinstalled in, plus "\Include". For example, if you
installed DevIL to E\ImagelLib, enter "E:\ImageLib\I nclude”.
Options 21 x|
E ditor | Tabs | Debug I Comnpatibility I Euild | Directornies | .:; EE
Platfarrm; Show directaonies for:
[win32] [include files =l
Direchanies: i I S
evmevehDirect SDEAnciude 1=
E:\MsvetWCIBMNCLUIDE
E:\MsvedWCIEMFCANCLUDE
E:\MsvetWCIATLMNCLUDE
e:himagelbinclude | I
|
k. I Canzel |
Figure 1-1. Include Directory Settings Dialog
6. Under Show directoriesfor, click on "Library files'.
7. Click the New button (to the left of the red 'X").

8. Typethedirectory DeviL isingalled in, plus “\Lib". For example, if you installed
DevlIL to E\ImageLib, enter "E\ImageLib\Lib".
9. Click the New button (to the left of the red *X").

Developer's Image Library Manual 3

10. Type the directory DeviL isinstaled in, plus "\Lib\Debug". In the previous example,

you would enter "E\ImageLib\Lib\Debug".
11. Choose OK.

Options 2| |
Editar | Tabs | Debug I Cormpatibility I Buld Directonies | % EE
Platfarrn; Show directones far:

[twin32]| Libray files =l
Directories: R I

e vmavchDirect SOEAb
E:\Mewc \WCIENLIE
E: M v CI8NFCALLIB

F

& himagelibhlib

[

(o |

Cancel |

Figure 1-2. Library Directory Settings Dialog

MSVC++ Bug Workaround

Microsoft Visual C++ 6.0 has a bug that prevents debugging of aproject. The bug
appears to occur when you use a#pragmato link a.lib file and link it via another method.
The header filesil.h, ilu.h ard ilut.h automatically link the .lib files in via a #pragma for
convenience. To prevent this bug, check for and remove these:

devil.lib, devil-d.lib, ilu.lib, ilu-d.lib, ilut.lib and ilut-d.lib in your project settings

(Project — Settings menu).

devil.lib, devil-d.lib, ilu.lib, ilu-d.lib, ilut.lib and ilut-d.lib in your project’s
workspace. Some people link libraries into their project this way, which really should

be discouraged, due to the hardcoded paths.

Multithreading

DevlIL takes advantage of the multithreaded standard LIBC DLLs. To use file streams
with DevIL, you must change the project settings of your project. If you do not perform
these steps, your program will crash whenever you attempt to use a DeviL file stream.

1. Navigate to the Project menu and choose Settings.

2. Click the C/C++ tab.

3. Change the Category drop-down menu to read Code Generation.

Developer’s Image Library Manual

Change the Use run-time library drop-down menu to Multithreaded DLL if the
Settings For menu says Win32 Release. Change the Use run-time library drop-down
menu to Debug Multithreaded DLL if the Settings For menu says Win32 Debug.
Choose OK.

DJGPP Setup
Setting up DevIL in DJGPP requires the following steps:

1.

2.
3.

Unzip DeviL in an empty directory. If using WinZip, check the “Use folder names’

box before unzipping. Use the -d command line option if using pkunzip.

Create a new subdirectory called ‘il in your DJGPP include directory.

Copy the files to their respective places.
To use the precompiled libraries, copy libil.a, libilu.a and libilut.a from
ImageL.ib\lib\djgpp to your DJGPP lib directory. Then copy il.h, ilu.h and ilut.h
from your ImageLib\lib\il directory to your DJGPP include\il directory.
To compile the library yourself, change directories to ImageLib\M akefiles\Djgpp.
Thisfolder contains only a makefile for DJGPP. Simply type ‘make’, and the
makefile will compile DevIL and copy the files to their respective locations.

To compile with DeviIL in DJGPP, add —lil to your command line. To also useILU and
ILUT, use il and —lilut, respectively.

General GCC-based (Linux, Cygwin, Max OS X, etc.) Setup
Setting up DevIL in this environment requires the following steps:

1.

2.
3.

Unzip DeviIL in an empty directory, by typing “gzip —d gzipname” then “tar —xvf
tarname’, where ‘gzip’ and ‘tarname’ are DevIL-x.x.Xx.tar.gz and DevIL-x.x.x.tar.
Unzip should automatically use the directory structure present in the DevIL zip file.
To use the precompiled libraries, copy liblL.so, liblLU.so and libILUT.so to a place
specified in your library path, or use the full path to the libraries when compiling.
To compile the library yoursalf:

Type ‘configure’.

Type ‘make’.

Type ‘make ingtall’ to copy the .so files to /usr/lib and the headers to

lusr/include/il.

Developer's Image Library Manual 5

Basic Usage

Initializing DevIL

You must initialize DevIL, or it will most certainly crash. You need to initialize each
library (il, ilu, and ilut) separately. You do not need to initiaize libraries you are not
using, but keep in mind that the higher level libraries are dependent on the lower ones.
For example, ilut is dependent on ilu and il, so you have to initialize il and ilu, also.

IL Initialization
Simply cal theillnit function with no parameters:

/] Initialize IL
illnit();

ILU Initialization
Call the ilulnit function with no parameters:

// Initialize |LU
ilulnit();

ILUT Initialization

ILUT initialization is slightly more complex than IL and ILU initialization. The function
you will useisilutRenderer. You must cal ilutRender er before you use any ILUT
functions. This function initializes ILUT support for the APl you desire to use by a
single parameter:

ILUT_OPENGL - Initializes ILUT’s OpenGL support.
ILUT_ALLEGRO - Initializes ILUT’s Allegro support.
ILUT_WIN32 - Initializes ILUT’s Windows GDI and DirectX 8 support.

An example of using ilutRender er follows:

/1 Initialize ILUT with Qoen@ support.
il ut Renderer (I LUT_OPENG) ;

Image Name Handling

Image names are DevIL’s way of keeping track of imagesit is currently containing.
Some other image libraries return structs, but they generally seem more cluttered than
DevIL’s image name handling.

6 Developer’s Image Library Manual

ILvoid ilGenlmages(ILsizei Num, ILuint * Images);
ILvoid ilBindlmage(ILuint Image);
ILvoid iIDeletelmages(ILsizei Num, ILuint *Images);

Listing 2-1. Syntax of the image name functions

Generating Image Names

UseilGenlmages to generate a set of image names. ilGenl mages accepts an array of
ILuint to receive the generated image names. There are no guarantees about the order of
the generated image names or any other predictable behaviour like this. If
ilDeletelmages is caled on an image name, ilGenl mages will return that value
afterward, until all deleted image names are used. This conserves memory and is
generaly quick. The only guarantee is that each member of the Images parameter (up to
Num number of them) will have a new, unique value.

Binding Image Names

iIBindlmage binds the current image to the image described by the image namein
Image. DevIL reserves the number zero for the default base image. If you pass avalue
for Image that was not generated by ilGenl mages, ilBindl mage automatically creates an
image specified by the image name passed. An image must aways be bound before you
call any functions that operate on images and their data.

When DevIL creates a new image, the image has the default properties of 1x1x1 with a
bit depth of 8. DevIL creates a new image when you call ilIBindl mage with an image
name that has not been generated by ilGenl mages or when you call ilGenl mages
specifically.

Deleting Image Names

iIDeletel mages is the exact opposite of ilGenl mages and even accepts the exact same
parameters. ilDeletel mages deletes image names to free memory for subsequent
operations. Y ou should always call ilDeletel mages on images that are not in use
anymore. When you delete an image, DevlL actually deletes all data and anything
associate with it, so that ilGenl mages can possibly use the image name later.

File Handling

Loading Images

DevIL’s main purpose is to load images. DevIL’sloading is designed to be extremely
easy but very powerful. Appendix B lists the image types DeviL is capable of loading.

Developer’s Image Library Manual 7

ILboolean ilLoadlmage(const char *FileName);

| Lboolean ilLoad(ILenum Type, const char * FileName);
ILboolean ilLoadF(ILenum Type, ILHANDLE File);
ILboolean ilLoadL (ILenum Type, ILvoid *Lump, ILuint Size);

Listing 2-2. Syntax of the loading functions

DevlIL contains four loading functions to support different loading styles and loading
from several different image sources.

Loading from Files - ilLoadlmage

ilLoadl mage is the main DevIL loading function. All you do is pass ilL oadl mage the
filename of the image you wish to load. ilL oadl mage takes care of the rest.

ilLoadl mage alows users to transparently load several different image formats
uniformly. DevIL’s most powerful function is ilL oadl mage because of this feature.

Before loading the image, ilL oadl mage must first determine the image format of the file.
iIL oadl mage performs the following steps:

1. Compares the filename's extension to any registered file handlers, allowing the
registered file handlers to take precedence over the default DeviL file handlers. If the
extension matches a registered file handler, ilL oadl mage passes control to the file
handler and returns. For more information on registering, refer to the section entitled
“Registration”.

2. Compares the filename's extension to the extensions natively supported by DeviIL. If
the extension matches a loading function’s extension, ilL oadl mage passes control to
the file handler and returns.

3. Examines the file for a header and tries to match it with a known type of image
header. If avalid image header is found, ilL oadl mage passes control to the
appropriate file hander and returns.

4. ReturnsiL_FALSE.

Loading from Files - ilLoad

DevIL’s other file loading function isilLoad. ilLoadis similar to ilL oadl mage in many
respects but different in other ways. ilL oad accepts two parameters: the type of image
and the filename of the image.

ilLoad’ s type parameter is what differentiates it from ilL oadl mage. Type can be any of
the values listed in table B-2 in appendix B or the value IL_TYPE_UNKNOWN. If Type
isavalue from table B-1, ilL oad attempts to load the file as the specified type of image
format. Only use thisif you know what type of images you will be loading and want to
bypass DevIL’s checks.

8 Developer's Image Library Manual

If IL_TYPE_UNKNOWN is specified for Type, ilL oad behaves exactly like
ilLoadlmage. Refer to the previous section for detailed behaviour of these two
functions.

Loading from File Streams - ilLoadF

DevIL’sfile stream loading function is ilL oadF. ilL oadF is exactly equivalent to

ilL oad, but instead of accepting a const char pointer, ilL oadF accepts an ILHANDLE.
DeviL defines ILHANDLE as avoid pointer via atypedef. Under normal circumstances,
Filewill be a FILE struct pointer defined in stdio.h.

Refer to the section entitled “Registration” for instructions on how to use your own file
handling functions and file handles.

Loading from Memory Lumps - ilLoadL

DeviL’sfile handling is abstracted to allow loading images from memory caled “lumps’.
ilLoadL handles loading from lumps. Y ou must specify avalid type as the first
parameter and the lump as the second parameter.

The third parameter that ilL oadL acceptsis the total size of the lump. DevIL usesthis
value to perform bounds checking on the input data. Specify a value of zero for Sze if
you do not want ilL oadL to perform any bounds checking.

Saving Images

DevIL also has some powerful saving functions to fully complement the loading
functions.

I Lboolean ilSavel mage(const char * FileName);

ILboolean ilSave(ILenum Type, const char *FileName);
ILboolean ilSaveF(ILenum Type, ILHANDLE File);
ILboolean ilSavel (ILenum Type, ILvoid *Lump, ILuint Size);

Listing 2-3. Syntax of the saving functions
DevIL’s saving functions are identical to the loading functions, despite the fact that they

save images instead of load images. Lists of possible values for Type and supported
saving formats are located in Appendix B.

Image Management

Developer’s Image Library Manual 9

Defining Images

iITeximage is used to give the current bound image new attributes that you specify. Any
image data or attributes previoudly in the current bound image are lost after acall to
iITeximage, so make sure that you call it only after preserving the image data if need be.

ILboolean il TexImage(ILuint Width, ILuint Height, ILuint Depth, ILubyte Bpp,
ILenum Format, ILenum Type, ILvoid * Data);

Listing 2-4. Syntax of the il Teximage function

iITexmage has one of the longer parameter lists of the DevIL functions, so we will
briefly go over what is expected for each argument.

- Width: The width of theimage. If thisiszero, DevIL creates an image with a
width of one.

- Height: The height of theimage. If thisis zero, DevIL creates an image with
aheight of one.

. Depth: The depth of the image, if it is an image volume. Most applications
should specify 0 or 1 for this parameter.

- Bpp: The bytes per pixel of theimage data. Do not confuse this with bits
per pixel, which is a'so commonly used. Common bytes per pixel
vauesare 1, 3and 4.

. Format: The format of the image data. Formats accepted are listed here and
are self-explanatory:

- Type: The type of image data. Usually, thiswill be IL_UNSIGNED_BYTE,
unless you want to utilize multiple bits per colour channel. Type
accepted are listed here:

BYTE

UNSI GNED_BYTE
SHORT

UNSI GNED_SHORT
| NT

UNSI GNED_I NT
FLOAT

L_DOUBLE

L_
L_
L_
L_
L_
L_
L_

. Data: Mainly for convenience, if you already have image data loaded and
ready to put into the newly created image. Specifying NULL for this

10 Developer's Image Library Manual

parameter just results in the image having unpredictable image data.
Y ou can specify image data later using ilSetData or il SetPixels.

Getting Image Data

There are two ways to set image data: one is quick and dirty, while the other is more
flexible but dower. These two functions are ilGetData and ilCopyPixels.

ILubyte* ilGetData(lLvoid);

[Luint ilCopyPixels(ILuint XOff, ILuint Y Off, ILuint ZOff, [Luint Width,
ILuint Height, ILuint Depth, ILenum Format, ILenum
Type, ILvoid * Data);

Listing 2-6. Syntax of the functionsto get image data

The Quick Method

UseilGetData to get adirect pointer to the current bound image’ s data pointer. Do not

ever try to delete this pointer that is returned. To get information about the image data,
use ilGetlnteger.

ilGetData will return NULL and set an error of IL_ILLEGAL_OPERATION if thereis no
currently bound image.

The Flexible Method

UseilCopyPixelsto get a portion of the current bound image’ s data or to get the current
image’ sdatawith in adifferent format / type. DevlL takes care of al conversions
automatically for you to give you the image data in the format or type that you need. The
data block can range from a single line to arectangle, all the way to a cube.

ilCopyPixels has along parameter list, like il TexI mage, so here is a description of the
parameters of ilCopyPixels:

. XOff: Specifies where to start copying in the x direction.

- YOff: Specifies where to start copying in the y direction.

. ZOff: Specifies where to start copying in the z direction. Thiswill beQin
most cases, unless you are using image volumes.

- Width: Number of pixels to copy in the x direction.

- Height: Number of pixelsto copy in they direction.

- Depth: Number of pixelsto copy in the z direction. Thiswill be 1, unless
you are using image volumes.

- Format: The format of the returned data that you desire. Acceptable formats
arelL_RGB, IL_RGBA, IL_BGR, IL_BGRA and IL_LUMINANCE.

Developer's Image Library Manual 11

- Type: The type of the data block in Data. Acceptable types are
IL_UNSIGNED BYTE, IL_BYTE, IL_UNSIGNED_SHORT, IL_SHORT,
IL_UNSIGNED_INT and IL_INT. IL_FLOAT and IL_DOUBLE will be
supported shortly. For most purposes, IL_UNSIGNED_BYTE is
always acceptable here.

- Data: A pointer to the data block that you wish to receive the specified
image data. If thisisNULL, DevIL will set an error of
IL_INVALID_PARAM and return IL_FALSE (please refer to the
section on error handling in DeviL).

Setting Image Data

There are two ways to set image data: one is quick and dirty, while the other is more
flexible but dower. These two functions are ilSetData and il SetPixels.

ILboolean ilSetData(lLvoid * Data);

ILvoid ilSetPixels(ILuint XOff, Luint Y Off, ILuint ZOff, ILuint Width,
[Luint Height, ILuint Depth, ILenum Format, |Lenum
Type, ILvoid * Data);

Listing 2-5. Syntax of the functions to set image data

The Quick Method

UseilSetData to set the image data directly. DevIL will copy the data provided in the
Data parameter to the image's data, so you need not worry about DevIL trying to delete
your pointer later on. This function is the counterpart to ilGetData.

You must provide image data in the exact same format, type, width, height, depth and
bpp as the current bound image, since DevIL does no conversions here; it just does a
simple memory copy.

ilSetData will return IL_FALSE and set an error of IL_INVALID _PARAM if Data is
NULL.

The Flexible Method

UseilSetPixelsto set a portion of the current bound image’ s data or to set the current
image' s data with data of a different format / type. Specify the data block, where you
want to put it and what kind of data it is, and DevIL takes care of all conversions
automatically for you. The data block can range from a single line to arectangle, al the
way to a cube.

iISetPixels has along parameter list, like ilCopyPixels, so here is a description of the
parameters of ilSetPixels:

12 Developer's Image Library Manual

. XOff: Specifies where to place the block of image data in the x direction.

- YOff: Specifies where to place the block of image datain they direction.

- ZOff: Specifies where to place the block of image datain the z direction.
Thiswill be 0 in most cases, unless you are using image volumes.

- Width: ~ The width of the data block in Data.

- Height: The height of the data block in Data.

- Depth: The depth of the data block in Data. Thiswill be 1, unlessyou are
using image volumes.

- Format: Theformat of the data block in Data. Acceptable formats are
IL_RGB, IL_RGBA, IL_BGR, IL_BGRA and IL_LUMINANCE.

- Type: Thetype of the data block in Data. For acceptable types, refer to the
documentation on ilTexlmage. For most purposes,
IL_UNSIGNED_BYTE is always acceptable here.

- Data: A pointer to the actual data block. If thisisNULL, DevIL will set an
error of IL_INVALID_PARAM and return IL_FALSE (please refer to
the section on error handling in DevIL).

If you specify a combination of an offset with a width/height/depth that makes your data
block overreach the edge of the currently bound image, DevIL will clip your data so that
no crashes will occur and that the resulting image will be correctly produced.

Copying Images
DevlIL has three functions to copy images. ilCopylmage, ilOverlayl mage and il Blit.

ILboolean ilCopylmage(ILuint Src);
ILboolean ilOverlaylmage(ILuint Src, ILint XCoord, ILint Y Coord, ILint
ZCoord);
ILboolean iIBlit(ILuint Src, ILint DestX, ILint DestY, ILint DestZ, ILuint SrcX,
[Luint SrcY, ILuint SrcZ, ILuint Width, ILuint Height, ILuint
Depth);

Listing 2-6. Syntax of the functions to copy images

Direct Copying

UseilCopyl mage to create a copy of animage. ilCopyl mage will copy the image
specified by the image name in S ¢ to the currently bound image. ilCopyl mage can be
useful when you want to apply an effect to an image but want to preserve the original.
The image bound before calling ilCopyl mage will still be bound after ilCopyl mage
exits.

If you specify an image namein Src that has not been generated by ilGenl mages or
iIBindlmage, ilCopyl mage will set the IL_INVALID_PARAM error and return
IL_FALSE.

Blitting

Developer's Image Library Manual 13

iIBlit copies a portion of an image over to another image. Thisis similar to blitting
performed in graphics libraries, such as StretchBIt in the Windows API. Y ou can copy a
rectangular block from anywhere in a source image, specified by Src, to any point in the
currently bound image. A description of the various iIBlit parameters follows:

RS fox

- DestX:
- DestY:
- DestZ:
. ScX:

- ScY:
- ScZ:
- Width:

- Height:
. Depth:

Overlaying

The source image name.

Specifies where to place the block of image data in the x direction.
Specifies where to place the block of image datain they direction.
Specifies where to place the block of image data in the z direction.
Specifies where to start copying in the x direction of the source
image.

Specifies where to start copying in they direction of the source
image.

Specifies where to start copying in the z direction of the source
image.

How many pixels to copy in the x direction of the source image.
How many pixels to copy in they direction of the source image.
How many pixels to copy in the z direction of the source image.

ilOverlay is essentially the same as iIBlit, but it copies the entire image over, instead of
just aportion of theimage. ilOverlay is more of a convenience function, since you can
obtain the same results by calling ilBlit with SrcX, SrcY and S'cZ set to zero, with the
Width, Height and Depth parameters set to the source image’ s height, width and depth,
respectively. ilOverlay ismissing six parameters that i1Blit has:

S fox

- DestX:
- DestY:
- DestZ:

The source image name.

Specifies where to place the block of image data in the x direction.
Specifies where to place the block of image datain they direction.
Specifies where to place the block of image data in the z direction.

14 Developer's Image Library Manual
Error Handling

DevlL contains error- handling routines to alert the users of this library to any internal
problemsin DeviL. TheilGetError function reports al errorsin DeviL.

iluError String converts error numbers returned from ilGetError to a human-readable
format.

ILenum ilGetError(ILvoid);
congt char* iluErrorString(ILenum Error);

Listing 3-1. Syntax of the error functions

Error Detection

Problems can always occur in any software application, and DevIL is no different.
DevIL keepstrack of al nonfatal errors that have occurred during its operation. All
errors are kept on a stack maintained by ilGetError. Every timeilGetError iscalled,
the last error is returned and pushed off the top of the stack. Y ou should call ilGetError
until IL_NO_ERROR isreturned. IL_NO_ERROR signifies that there are no more errors
on the error stack. Most errors reported are not harmful, and DevIL operation can
continue, except for IL_OUT_OF MEMORY .

All error codes that can be returned by ilGetError are listed in Appendix A.

Error Strings

iluError String returns a human readable error string from any error that ilGetError can
return. Thisis useful for when you want to display what kind of error happened to the
user.

Developer's Image Library Manual 15

Image Characteristics

All images have a certain set of characteristics: origin of the image, format of the image,
type of the image, and more.

Origin

16 Developer's Image Library Manual

Image Manipulation

ILU (image library utilities) contains functions to manipulate any type of image in a
variety of ways. Some functions filter images, while others perform awider variety of
operations, such as scaling an image. This section will give a comparison of the utility
functions against figure 4-1.

Openl[)

Figure4-1. Original, unmodified image

Alienifying

iluAlienify isafilter | created purely by accident, when | was attempting to write colour
matrix code. The effect iluAlienify givesto an image is agreen and purpletint. On
images with humans in them, iluAlienify generally makes the people look green, hence
the fabricated term “alienify”. iluAlienify does not accept any parameters. Figure 4-2
illustrates this effect on the OpenlL logo.

OpenlD)

Figure4-2. “ Alienified” image

Blurring

ILU has two blurring functions — iluBlur Average and iluBlur Gaussian. Blurring can be
used for a smple motion blur effect or something as sophisticated as concealing the
identity of a person in an image. Both of these functions use a convolution filter and
multiple iterations to blur an image. Gaussian blurs look more natura than averaging
blurs, because the center pixel in the convolution filter “weighs’ more. For an in-depth
description of convolution filters, see the excellent “Elementary Digital Filtering” article
a http://www.gamedev.net/reference/programming/features/edf/.

iluBlur Average and iluBlur Gaussian are functionally equivalent. Both functions accept
asingle parameter. Call the desired function with the number of iterations of blurring

Developer’s Image Library Manual 17

you wish to be performed on the image. Increase the number of iterations to increase the
blurriness of an image.

Open Openl [

Figure4-3. Average blurred Figure4-4. Gaussian blurred
with 10 iterations applied with 10 iterations applied
Contrast

The American Heritage Dictionary describes contrast as “The use of opposing elements,
such as colors, forms, or lines, in proximity to produce an intensified effect in awork of
art.” ILU can apply more colour contrast to your image by brightening the lights and
darkening the darks viailuContrast. This effect can make a dull image livelier and
“stand out” more.

iluContrast accepts a single parameter describing the desired amount of contrast to
modify the image by. A value of 1.0 does not affect the image. Values above 1.0to 1.7
increase the amount of contrast in the image, with 1.7 increasing the contrast the most.
Values from 0.0 to 1.0 decrease the amount of contrast in the image. Vaues outside of
the 0.0 to 1.7 range will give undefined results. -0.5 to 0.0 will actually create a negative
of the image and increase the contrast.

OpeniDy DRERIEY (O

Figure4-5. Contrastof 1.6 Figure4-6. Contrast of 0.2 Figure4-7. Contrast of -.5

Equalization

Sometimes it may be useful to equalize an image — that is, bring the extreme colour
values to amedian point. iluEqualize darkens the bright colours and lightens the dark
colours, reducing the contrast in an image or “equalizing” it. Figure 4-8 shows the results
of applying iluEqualize to the OpenlL image.

18 Developer's Image Library Manual

Figure4-8. Equalized image

Gamma Correction

iluGammacCaorrect applies gamma correction to an image using an exponential cuve.
The single parameter iluGammaCorrect accepts is the gamma correction factor you
wishto use. A gamma correction factor of 1.0 leaves the image unmodified. Vauesin
therange 0.0 - 1.0 darken theimage. 0.0 leaves atotally black image. Anything above
1.0 brightens the image, but values too large may saturate the image.

OpeFD Open\L ¢

Figure 4-9. Result of gamma Figure 4-10. Result of gamma
correction of 0.5 correction of 1.9
Negativity

iluNegative is a very basic function that inverts every pixel’s colour in an image. For
example, pure white becomes pure black, and vice-versa. The resulting colour of a pixel
can be determined by this formula: new_colour = ~old_colour (where the tilde is the
negation of the set of bits). iluNegative does not accept any parameters and is reversible
by cdling it again.

Figure4-11. iluNegative example

Noise

DevIL can add “random” noise to any image to make it appear noisy. The function,
iluNoisify, smply uses the standard libc rand function after initializing it with a seed to
srand. If your program depends on a different seed to rand, reset it after calling

Developer’s Image Library Manual 19

iluNoisify. The seed DeviL usesisthe standard time(NULL) call. Of course, the noise
added to the image is not totally random, since no such thing exists, but there should be
no repeating, except in extremely large images.

iluNoisify accepts asingle parameter — the tolerance to use. This parameter is a clamped
(float) value that should be in the range 0.0f - 1.0f. Lower values indicate a lower
tolerance, while higher values indicate the opposite. The tolerance indicates just how
much of a mono intensity that iluNoisify is alowed to apply to each pixel. A “random”
mono intensity is applied to each pixel so that you will not end up with totally new
colours, just the same colours with a different luminance value. Colours change by both
negative and positive values, so some pixels may be darker, some may be lighter, and
others will remain the same.

e E-‘“ .

Openl[

Figure4-12. Result of iluNoisify with a 0.50 tolerance

Pixelization

iluPixelize creates pixelized images by averaging the colour values of blocks of pixels.
The single parameter passed to iluPixelize determines the size of these square blocks.
The result is a pixelized image.

Call iluPixelize with values greater than 1 to pixelize the image. The larger the values,
the larger the pixel blocks will be. A vaue of 1 will leave the image unchanged. Values
less than 1 generate an error.

] 1
JLET
Figure 4-13. Pixelization of 10 pixels across

Sharpening

Sharpening sharply defines the outlinesin an image. iluShar pen performsthis
sharpening effect on an image. iluShar pen accepts two parameters. the sharpening
factor and the number of iterations to perform the sharpening effect.

20 Developer's Image Library Manual

The sharpening factor must be in the range of 0.0 - 2.5. A value of 1.0 for the sharpening
factor will have no effect on theimage. Vauesin the range 1.0 - 2.5 will sharpen the
image, with 2.5 having the most pronounced sharpening effect. Vaues from 0.0 to 1.0 do
atype of reverse sharpening, blurring theimage. Values outside of the 0.0 - 2.5 range
produce undefined results.

The number of iterations to perform will usualy be 1, but to achieve more sharpening,
increase the number of iterations. This parameter is similar to the Iterations parameter of

the two blurring functions. The time it takes to run this function is directly proportional
to the number of iterations desired.

Ope

Figure 4-14. Sharpening of 1.5 with 5 iterations

Developer's Image Library Manual 21

Resizing Images

Basic Scaling

To resize images, use the iluScale function:

ILboolean iluScale(lLuint Width, [Luint Height, ILuint Depth);
Ligting 5.1. Syntax of the iluScale function

The three parameters are relatively explanatory. Any image can be resized to a new
width, height and depth, provided that you have enough memory to hold the new image.
The new dimensions do not have to be the same as the original in any way. Aspect ratios
of the image do not even have to be the same. The currently bound image is replaced
entirely by the new scaled image.

If you specify a dimension greater than the origina dimension, the image enlarges in that

direction. Alternately, if you specify a dimension smaller than the original dimension,
the image shrinks in that direction.

e Openl[)

Figure5.1. Original image Figure5.2. Enlargedimage Figure5.3. Shrunk image

Operl[y

Advanced Scaling

DevIL aso alows you to specify which method you want to use to resize images. As
you can see in figure 5.2, the enlarged image is very pixelized. In figure 5.3, the shrunk
image is aso blocky. Thisis because a nearest filter was applied to the image in figure
5.1 to produce figures 5.2 and 5.3.

DeviL alowsyou to use different filters to produce better scaling results:

Nearest filter - | LU _NEAREST

Linear filter - 1LU LI NEAR
Bilinear filter - 1 LU BI LI NEAR

Box filter - | LU _SCALE_BOX
Triangle filter - | LU_SCALE_TRI ANGLE
Bdll filter - | LU_SCALE BELL

B Splinefilter - 1 LU_SCALE_BSPLI NE
Lanczos filter - 1 LU SCALE_LANCZOS3
Mitchdl filter - | LU SCALE_M TCHELL

22 Developer's Image Library Manual

Just usethe | LU_FI LTER define as PName in ilul magePar ameter with the appropriate
filter define as Param.

I Lvoid il ul mageParaneter (I Lenum PNanme, |Lenum Paranj;

Ligting 5.1. Syntax of the ilulmageParameter function

Filter Comparisons

The first three filters (nearest, linear and bilinear) require an increasing amount of time to
resize an image, with nearest being the quickest and bilinear being the sowest of the
three. All the filters after bilinear are considered the “advanced” scaling functions and
require much nmore time to complete, but they generally produce much nicer results.

When minimizing an image, bilinear filtering should be sufficient, since it uses afour-
pixel averaging scheme to create every destination pixel. Minimized images do not
generally have to use higher sampling schemes to achieve a reasonable image.

Enlarging an image, though, depends quite heavily on how good the sampling schemeis.
DevIL provides severd filtering functions to let you choose which one best fits your
needs: speed versus image quality. Below is acomparison of the different types of filters
when enlarging an image.

Figure5.4. Origina ‘Lena image

Bilinear filter

Box filter Triangle filter Bell filter

Developer’s Image Library Manual 23

v

B spline filter Lanczos filter Mitchell filter

Figure5.5. Filter comparisons

24 Developer's Image Library Manual

Sub-Images

Mipmaps

Mipmaps in DevlL are successive half-dimensioned power-of-2 images. The dimensions
do not have to be powers of 2 if you generate them manually, but DevIL’s mipmap
generation facilities assume power-of-2 images.

Open”) E]penl[‘\ Opend) o

Figure4-1. All mipmap levels down to 1x1

Mipmap Creation

Y ou generate mipmaps for any image using iluBuildMipmaps. If theimage already has
mipmaps, the previous mipmaps are erased, and new mipmaps are generated. Otherwise,
iluBuildMipmaps generates mipmaps for the image.

The mipmaps built are always powers of 2. If the original image does not have power-of-
2 dimensions, iluBuildMipmaps resizes the original image viailuScale to have power-
of-2 dimensions.

Mipmap Access
Access mipmaps through the iluActiveMipmap function:

ILboolean ilActiveMipmap(ILuint MipNum);
Listing 4-1. Syntax of the mipmap access function

iluActiveM ipmap sets the current image to the MipNum mipmap level of the current
image. If there are no mipmaps present, then iluActiveMipmap returnsIL_FALSE, else
it returns IL_TRUE. The base image is mipmap level 0, so specify 0 for MipNum to
return to the base image. The only other method for setting the current image to the base
imageisto cal ilBindlmage again.

Animations

Animations are similar to mipmaps, but instead of being smaller successive images, the
images are the same size but have different data. The successive animation chainsin
DevIL can be used to create animations in your programs. File formats that natively
support animations are .gif and .mng. You can also create your own sub-images as
animations.

Developer's Image Library Manual 25

Animation Chain Creation

Animation Chain Access
Access animations through the iluActivel mage function:

| Lboolean ilActivel mage(ILuint ImageNum);
Listing 4-2. Syntax of the mipmap access function

iluActivel mage sets the current image to the ImageNum mipmap level of the current
image. If there are no mipmaps present, then iluActivel mage returns IL_FALSE, else it
returns IL_TRUE. The base image is mipmap level 0, so specify 0 for ImageNum to
return to the base image. The only other method for setting the current image to the base
imageisto cal ilBindlmage again.

iluActivel mage is functionally equivalent to iluActiveMipmap, except that it deals with
animations and not mipmaps.

Layers
DevIL does not have a full layer implementation yet.

Sub-Image Mixing

An image can have both mipmaps and animations at the same time. Every image in an
animation chain can have its own set of mipmaps, though it is not necessary by any
means. If you “activate” an animation image in the base image’ s animation chain, the
active image becomes the new “base’ image. Therefore, if you call iluActiveMipmap,
the new active image will become the new active image,

26 Developer's Image Library Manual

DXTC/S3TC Notes

DDS Loading/Saving

DevlL supports loading and saving of Microsoft .dds files. DDSfiles can either be
compressed or uncompressed. If they are compressed, DDS files use DirectX Texture
Compression (DXTC). DXTC isaso known as S3TC, since Microsoft licensed the
compression technology from S3.

Keeping DXTC Data

When loading, DevIL uncompresses the DXTC. If you cal ilEnable with the
IL_KEEP_DXTC_DATA parameter, DevIL will keep an uncompressed copy of the
DXTC data dong with the image. Functions that deal with DXTC data can use this data
without having to recompress the uncompressed data, making these functions operate
faster. The only drawback is the use of more memory.

Controlling Saving

DevIL’s DXTC support consists of three different compression formats: DXT1, DXT3
and DXT5. DXT2 and DXT4 use premultiplied apha, which not even OpenGL supports.
DeviL loads DXT2 and DX T4 textures but immediately converts them to formats that do
not use premultiplied apha. To set what format to save DDS files in, use this line:

ilSetinteger(IL_DXTC_FORMAT, Format);

Format canbelL_DXT1, IL_DXT3or IL_DXTS5.

Retrieving DXTC Data

To retrieve a copy of the DXTC data, use ilGetDXTCData. To determine how large
Buffer should be, first call ilGetDXTCData with the Buffer parameter asNULL. This
function will then return the number of bytes that are required to completely store the
DXTC data. Call it asecond time to actualy retrieve the data.

ILuint ilGetDXTCData(lLvoid * Buffer, [ILuint BufferSize, ILenum
DXTCFormat)

Listing 5-1. Syntax of the ilGetDXTCData function

If the DXTC data does not exist in the format that you request, DevIL will automatically

compressthe data. If iIGetDXTCData returns 0, then the data could not be compressed.
To seeif acertain format of DXTC data aready exists for the currently bound image, call
ilGetlnteger with the IL_DXTC _DATA_FORMAT parameter.

Developer’s Image Library Manual 27

OpenGL/Direct3D DXTC Support

ILUT allows you to directly send the DXTC datato OpenGL or Direct3D. Severa
modes in ILUT directly control this behavior.

OpenGL S3TC Support

OpenGL can use S3TC (DXTC) textures via extensions. If a computer does not support
the S3TC texture extension, DevIL will just send the data rormally through
glTeximage2D, asaways. Please keep in mind that DDS files store their datain a top-
down format, so if you enable the OpenGL S3TC support, make certain to set the origins
of al images in the upper l€ft:

iIEnable(IL_ORIGIN_SET);
il Setl rteger(IL_ORIGIN_MODE, IL_ORIGIN_UPPER_LEFT);

To enable the OpenGL S3TC support, use the ilutEnable function with the
ILUT_GL_USE_S3TC parameter:

ilutEnable(ILUT_GL_USE_S3TC);

Setting this parameter means that ILUT will only use DXTC data from images that are
already compressed with DXTC (e.g. DDSfiles). To force ILUT to compress any image
it sends to OpenGL, use ilutEnable again:

ilutEnable(ILUT_GL_GEN_S3TC);

This can adversely affect your performance while loading textures, though, so use it with
caution, especiadly if you are running a performance-critical application.

Direct 3D DXTC Support

ILUT’ s Direct 3D (D3D) support works exactly like the OpenGL support, except you use
the ILUT_D3D_USE_DXTC and ILUT_D3D_GEN_DXTC definesinstead of
ILUT_GL_USE S3TCand ILUT_GL_GEN_S3TC, respectively.

28 Developer's Image Library Manual

Appendix A: Common DevIL Error Codes

Errors sometimes occur within DeviL. To get the error code of the last error that
occurred, call ilGetError with no parameters. To get a human-readable string of an error
code, call iluErrorString with the error code. A table of error codes follows:

Error Code #define Hexadecimal Value | Decimal Value
IL_NO _ERROR 0x000 0
IL_INVALID _ENUM 0x501 1281
IL_OUT_OF MEMORY 0x502 1282
IL_FORMAT_NOT_SUPPORTED 0x503 1283
IL_INTERNAL _ERROR 0x504 1284
IL_INVALID_VALUE 0x505 1285
IL_ ILLEGAL_OPERATION 0x506 1286
IL_ ILLEGAL_FILE VALUE 0x507 1287
IL_INVALID_FILE HEADER 0x508 1288
IL_INVALID_PARAM 0x509 1289
IL_COULD_NOT_OPEN_FILE 0x50A 1290
IL_INVALID _EXTENSION 0x50B 1291
IL_FILE ALREADY_EXISTS 0x50C 1292
IL_ OUT_FORMAT _SAME 0x50D 1293
IL_STACK_OVERFLOW Ox50E 1294
IL_STACK_UNDERFLOW Ox50F 1295
IL_INVALID_CONVERSION 0x510 1296
IL_BAD DIMENSIONS 0x511 1297
IL_FILE_READ_ERROR 0x512 1298
IL_LIB_JPEG_ERROR Ox5E2 1506
IL_LIB_PNG ERROR Ox5E3 1507
IL_LIB_TIFF_ ERROR Ox5E4 1508
IL_LIB_MNG_ERROR 0x5E5 1509
IL_UNKNOWN_ERROR OxX5FF 1535

Table A-1. DevlL error codes

Developer’s Image Library Manual 29

Appendix B: Supported File Formats

DevIL supports loading and saving of alarge number of image formats. Table B-1 lists
the formats DevIL supports.

Formats Supported by DevlL

Loading Saving

Type Extension(s) Type Extension(s)
Windows Bitmap Jbmp Windows Bitmap bmp
Dr. Halo Cut File .cut C-style header .h
DirectDraw Surface | .dds DirectDraw Surface | .dds
Graphics
Interchange Format of Joeg 1P, -JPE, .JPeg
Icons Jico, .cur Palette .pal
Jpeg Jpa, .jpe, .jpeg ZSoft PCX .pcx
Interlaced Bitmap Jbm g?gpart])ilssNetwork .png
Homeworld File Jdif Pnm .pbm, .pgm, .ppm
Doom Walls/ Flats | .Imp Adobe PhotoShop psd
Half-Life Model .mdl Raw Data raw
Mng Animation .mng Silicon Graphics .sgi, .bw, .rgb, .rgha
PhotoCD .pcd Targa tga
ZSoft PCX .pcx TIF Aif, tiff
PIC pic
PIX pix
Portable Network
Graphics P9
Pnm ggm -pgm, .ppm,
PhotoShop psd
Pixar xr
Silicon Graphics .sgi, .bw, .rgb, .rgha
Targa tga
TIF Aif, tiff
Quake2 Texture wal
X Pixd Map Xpm

30 Developer's Image Library Manual

Raw Data

Any

Table B-1. Types of image file formats DevlL supports

ilLoad, ilLoadF and ilL oadL all accept a Type parameter. Possible values for the Type
parameter for each function are listed below. 1f you use an unsupported value for Type,
then the function generates an IL_INVALID_ENUM error and returns IL_FAL SE.

Supported Loading Types

DL define | gt | “Vue | byilload | byiitoadr | byiitoedl
IL_BMP 0x420 1056 \Y \Y, Vv
IL_CUT 0x421 1057 \Y \Y \Y
IL_DCX 0x438 1080 \Y \Y \%
IL_DDS 0x437 1079 \Y \Y \%
IL_DOOM 0x422 1058 \Y \Y \%
IL_DOOM_FLAT 0x423 1059 \% \% \%
IL_GIF 0x436 1078 \% \% \%
IL_ICO 0x424 1060 \Y \% \%
IL_ING 0x435 1077 \Y \Y \Y
IL_JPG (1JL) 0x425 1061 \Y \%
IL_JPG (libjpeg) 0x425 1061 \% \Y \%
IL_LBM 0x426 1062 \Y \Y, Vv
IL_LIF 0x434 1076 \Y \Y, Vv
IL_MDL 0x431 1073 \Y \Y \Y
IL_MNG 0x435 1077 \Y \Y \%
IL_PCD O0x427 1063 \Y \Y \%
IL_PCX 0x428 1064 \Y \Y \%
IL_PIC 0x429 1065 \% \% \%
IL_PIX 0x43C 1084 \% \% \%
IL_PNG O0x42A 1066 \Y \% \%
IL_PNM 0x42B 1067 \Y \Y \Y
IL_PSD 0x439 1081 \Y \Y \Y
IL_PSP 0x43B 1083 \Y \Y, \Y
IL_PXR 0x43D 1085 \Y \Y, \Y
IL_RAW 0x430 1072 \Y \Y, \Y

Developer's Image Library Manual 31

IL_SGlI 0x42C 1068 \Y \Y, Vv
IL_TGA 0x42D 1069 \Y \Y \Y
IL_TIF Ox42E 1070 \Y \Y \Y
IL_WAL 0x432 1074 \Y \Y \%
IL_XPM Ox43E 1086 \Y \Y \%

Table B-2. Valuesfor the Type parameter

iISave, ilSaveF and il Savel al accept a Type parameter. Possible values for the Type
parameter for each function are listed below. 1f you use an unsupported value for Type,
then the function generatesan IL_INVALID_ENUM error and returns IL_FAL SE.

Supported Saving Types

oL #define | yalle | value | byitSave | by mver | by faveL
IL_BMP 0x420 1056 \Y \Y \%
IL_CHEAD Ox42F 1071 \% \% \%
IL_DDS 0x437 1079 \% \% \%
IL_JPG (I1JL) 0x425 1061 \Y \%
IL_JPG (libjpeg) 0x425 1061 \Y; Vv \Y;
IL_PCX 0x428 1064 \Y \Y \Y
IL_PNG Ox42A 1066 \Y \Y, \Y
IL_PNM 0x42B 1067 \Y \Y, Vv
IL_PSD 0x439 1081 \Y \Y, Vv
IL_RAW 0x430 1072 \Y \Y \%
IL_SGI 0x42C 1068 \Y \Y \%
IL_TGA 0x42D 1069 \Y \Y \%
IL_TIF O0x42E 1070 \Y \Y \%

Table B-3. Valuesfor the Type parameter

32 Developer's Image Library Manual

Index

