summaryrefslogtreecommitdiff
path: root/libtomcrypt/src/pk/dsa/dsa_generate_pqg.c
blob: 8c5f55829c133d00e4fa8e0b2bb9254b19b4bd45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
#include "tomcrypt.h"

/**
   @file dsa_generate_pqg.c
   DSA implementation - generate DSA parameters p, q & g
*/

#ifdef LTC_MDSA

/**
  Create DSA parameters (INTERNAL ONLY, not part of public API)
  @param prng          An active PRNG state
  @param wprng         The index of the PRNG desired
  @param group_size    Size of the multiplicative group (octets)
  @param modulus_size  Size of the modulus (octets)
  @param p             [out] bignum where generated 'p' is stored (must be initialized by caller)
  @param q             [out] bignum where generated 'q' is stored (must be initialized by caller)
  @param g             [out] bignum where generated 'g' is stored (must be initialized by caller)
  @return CRYPT_OK if successful, upon error this function will free all allocated memory
*/
static int _dsa_make_params(prng_state *prng, int wprng, int group_size, int modulus_size, void *p, void *q, void *g)
{
  unsigned long L, N, n, outbytes, seedbytes, counter, j, i;
  int err, res, mr_tests_q, mr_tests_p, found_p, found_q, hash;
  unsigned char *wbuf, *sbuf, digest[MAXBLOCKSIZE];
  void *t2L1, *t2N1, *t2q, *t2seedlen, *U, *W, *X, *c, *h, *e, *seedinc;

  /* check size */
  if (group_size >= LTC_MDSA_MAX_GROUP || group_size < 1 || group_size >= modulus_size) {
    return CRYPT_INVALID_ARG;
  }

 /* FIPS-186-4 A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
  *
  * L = The desired length of the prime p (in bits e.g. L = 1024)
  * N = The desired length of the prime q (in bits e.g. N = 160)
  * seedlen = The desired bit length of the domain parameter seed; seedlen shallbe equal to or greater than N
  * outlen  = The bit length of Hash function
  *
  * 1.  Check that the (L, N)
  * 2.  If (seedlen <N), then return INVALID.
  * 3.  n = ceil(L / outlen) - 1
  * 4.  b = L- 1 - (n * outlen)
  * 5.  domain_parameter_seed = an arbitrary sequence of seedlen bits
  * 6.  U = Hash (domain_parameter_seed) mod 2^(N-1)
  * 7.  q = 2^(N-1) + U + 1 - (U mod 2)
  * 8.  Test whether or not q is prime as specified in Appendix C.3
  * 9.  If qis not a prime, then go to step 5.
  * 10. offset = 1
  * 11. For counter = 0 to (4L- 1) do {
  *       For j=0 to n do {
  *         Vj = Hash ((domain_parameter_seed+ offset + j) mod 2^seedlen
  *       }
  *       W = V0 + (V1 *2^outlen) + ... + (Vn-1 * 2^((n-1) * outlen)) + ((Vn mod 2^b) * 2^(n * outlen))
  *       X = W + 2^(L-1)           Comment: 0 <= W < 2^(L-1); hence 2^(L-1) <= X < 2^L
  *       c = X mod 2*q
  *       p = X - (c - 1)           Comment: p ~ 1 (mod 2*q)
  *       If (p >= 2^(L-1)) {
  *         Test whether or not p is prime as specified in Appendix C.3.
  *         If p is determined to be prime, then return VALID and the values of p, qand (optionally) the values of domain_parameter_seed and counter
  *       }
  *       offset = offset + n + 1   Comment: Increment offset
  *     }
  */

  seedbytes = group_size;
  L = (unsigned long)modulus_size * 8;
  N = (unsigned long)group_size * 8;

  /* XXX-TODO no Lucas test */
#ifdef LTC_MPI_HAS_LUCAS_TEST
  /* M-R tests (when followed by one Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
  mr_tests_p = (L <= 2048) ? 3 : 2;
  if      (N <= 160)  { mr_tests_q = 19; }
  else if (N <= 224)  { mr_tests_q = 24; }
  else                { mr_tests_q = 27; }
#else
  /* M-R tests (without Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
  if      (L <= 1024) { mr_tests_p = 40; }
  else if (L <= 2048) { mr_tests_p = 56; }
  else                { mr_tests_p = 64; }

  if      (N <= 160)  { mr_tests_q = 40; }
  else if (N <= 224)  { mr_tests_q = 56; }
  else                { mr_tests_q = 64; }
#endif

  if (N <= 256) {
    hash = register_hash(&sha256_desc);
  }
  else if (N <= 384) {
    hash = register_hash(&sha384_desc);
  }
  else if (N <= 512) {
    hash = register_hash(&sha512_desc);
  }
  else {
    return CRYPT_INVALID_ARG; /* group_size too big */
  }

  if ((err = hash_is_valid(hash)) != CRYPT_OK)                                   { return err; }
  outbytes = hash_descriptor[hash].hashsize;

  n = ((L + outbytes*8 - 1) / (outbytes*8)) - 1;

  if ((wbuf = XMALLOC((n+1)*outbytes)) == NULL)                                  { err = CRYPT_MEM; goto cleanup3; }
  if ((sbuf = XMALLOC(seedbytes)) == NULL)                                       { err = CRYPT_MEM; goto cleanup2; }

  err = mp_init_multi(&t2L1, &t2N1, &t2q, &t2seedlen, &U, &W, &X, &c, &h, &e, &seedinc, NULL);
  if (err != CRYPT_OK)                                                           { goto cleanup1; }

  if ((err = mp_2expt(t2L1, L-1)) != CRYPT_OK)                                   { goto cleanup; }
  /* t2L1 = 2^(L-1) */
  if ((err = mp_2expt(t2N1, N-1)) != CRYPT_OK)                                   { goto cleanup; }
  /* t2N1 = 2^(N-1) */
  if ((err = mp_2expt(t2seedlen, seedbytes*8)) != CRYPT_OK)                      { goto cleanup; }
  /* t2seedlen = 2^seedlen */

  for(found_p=0; !found_p;) {
    /* q */
    for(found_q=0; !found_q;) {
      if (prng_descriptor[wprng].read(sbuf, seedbytes, prng) != seedbytes)       { err = CRYPT_ERROR_READPRNG; goto cleanup; }
      i = outbytes;
      if ((err = hash_memory(hash, sbuf, seedbytes, digest, &i)) != CRYPT_OK)    { goto cleanup; }
      if ((err = mp_read_unsigned_bin(U, digest, outbytes)) != CRYPT_OK)         { goto cleanup; }
      if ((err = mp_mod(U, t2N1, U)) != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_add(t2N1, U, q)) != CRYPT_OK)                                { goto cleanup; }
      if (!mp_isodd(q)) mp_add_d(q, 1, q);
      if ((err = mp_prime_is_prime(q, mr_tests_q, &res)) != CRYPT_OK)            { goto cleanup; }
      if (res == LTC_MP_YES) found_q = 1;
    }

    /* p */
    if ((err = mp_read_unsigned_bin(seedinc, sbuf, seedbytes)) != CRYPT_OK)      { goto cleanup; }
    if ((err = mp_add(q, q, t2q)) != CRYPT_OK)                                   { goto cleanup; }
    for(counter=0; counter < 4*L && !found_p; counter++) {
      for(j=0; j<=n; j++) {
        if ((err = mp_add_d(seedinc, 1, seedinc)) != CRYPT_OK)                   { goto cleanup; }
        if ((err = mp_mod(seedinc, t2seedlen, seedinc)) != CRYPT_OK)             { goto cleanup; }
        /* seedinc = (seedinc+1) % 2^seed_bitlen */
        if ((i = mp_unsigned_bin_size(seedinc)) > seedbytes)                     { err = CRYPT_INVALID_ARG; goto cleanup; }
        zeromem(sbuf, seedbytes);
        if ((err = mp_to_unsigned_bin(seedinc, sbuf + seedbytes-i)) != CRYPT_OK) { goto cleanup; }
        i = outbytes;
        err = hash_memory(hash, sbuf, seedbytes, wbuf+(n-j)*outbytes, &i);
        if (err != CRYPT_OK)                                                     { goto cleanup; }
      }
      if ((err = mp_read_unsigned_bin(W, wbuf, (n+1)*outbytes)) != CRYPT_OK)     { goto cleanup; }
      if ((err = mp_mod(W, t2L1, W)) != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_add(W, t2L1, X)) != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_mod(X, t2q, c))  != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_sub_d(c, 1, p))  != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_sub(X, p, p))    != CRYPT_OK)                                { goto cleanup; }
      if (mp_cmp(p, t2L1) != LTC_MP_LT) {
        /* p >= 2^(L-1) */
        if ((err = mp_prime_is_prime(p, mr_tests_p, &res)) != CRYPT_OK)          { goto cleanup; }
        if (res == LTC_MP_YES) {
          found_p = 1;
        }
      }
    }
  }

 /* FIPS-186-4 A.2.1 Unverifiable Generation of the Generator g
  * 1. e = (p - 1)/q
  * 2. h = any integer satisfying: 1 < h < (p - 1)
  *    h could be obtained from a random number generator or from a counter that changes after each use
  * 3. g = h^e mod p
  * 4. if (g == 1), then go to step 2.
  *
  */

  if ((err = mp_sub_d(p, 1, e)) != CRYPT_OK)                                     { goto cleanup; }
  if ((err = mp_div(e, q, e, c)) != CRYPT_OK)                                    { goto cleanup; }
  /* e = (p - 1)/q */
  i = mp_count_bits(p);
  do {
    do {
      if ((err = rand_bn_bits(h, i, prng, wprng)) != CRYPT_OK)                   { goto cleanup; }
    } while (mp_cmp(h, p) != LTC_MP_LT || mp_cmp_d(h, 2) != LTC_MP_GT);
    if ((err = mp_sub_d(h, 1, h)) != CRYPT_OK)                                   { goto cleanup; }
    /* h is randon and 1 < h < (p-1) */
    if ((err = mp_exptmod(h, e, p, g)) != CRYPT_OK)                              { goto cleanup; }
  } while (mp_cmp_d(g, 1) == LTC_MP_EQ);

  err = CRYPT_OK;
cleanup:
  mp_clear_multi(t2L1, t2N1, t2q, t2seedlen, U, W, X, c, h, e, seedinc, NULL);
cleanup1:
  XFREE(sbuf);
cleanup2:
  XFREE(wbuf);
cleanup3:
  return err;
}

/**
  Generate DSA parameters p, q & g
  @param prng          An active PRNG state
  @param wprng         The index of the PRNG desired
  @param group_size    Size of the multiplicative group (octets)
  @param modulus_size  Size of the modulus (octets)
  @param key           [out] Where to store the created key
  @return CRYPT_OK if successful.
*/
int dsa_generate_pqg(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
{
   int err;

   LTC_ARGCHK(key         != NULL);
   LTC_ARGCHK(ltc_mp.name != NULL);

   /* init mp_ints */
   if ((err = mp_init_multi(&key->p, &key->g, &key->q, &key->x, &key->y, NULL)) != CRYPT_OK) {
      return err;
   }
   /* generate params */
   err = _dsa_make_params(prng, wprng, group_size, modulus_size, key->p, key->q, key->g);
   if (err != CRYPT_OK) {
      goto cleanup;
   }

   key->qord = group_size;

   return CRYPT_OK;

cleanup:
   dsa_free(key);
   return err;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */