

 Developer’s Image Library Manual

By Denton Woods
Abysmal Software

November 2001

Table of Contents

Introduction..1
Library Setup ...2

Microsoft Visual C++ Setup ..2
 Directories ...2
 Post-Build...3
 MSVC++ Bug Workaround ...4
 Multithreading ...4
DJGPP Setup ...5
Alternate Compilers/Platforms Setup ..5

Basic Procedures ..6
Initializing DevIL ..6
File Handling ...7
 Loading Images..7
 Saving Images ..7

Image Characterisitics ...8
Image Manipulation...8

Alienifying...8
Blurring..9
Contrast..9
Equalization...10
Gamma Correction ..10
Negativity ..10
Noise ..11
Pixelization..11
Sharpening ...12

Resizing Images..13
Sub-Images ...13

Mipmaps ..13
Animations ..

Developer’s Image Library Manual 1

Introduction

Developer’s Image Library was previously called OpenIL, but due to trademark issues,
OpenIL is now known as DevIL. DevIL is an open source programming library for
programmers to incorporate in to their own programs. DevIL loads and saves a large
variety of images for use in a software developer’s program. This library is capable of
manipulating images in various ways and passing image information to display APIs,
such as OpenGL and Direct3D.

The purpose of this manual is to guide users in coding with the Developer’s Image
Library. This manual is for users proficient in C and with competent knowledge of the
integrated development environment (IDE) or compiler they are using.

Library Reference

Several times throughout this document, the three different sub- libraries of DevIL are
referenced as IL, ILU and ILUT. IL refers to the base library for loading, saving and
converting images. ILU refers to the middle level library for image manipulation. ILUT
refers to the high level library for displaying images. Functions in IL, ILU and ILUT are
prefixed by ‘il’, ‘ilu’ and ‘ilut’, respectively.

2 Developer’s Image Library Manual

Library Setup

Microsoft Visual C++ Setup
DevIL setup for Windows is straightforward. Unzip DevIL in an empty directory. If
using WinZip, check the “Use folder names” box before unzipping. Use the -d command
line option if using pkunzip. Then double-click on the ImageLib.dsw file in the install
directory to load the DevIL workspace in Microsoft Visual C++ (MSVC++).

Directories

You will need to change some directory settings in MSVC++ to get DevIL working.

1. Navigate to the Tools menu and select Options.
2. Click on the Directories tab.
3. Under Show directories for, select "Include files".
4. Click the New button (to the left of the red 'X')
5. Type the directory DevIL is installed in, plus "\Include". For example, if you

installed DevIL to E:\ImageLib, enter "E:\ImageLib\Include".

Figure 1-1. Include Directory Settings Dialog

6. Under Show directories for, click on "Library files".
7. Click the New button (to the left of the red 'X').
8. Type the directory DevIL is installed in, plus “\Lib". For example, if you installed

DevIL to E:\ImageLib, enter "E:\ImageLib\Lib".
9. Click the New button (to the left of the red ‘X’).

Developer’s Image Library Manual 3

10. Type the directory DevIL is installed in, plus "\Lib\Debug". In the previous example,
you would enter "E:\ImageLib\Lib\Debug".

11. Choose OK.

Figure 1-2. Library Directory Settings Dialog

Post-Build

If your Windows system directory is C:\Windows\System, you can skip this section.
Otherwise, you need to tell DevIL where it should copy .dll files.

1. Navigate to the Project menu and choose Settings.
2. Click on the right arrow in the top right-hand corner until the Post-build steps tab

comes up.
3. Click the Post-build steps tab.
4. Click on the OpenIL project in the left pane.
5. Change the string in the right pane to reflect your Windows system directory from

c:\windows\system.
6. Change the Settings For drop-down menu to Win32 Release if in Win32 Debug

mode. Change the Settings For drop-down menu to Win32 Debug if in Win32
Release mode.

7. Perform these steps on the OpenILU and OpenILUT projects by selecting them from
the left pane.

8. Choose OK.

4 Developer’s Image Library Manual

Figure 1-3. Post-Build Dialog

MSVC++ Bug Workaround

Microsoft Visual C++ 6.0 has a bug that prevents debugging of a project. The bug
appears to occur when you use a #pragma to link a .lib file and link it via another method.
The header files il.h, ilu.h and ilut.h automatically link the .lib files in via a #pragma for
convenience. To prevent this bug, check for and remove these:

• devil.lib, devil-d.lib, ilu.lib, ilu-d.lib, ilut.lib and ilut-d.lib in your project settings

(Project – Settings menu).
• devil.lib, devil-d.lib, ilu.lib, ilu-d.lib, ilut.lib and ilut-d.lib in your project’s

workspace. Some people link libraries into their project this way, which really should
be discouraged, due to the hardcoded paths.

Multithreading

DevIL takes advantage of the multithreaded standard LIBC DLLs. To use file streams
with OpenIL, you must change the project settings of your project. If you do not perform
these steps, your program will crash whenever you attempt to use a DevIL file stream.

1. Navigate to the Project menu and choose Settings.
2. Click the C/C++ tab.
3. Change the Category drop-down menu to read Code Generation.

Developer’s Image Library Manual 5

4. Change the Use run-time library drop-down menu to Multithreaded DLL if the
Settings For menu says Win32 Release. Change the Use run-time library drop-down
menu to Debug Multithreaded DLL if the Settings For menu says Win32 Debug.

5. Choose OK.

DJGPP Setup
Setting up DevIL in DJGPP requires the following steps:

1. Unzip DevIL in an empty directory. If using WinZip, check the “Use folder names”

box before unzipping. Use the -d command line option if using pkunzip.
2. Create a new subdirectory called ‘il’ in your DJGPP include directory.
3. Copy the files to their respective places:

• To use the precompiled libraries, copy libil.a, libilu.a and libilut.a from
ImageLib\lib\djgpp to your DJGPP lib directory. Then copy il.h, ilu.h and ilut.h
from your ImageLib\lib\il directory to your DJGPP include\il directory.

• To compile the library yourself, change directories to ImageLib\Makefiles\Djgpp.
This folder contains only a makefile for DJGPP. Simply type ‘make’, and the
makefile will compile DevIL and copy the files to their respective locations.

To compile with DevIL in DJGPP, add –lil to your command line. To also use ILU and
ILUT, use –lil and –lilut, respectively.

General Linux Setup
Setting up DevIL in Linux requires the following steps:

1. Unzip DevIL in an empty directory, just typing “unzip” and then the zip filename.

Unzip should automatically use the directory structure present in the DevIL zip file.
2. To use the precompiled libraries, copy libIL.so, libILU.so and libILUT.so to a place

specified in your library path, or use the full path to the libraries when compiling.
3. To compile the library yourself:

• Change directories to ImageLib/Makefiles/Linux. This contains a higher level
makefile and calls the lower makefiles in the ImageLib/OpenIL,
ImageLib/OpenILU and ImageLib/OpenILUT directories, to compile each
individual library.

• Type ‘make’ to create the libraries.
• Type ‘make install’ to copy the .so files to /usr/lib and the headers to

/usr/include/il.
• Type ‘make depend’ if you have any problems with dependencies to regenerate

the dependencies.

6 Developer’s Image Library Manual

Mac Setup
To be completed soon…

Alternate Compilers/Platforms
We will support several alternate compilers shortly. Check back at
http://www.imagelib.org for more details.

Basic Usage

Initializing DevIL

You must initialize DevIL, or it will most certainly crash. You need to initialize each
library (il, ilu, and ilut) separately. You do not need to initialize libraries you are not
using, but keep in mind that the higher level libraries are dependent on the lower ones.
For example, ilut is dependent on ilu and il, so you have to initialize il and ilu, also.

IL Initialization

Simply call the ilInit function with no parameters:

// Initialize IL
ilInit();

ILU Initialization

Call the iluInit function with no parameters:

// Initialize ILU
iluInit();

ILUT Initialization

ILUT initialization is slightly more complex than IL and ILU initialization. The function
you will use is ilutRenderer. You must call ilutRenderer before you use any ILUT
functions. This function initializes ILUT support for the API you desire to use by a
single parameter:

• ILUT_OPENGL – Initializes ILUT’s OpenGL support.
• ILUT_ALLEGRO – Initializes ILUT’s Allegro support.
• ILUT_WIN32 – Initializes ILUT’s Windows GDI and DirectX 8 support.

Developer’s Image Library Manual 7

An example of using ilutRenderer follows:

// Initialize ILUT with OpenGL support.
ilutRenderer(ILUT_OPENGL);

Image Name Handling
Image names are DevIL’s way of keeping track of images it is currently containing.
Some other image libraries return structs, but they generally seem more cluttered than
DevIL’s image name handling.

ILvoid ilGenImages(ILsizei Num, ILuint *Images);
ILvoid ilBindImage(ILuint Image);
ILvoid ilDeleteImages(ILsizei Num, ILuint *Images);

Listing 2-1. Syntax of the image name functions

Generating Image Names

Use ilGenImages to generate a set of image names. ilGenImages accepts an array of
ILuint to receive the generated image names. There are no guarantees about the order of
the generated image names or any other predictable behaviour like this. If
ilDeleteImages is called on an image name, ilGenImages will return that value
afterward, until all deleted image names are used. This conserves memory and is
generally quick. The only guarantee is that each member of the Images parameter (up to
Num number of them) will have a new, unique value.

Binding Image Names

ilBindImage binds the current image to the image described by the image name in
Image. DevIL reserves the number zero for the default base image. If you pass a value
for Image that was not generated by ilGenImages, ilBindImage automatically creates an
image specified by the image name passed. An image must always be bound before you
call any functions that operate on images and their data.

When DevIL creates a new image, the image has the default properties of 1x1x1 with a
bit depth of 8. DevIL creates a new image when you call ilBindImage with an image
name that has not been generated by ilGenImages or when you call ilGenImages
specifically.

Deleting Image Names

ilDeleteImages is the exact opposite of ilGenImages and even accepts the exact same
parameters. ilDeleteImages deletes image names to free memory for subsequent
operations. You should always call ilDeleteImages on images that are not in use

8 Developer’s Image Library Manual

anymore. When you delete an image, DevIL actually deletes all data and anything
associate with it, so that ilGenImages can possibly use the image name later.

File Handling

Loading Images

DevIL’s main purpose is to load images. DevIL’s loading is designed to be extremely
easy but very powerful. Appendix B lists the image types DevIL is capable of loading.

ILboolean ilLoadImage(const char *FileName);
ILboolean ilLoad(ILenum Type, const char *FileName);
ILboolean ilLoadF(ILenum Type, ILHANDLE File);
ILboolean ilLoadL(ILenum Type, ILvoid *Lump, ILuint Size);

Listing 2-2. Syntax of the loading functions

DevIL contains four loading functions to support different loading styles and loading
from several different image sources.

Loading from Files - ilLoadImage

ilLoadImage is the main DevIL loading function. All you do is pass ilLoadImage the
filename of the image you wish to load. ilLoadImage takes care of the rest.
ilLoadImage allows users to transparently load several different image formats
uniformly. DevIL’s most powerful function is ilLoadImage because of this feature.

Before loading the image, ilLoadImage must first determine the image format of the file.
ilLoadImage performs the following steps:

1. Compares the filename’s extension to any registered file handlers, allowing the

registered file handlers to take precedence over the default DevIL file handlers. If the
extension matches a registered file handler, ilLoadImage passes control to the file
handler and returns. For more information on registering, refer to the section entitled
“Registration”.

2. Compares the filename’s extension to the extensions natively supported by DevIL. If
the extension matches a loading function’s extension, ilLoadImage passes control to
the file handler and returns.

3. Examines the file for a header and tries to match it with a known type of image
header. If a valid image header is found, ilLoadImage passes control to the
appropriate file hander and returns.

4. Returns IL_FALSE.

Developer’s Image Library Manual 9

Loading from Files - ilLoad

DevIL’s other file loading function is ilLoad. ilLoad is similar to ilLoadImage in many
respects but different in other ways. ilLoad accepts two parameters: the type of image
and the filename of the image.

ilLoad’s type parameter is what differentiates it from ilLoadImage. Type can be any of
the values listed in table B-2 in appendix B or the value IL_TYPE_UNKNOWN. If Type
is a value from table B-1, ilLoad attempts to load the file as the specified type of image
format. Only use this if you know what type of images you will be loading and want to
bypass DevIL’s checks.

If IL_TYPE_UNKNOWN is specified for Type, ilLoad behaves exactly like
ilLoadImage. Refer to the previous section for detailed behaviour of these two
functions.

Loading from File Streams - ilLoadF

DevIL’s file stream loading function is ilLoadF. ilLoadF is exactly equivalent to
ilLoad, but instead of accepting a const char pointer, ilLoadF accepts an ILHANDLE.
DevIL defines ILHANDLE as a void pointer via a typedef. Under normal circumstances,
File will be a FILE struct pointer defined in stdio.h.

Refer to the section entitled “Registration” for instructions on how to use your own file
handling functions and file handles.

Loading from Memory Lumps - ilLoadL

DevIL’s file handling is abstracted to allow loading images from memory called “lumps”.
ilLoadL handles loading from lumps. You must specify a valid type as the first
parameter and the lump as the second parameter.

The third parameter that ilLoadL accepts is the total size of the lump. DevIL uses this
value to perform bounds checking on the input data. Specify a value of zero for Size if
you do not want ilLoadL to perform any bounds checking.

Saving Images

DevIL also has some powerful saving functions to fully complement the loading
functions.

ILboolean ilSaveImage(const char *FileName);
ILboolean ilSave(ILenum Type, const char *FileName);
ILboolean ilSaveF(ILenum Type, ILHANDLE File);
ILboolean ilSaveL(ILenum Type, ILvoid *Lump, ILuint Size);

10 Developer’s Image Library Manual

Listing 2-3. Syntax of the saving functions

DevIL’s saving functions are identical to the loading functions, despite the fact that they
save images instead of load images. Lists of possible values for Type and supported
saving formats are located in Appendix B.

Image Management

Defining Images
ilTexImage is used to give the current bound image new attributes that you specify. Any
image data or attributes previously in the current bound image are lost after a call to
ilTexImage, so make sure that you call it only after preserving the image data if need be.

ILboolean ilTexImage(ILuint Width, ILuint Height, ILuint Depth, ILubyte Bpp,
ILenum Format, ILenum Type, ILvoid *Data);

Listing 2-4. Syntax of the ilTexImage function

ilTexImage has one of the longer parameter lists of the DevIL functions, so we will
briefly go over what is expected for each argument.

• Width: The width of the image. If this is zero, DevIL creates an image with a
width of one.

• Height: The height of the image. If this is zero, DevIL creates an image with
a height of one.

• Depth: The depth of the image, if it is an image volume. Most applications
should specify 0 or 1 for this parameter.

• Bpp: The bytes per pixel of the image data. Do not confuse this with bits
per pixel, which is also commonly used. Common bytes per pixel
values are 1, 3 and 4.

• Format: The format of the image data. Formats accepted are listed here and
are self-explanatory:

IL_COLOUR_INDEX
IL_RGB
IL_RGBA
IL_BGR
IL_BGRA
IL_LUMINANCE

• Type: The type of image data. Usually, this will be IL_UNSIGNED_BYTE,

unless you want to utilize multiple bits per colour channel. Type
accepted are listed here:

Developer’s Image Library Manual 11

IL_BYTE
IL_UNSIGNED_BYTE
IL_SHORT
IL_UNSIGNED_SHORT
IL_INT
IL_UNSIGNED_INT
IL_FLOAT
IL_DOUBLE

• Data: Mainly for convenience, if you already have image data loaded and

ready to put into the newly created image. Specifying NULL for this
parameter just results in the image having unpredictable image data.
You can specify image data later using ilSetData or ilSetPixels.

Getting Image Data
There are two ways to set image data: one is quick and dirty, while the other is more
flexible but slower. These two functions are ilGetData and ilCopyPixels.

ILubyte* ilGetData(ILvoid);
ILuint ilCopyPixels(ILuint XOff, ILuint YOff, ILuint ZOff, ILuint Width,

ILuint Height, ILuint Depth, ILenum Format, ILenum
Type, ILvoid *Data);

Listing 2-6. Syntax of the functions to get image data

The Quick Method

Use ilGetData to get a direct pointer to the current bound image’s data pointer. Do not
ever try to delete this pointer that is returned. To get information about the image data,
use ilGetInteger.

ilGetData will return NULL and set an error of IL_ILLEGAL_OPERATION if there is no
currently bound image.

The Flexible Method

Use ilCopyPixels to get a portion of the current bound image’s data or to get the current
image’s data with in a different format / type. DevIL takes care of all conversions
automatically for you to give you the image data in the format or type that you need. The
data block can range from a single line to a rectangle, all the way to a cube.

ilCopyPixels has a long parameter list, like ilTexImage, so here is a description of the
parameters of ilCopyPixels:

• XOff: Specifies where to start copying in the x direction.
• YOff: Specifies where to start copying in the y direction.

12 Developer’s Image Library Manual

• ZOff: Specifies where to start copying in the z direction. This will be 0 in
most cases, unless you are using image volumes.

• Width: Number of pixels to copy in the x direction.
• Height: Number of pixels to copy in the y direction.
• Depth: Number of pixels to copy in the z direction. This will be 1, unless

you are using image volumes.
• Format: The format of the returned data that you desire. Acceptable formats

are IL_RGB, IL_RGBA, IL_BGR, IL_BGRA and IL_LUMINANCE.
• Type: The type of the data block in Data. Acceptable types are

IL_UNSIGNED_BYTE, IL_BYTE, IL_UNSIGNED_SHORT, IL_SHORT,
IL_UNSIGNED_INT and IL_INT. IL_FLOAT and IL_DOUBLE will be
supported shortly. For most purposes, IL_UNSIGNED_BYTE is
always acceptable here.

• Data: A pointer to the data block that you wish to receive the specified
image data. If this is NULL, DevIL will set an error of
IL_INVALID_PARAM and return IL_FALSE (please refer to the
section on error handling in DevIL).

Setting Image Data
There are two ways to set image data: one is quick and dirty, while the other is more
flexible but slower. These two functions are ilSetData and ilSetPixels.

ILboolean ilSetData(ILvoid *Data);
ILvoid ilSetPixels(ILuint XOff, ILuint YOff, ILuint ZOff, ILuint Width,

ILuint Height, ILuint Depth, ILenum Format, ILenum
Type, ILvoid *Data);

Listing 2-5. Syntax of the functions to set image data

The Quick Method

Use ilSetData to set the image data directly. DevIL will copy the data provided in the
Data parameter to the image’s data, so you need not worry about DevIL trying to delete
your pointer later on. This function is the counterpart to ilGetData.

You must provide image data in the exact same format, type, width, height, depth and
bpp as the current bound image, since DevIL does no conversions here; it just does a
simple memory copy.

ilSetData will return IL_FALSE and set an error of IL_INVALID_PARAM if Data is
NULL.

Developer’s Image Library Manual 13

The Flexible Method

Use ilSetPixels to set a portion of the current bound image’s data or to set the current
image’s data with data of a different format / type. Specify the data block, where you
want to put it and what kind of data it is, and DevIL takes care of all conversions
automatically for you. The data block can range from a single line to a rectangle, all the
way to a cube.

ilSetPixels has a long parameter list, like ilCopyPixels, so here is a description of the
parameters of ilSetPixels:

• XOff: Specifies where to place the block of image data in the x direction.
• YOff: Specifies where to place the block of image data in the y direction.
• ZOff: Specifies where to place the block of image data in the z direction.

This will be 0 in most cases, unless you are using image volumes.
• Width: The width of the data block in Data.
• Height: The height of the data block in Data.
• Depth: The depth of the data block in Data. This will be 1, unless you are

using image volumes.
• Format: The format of the data block in Data. Acceptable formats are

IL_RGB, IL_RGBA, IL_BGR, IL_BGRA and IL_LUMINANCE.
• Type: The type of the data block in Data. For acceptable types, refer to the

documentation on ilTexImage. For most purposes,
IL_UNSIGNED_BYTE is always acceptable here.

• Data: A pointer to the actual data block. If this is NULL, DevIL will set an
error of IL_INVALID_PARAM and return IL_FALSE (please refer to
the section on error handling in DevIL).

If you specify a combination of an offset with a width/height/depth that makes your data
block overreach the edge of the currently bound image, DevIL will clip your data so that
no crashes will occur and that the resulting image will be correctly produced.

Copying Images
DevIL has three functions to copy images: ilCopyImage, ilOverlayImage and ilBlit.

ILboolean ilCopyImage(ILuint Src);
ILboolean ilOverlayImage(ILuint Src, ILint XCoord, ILint YCoord, ILint

ZCoord);
ILboolean ilBlit(ILuint Src, ILint DestX, ILint DestY, ILint DestZ, ILuint SrcX,

ILuint SrcY, ILuint SrcZ, ILuint Width, ILuint Height, ILuint
Depth);

Listing 2-6. Syntax of the functions to copy images

14 Developer’s Image Library Manual

Direct Copying

Use ilCopyImage to create a copy of an image. ilCopyImage will copy the image
specified by the image name in Src to the currently bound image. ilCopyImage can be
useful when you want to apply an effect to an image but want to preserve the original.
The image bound before calling ilCopyImage will still be bound after ilCopyImage
exits.

If you specify an image name in Src that has not been generated by ilGenImages or
ilBindImage, ilCopyImage will set the IL_INVALID_PARAM error and return
IL_FALSE.

Blitting

ilBlit copies a portion of an image over to another image. This is similar to blitting
performed in graphics libraries, such as StretchBlt in the Windows API. You can copy a
rectangular block from anywhere in a source image, specified by Src, to any point in the
currently bound image. A description of the various ilBlit parameters follows:

• Src: The source image name.
• DestX: Specifies where to place the block of image data in the x direction.
• DestY: Specifies where to place the block of image data in the y direction.
• DestZ: Specifies where to place the block of image data in the z direction.
• SrcX: Specifies where to start copying in the x direction of the source

image.
• SrcY: Specifies where to start copying in the y direction of the source

image.
• SrcZ: Specifies where to start copying in the z direction of the source

image.
• Width: How many pixels to copy in the x direction of the source image.
• Height: How many pixels to copy in the y direction of the source image.
• Depth: How many pixels to copy in the z direction of the source image.

Overlaying

ilOverlay is essentially the same as ilBlit, but it copies the entire image over, ins tead of
just a portion of the image. ilOverlay is more of a convenience function, since you can
obtain the same results by calling ilBlit with SrcX, SrcY and SrcZ set to zero, with the
Width, Height and Depth parameters set to the source image’s height, width and depth,
respectively. ilOverlay is missing six parameters that ilBlit has:

• Src: The source image name.
• DestX: Specifies where to place the block of image data in the x direction.
• DestY: Specifies where to place the block of image data in the y direction.
• DestZ: Specifies where to place the block of image data in the z direction.

Developer’s Image Library Manual 15

Error Handling

DevIL contains error-handling routines to alert the users of this library to any internal
problems in DevIL. The ilGetError function reports all errors in DevIL.
iluErrorString converts error numbers returned from ilGetError to a human-readable
format.

ILenum ilGetError(ILvoid);
const char* iluErrorString(ILenum Error);

Listing 3-1. Syntax of the error functions

Error Detection

Problems can always occur in any software application, and DevIL is no different.
DevIL keeps track of all non-fatal errors that have occurred during its operation. All
errors are kept on a stack maintained by ilGetError. Every time ilGetError is called,
the last error is returned and pushed off the top of the stack. You should call ilGetError
until IL_NO_ERROR is returned. IL_NO_ERROR signifies that there are no more errors
on the error stack. Most errors reported are not harmful, and DevIL operation can
continue, except for IL_OUT_OF_MEMORY.

All error codes that can be returned by ilGetError are listed in Appendix A.

Error Strings

iluErrorString returns a human readable error string from any error that ilGetError can
return. This is useful for when you want to display what kind of error happened to the
user.

16 Developer’s Image Library Manual

Image Characteristics

All images have a certain set of characteristics: origin of the image, format of the image,
type of the image, and more.

Origin

Developer’s Image Library Manual 17

Image Manipulation

ILU (image library utilities) contains functions to manipulate any type of image in a
variety of ways. Some functions filter images, while others perform a wider variety of
operations, such as scaling an image. This section will give a comparison of the utility
functions against figure 4-1.

Figure 4-1. Original, unmodified image

Alienifying

iluAlienify is a filter I created purely by accident, when I was attempting to write colour
matrix code. The effect iluAlienify gives to an image is a green and purple tint. On
images with humans in them, iluAlienify generally makes the people look green, hence
the fabricated term “alienify”. iluAlienify does not accept any parameters. Figure 4-2
illustrates this effect on the OpenIL logo.

Figure 4-2. “Alienified” image

Blurring

ILU has two blurring functions – iluBlurAverage and iluBlurGaussian. Blurring can be
used for a simple motion blur effect or something as sophisticated as concealing the
identity of a person in an image. Both of these functions use a convolution filter and
multiple iterations to blur an image. Gaussian blurs look more natural than averaging
blurs, because the center pixel in the convolution filter “weighs” more. For an in-depth
description of convolution filters, see the excellent “Elementary Digital Filtering” article
at http://www.gamedev.net/reference/programming/features/edf/.

iluBlurAverage and iluBlurGaussian are functionally equivalent. Both functions accept
a single parameter. Call the desired function with the number of iterations of blurring

18 Developer’s Image Library Manual

you wish to be performed on the image. Increase the number of iterations to increase the
blurriness of an image.

Figure 4-3. Average blurred
with 10 iterations applied

Figure 4-4. Gaussian blurred
with 10 iterations applied

Contrast

The American Heritage Dictionary describes contrast as “The use of opposing elements,
such as colors, forms, or lines, in proximity to produce an intensified effect in a work of
art.” ILU can apply more colour contrast to your image by brightening the lights and
darkening the darks via iluContrast. This effect can make a dull image livelier and
“stand out” more.

iluContrast accepts a single parameter describing the desired amount of contrast to
modify the image by. A value of 1.0 does not affect the image. Values above 1.0 to 1.7
increase the amount of contrast in the image, with 1.7 increasing the contrast the most.
Values from 0.0 to 1.0 decrease the amount of contrast in the image. Values outside of
the 0.0 to 1.7 range will give undefined results. -0.5 to 0.0 will actually create a negative
of the image and increase the contrast.

Figure 4-5. Contrast of 1.6

Figure 4-6. Contrast of 0.2

Figure 4-7. Contrast of -.5

Equalization

Sometimes it may be useful to equalize an image – that is, bring the extreme colour
values to a median point. iluEqualize darkens the bright colours and lightens the dark
colours, reducing the contrast in an image or “equalizing” it. Figure 4-8 shows the results
of applying iluEqualize to the OpenIL image.

Developer’s Image Library Manual 19

Figure 4-8. Equalized image

Gamma Correction

iluGammaCorrect applies gamma correction to an image using an exponential curve.
The single parameter iluGammaCorrect accepts is the gamma correction factor you
wish to use. A gamma correction factor of 1.0 leaves the image unmodified. Values in
the range 0.0 - 1.0 darken the image. 0.0 leaves a totally black image. Anything above
1.0 brightens the image, but values too large may saturate the image.

Figure 4-9. Result of gamma
correction of 0.5

Figure 4-10. Result of gamma
correction of 1.9

Negativity

iluNegative is a very basic function that inverts every pixel’s colour in an image. For
example, pure white becomes pure black, and vice-versa. The resulting colour of a pixel
can be determined by this formula: new_colour = ~old_colour (where the tilde is the
negation of the set of bits). iluNegative does not accept any parameters and is reversible
by calling it again.

Figure 4-11. iluNegative example

Noise

DevIL can add “random” noise to any image to make it appear noisy. The function,
iluNoisify, simply uses the standard libc rand function after initializing it with a seed to
srand. If your program depends on a different seed to rand, reset it after calling

20 Developer’s Image Library Manual

iluNoisify. The seed DevIL uses is the standard time(NULL) call. Of course, the noise
added to the image is not totally random, since no such thing exists, but there should be
no repeating, except in extremely large images.

iluNoisify accepts a single parameter – the tolerance to use. This parameter is a clamped
(float) value that should be in the range 0.0f - 1.0f. Lower values indicate a lower
tolerance, while higher values indicate the opposite. The tolerance indicates just how
much of a mono intensity that iluNoisify is allowed to apply to each pixel. A “random”
mono intensity is applied to each pixel so that you will not end up with totally new
colours, just the same colours with a different luminance value. Colours change by both
negative and positive values, so some pixels may be darker, some may be lighter, and
others will remain the same.

Figure 4-12. Result of iluNoisify with a 0.50 tolerance

Pixelization

iluPixelize creates pixelized images by averaging the colour values of blocks of pixels.
The single parameter passed to iluPixelize determines the size of these square blocks.
The result is a pixelized image.

Call iluPixelize with values greater than 1 to pixelize the image. The larger the values,
the larger the pixel blocks will be. A value of 1 will leave the image unchanged. Values
less than 1 generate an error.

Figure 4-13. Pixelization of 10 pixels across

Sharpening

Sharpening sharply defines the outlines in an image. iluSharpen performs this
sharpening effect on an image. iluSharpen accepts two parameters: the sharpening
factor and the number of iterations to perform the sharpening effect.

Developer’s Image Library Manual 21

The sharpening factor must be in the range of 0.0 - 2.5. A value of 1.0 for the sharpening
factor will have no effect on the image. Values in the range 1.0 - 2.5 will sharpen the
image, with 2.5 having the most pronounced sharpening effect. Values from 0.0 to 1.0 do
a type of reverse sharpening, blurring the image. Values outside of the 0.0 - 2.5 range
produce undefined results.

The number of iterations to perform will usually be 1, but to achieve more sharpening,
increase the number of iterations. This parameter is similar to the Iterations parameter of
the two blurring functions. The time it takes to run this function is directly proportional
to the number of iterations desired.

Figure 4-14. Sharpening of 1.5 with 5 iterations

22 Developer’s Image Library Manual

Resizing Images

Basic Scaling
To resize images, use the iluScale function:

ILboolean iluScale(ILuint Width, ILuint Height, ILuint Depth);

 Listing 5.1. Syntax of the iluScale function

The three parameters are relatively explanatory. Any image can be resized to a new
width, height and depth, provided that you have enough memory to hold the new image.
The new dimensions do not have to be the same as the original in any way. Aspect ratios
of the image do not even have to be the same. The currently bound image is replaced
entirely by the new scaled image.

If you specify a dimension greater than the original dimension, the image enlarges in that
direction. Alternately, if you specify a dimension smaller than the original dimension,
the image shrinks in that direction.

Figure 5.1. Original image

Figure 5.2. Enlarged image

Figure 5.3. Shrunk image

Advanced Scaling
DevIL also allows you to specify which method you want to use to resize images. As
you can see in figure 5.2, the enlarged image is very pixelized. In figure 5.3, the shrunk
image is also blocky. This is because a nearest filter was applied to the image in figure
5.1 to produce figures 5.2 and 5.3.

DevIL allows you to use different filters to produce better scaling results:

• Nearest filter - ILU_NEAREST
• Linear filter - ILU_LINEAR
• Bilinear filter - ILU_BILINEAR
• Box filter - ILU_SCALE_BOX
• Triangle filter - ILU_SCALE_TRIANGLE
• Bell filter - ILU_SCALE_BELL
• B Spline filter - ILU_SCALE_BSPLINE
• Lanczos filter - ILU_SCALE_LANCZOS3
• Mitchell filter - ILU_SCALE_MITCHELL

Developer’s Image Library Manual 23

Just use the ILU_FILTER define as PName in iluImageParameter with the appropriate
filter define as Param.

ILvoid iluImageParameter(ILenum PName, ILenum Param);

 Listing 5.1. Syntax of the iluImageParameter function

Filter Comparisons
The first three filters (nearest, linear and bilinear) require an increasing amount of time to
resize an image, with nearest being the quickest and bilinear being the slowest of the
three. All the filters after bilinear are considered the “advanced” scaling functions and
require much more time to complete, but they generally produce much nicer results.

When minimizing an image, bilinear filtering should be sufficient, since it uses a four-
pixel averaging scheme to create every destination pixel. Minimized images do not
generally have to use higher sampling schemes to achieve a reasonable image.

Enlarging an image, though, depends quite heavily on how good the sampling scheme is.
DevIL provides several filtering functions to let you choose which one best fits your
needs: speed versus image quality. Below is a comparison of the different types of filters
when enlarging an image.

Figure 5.4. Original ‘Lena’ image

Nearest filter

Linear filter

Bilinear filter

Box filter

Triangle filter

Bell filter

24 Developer’s Image Library Manual

B spline filter

Lanczos filter

Mitchell filter

Figure 5.5. Filter comparisons

Developer’s Image Library Manual 25

Sub-Images

Mipmaps
Mipmaps in DevIL are successive half-dimensioned power-of-2 images. The dimensions
do not have to be powers of 2 if you generate them manually, but DevIL’s mipmap
generation facilities assume power-of-2 images.

Figure 4-1. All mipmap levels down to 1x1

Mipmap Creation

You generate mipmaps for any image using iluBuildMipmaps . If the image already has
mipmaps, the previous mipmaps are erased, and new mipmaps are generated. Otherwise,
iluBuildMipmaps generates mipmaps for the image.

The mipmaps built are always powers of 2. If the original image does not have power-of-
2 dimensions, iluBuildMipmaps resizes the original image via iluScale to have power-
of-2 dimensions.

Mipmap Access

Access mipmaps through the iluActiveMipmap function:

ILboolean ilActiveMipmap(ILuint MipNum);

Listing 4-1. Syntax of the mipmap access function

iluActiveMipmap sets the current image to the MipNum mipmap level of the current
image. If there are no mipmaps present, then iluActiveMipmap returns IL_FALSE, else
it returns IL_TRUE. The base image is mipmap level 0, so specify 0 for MipNum to
return to the base image. The only other method for setting the current image to the base
image is to call ilBindImage again.

Animations
Animations are similar to mipmaps, but instead of being smaller successive images, the
images are the same size but have different data. The successive animation chains in
DevIL can be used to create animations in your programs. File formats that natively
support animations are .gif and .mng. You can also create your own sub- images as
animations.

26 Developer’s Image Library Manual

Animation Chain Creation

Animation Chain Access

Access animations through the iluActiveImage function:

ILboolean ilActiveImage(ILuint ImageNum);

Listing 4-2. Syntax of the mipmap access function

iluActiveImage sets the current image to the ImageNum mipmap level of the current
image. If there are no mipmaps present, then iluActiveImage returns IL_FALSE, else it
returns IL_TRUE. The base image is mipmap level 0, so specify 0 for ImageNum to
return to the base image. The only other method for setting the current image to the base
image is to call ilBindImage again.

iluActiveImage is functionally equivalent to iluActiveMipmap, except that it deals with
animations and not mipmaps.

Layers
DevIL does not have a full layer implementation yet.

Sub-Image Mixing
An image can have both mipmaps and animations at the same time. Every image in an
animation chain can have its own set of mipmaps, though it is not necessary by any
means. If you “activate” an animation image in the base image’s animation chain, the
active image becomes the new “base” image. Therefore, if you call iluActiveMipmap,
the new active image will become the new active image,

Developer’s Image Library Manual 27

Appendix A: Common DevIL Error Codes

Errors sometimes occur within DevIL. To get the error code of the last error that
occurred, call ilGetError with no parameters. To get a human-readable string of an error
code, call iluErrorString with the error code. A table of error codes follows:

Error Code #define Hexadecimal Value Decimal Value

IL_NO_ERROR 0x000 0
IL_INVALID_ENUM 0x501 1281
IL_OUT_OF_MEMORY 0x502 1282
IL_FORMAT_NOT_SUPPORTED 0x503 1283
IL_INTERNAL_ERROR 0x504 1284
IL_INVALID_VALUE 0x505 1285
IL_ILLEGAL_OPERATION 0x506 1286
IL_ILLEGAL_FILE_VALUE 0x507 1287
IL_INVALID_FILE_HEADER 0x508 1288
IL_INVALID_PARAM 0x509 1289
IL_COULD_NOT_OPEN_FILE 0x50A 1290
IL_INVALID_EXTENSION 0x50B 1291
IL_FILE_ALREADY_EXISTS 0x50C 1292
IL_OUT_FORMAT_SAME 0x50D 1293
IL_STACK_OVERFLOW 0x50E 1294
IL_STACK_UNDERFLOW 0x50F 1295
IL_INVALID_CONVERSION 0x510 1296
IL_LIB_GIF_ERROR 0x5E1 1505
IL_LIB_JPEG_ERROR 0x5E2 1506
IL_LIB_PNG_ERROR 0x5E3 1507
IL_LIB_TIFF_ERROR 0x5E4 1508
IL_LIB_MNG_ERROR 0x5E5 1509
IL_UNKNOWN_ERROR 0x5FF 1535

Table A-1. DevIL error codes

28 Developer’s Image Library Manual

Appendix B: Supported File Formats

DevIL supports loading and saving of a large number of image formats. Table B-1 lists
the formats DevIL supports.

Formats Supported by DevIL

Loading Saving

Type Extension(s) Type Extension(s)

Windows Bitmap .bmp Windows Bitmap .bmp

Dr. Halo Cut File .cut C-style header .h
Graphics
Interchange Format

.gif Jpeg .jpg, .jpe, .jpeg

Icons .ico, .cur Palette .pal
Jpeg .jpg, .jpe, .jpeg ZSoft PCX .pcx

Interlaced Bitmap .lbm Portable Network
Graphics .png

Homeworld File .lif Pnm .pbm, .pgm, .ppm

Doom Walls / Flats .lmp Raw Data .raw

Half-Life Model .mdl Silicon Graphics .sgi, .bw, .rgb, .rgba
Mng Animation .mng Targa .tga

PhotoCD .pcd TIF .tif, .tiff

ZSoft PCX .pcx
PIC .pic
Portable Network
Graphics

.png

Pnm .pbm, .pgm, .ppm,
.pnm

Silicon Graphics .sgi, .bw, .rgb, .rgba

Targa .tga
TIF .tif, .tiff

Quake2 Texture .wal

Raw Data Any

Table B-1. Types of image file formats DevIL supports

Developer’s Image Library Manual 29

ilLoad, ilLoadF and ilLoadL all accept a Type parameter. Possible values for the Type
parameter for each function are listed below. If you use an unsupported value for Type,
then the function generates an IL_INVALID_ENUM error and returns IL_FALSE.

Supported Loading Types

DevIL #define Hex
Value

Decimal
Value

Supported
by ilLoad

Supported
by ilLoadF

Supported
by ilLoadL

IL_BMP 0x420 1056 v v v
IL_CUT 0x421 1057 v v v

IL_DOOM 0x422 1058 v v v

IL_DOOM_FLAT 0x423 1059 v v v
IL_GIF 0x436 1078 v

IL_ICO 0x424 1060 v v v

IL_JNG 0x435 1077 v v v
IL_JPG (IJL) 0x425 1061 v v

IL_JPG (libjpeg) 0x425 1061 v v v

IL_LBM 0x426 1062 v v v
IL_LIF 0x434 1076 v v v

IL_MDL 0x431 1073 v v v

IL_MNG 0x435 1077 v v v
IL_OIL 0x433 1075 v v v

IL_PCD 0x427 1063 v v v

IL_PCX 0x428 1064 v v v
IL_PIC 0x429 1065 v v v

IL_PNG 0x42A 1066 v v v

IL_PNM 0x42B 1067 v v v
IL_RAW 0x430 1072 v v v

IL_SGI 0x42C 1068 v v v

IL_TGA 0x42D 1069 v v v
IL_TIF 0x42E 1070 v v v

IL_WAL 0x432 1074 v v v

Table B-2. Values for the Type parameter

30 Developer’s Image Library Manual

ilSave, ilSaveF and ilSaveL all accept a Type parameter. Possible values for the Type
parameter for each function are listed below. If you use an unsupported value for Type,
then the function generates an IL_INVALID_ENUM error and returns IL_FALSE.

Supported Saving Types

DevIL #define Hex
Value

Decimal
Value

Supported
by ilSave

Supported
by ilSaveF

Supported
by ilSaveL

IL_BMP 0x420 1056 v v v
IL_CHEAD 0x42F 1071 v v v

IL_JPG (IJL) 0x425 1061 v

IL_JPG (libjpeg) 0x425 1061 v
IL_OIL 0x433 1075 v v v

IL_PCX 0x428 1064 v v v

IL_PNG 0x42A 1066 v
IL_PNM 0x42B 1067 v v v

IL_RAW 0x430 1072 v v v

IL_SGI 0x42C 1068 v v v
IL_TGA 0x42D 1069 v v v

IL_TIF 0x42E 1070 v

Table B-3. Values for the Type parameter

Developer’s Image Library Manual 31

Index

