summaryrefslogtreecommitdiff
path: root/lib/elixir/lib/integer.ex
blob: 67295f833681e8a434c9af1e737546011e2764fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
defmodule Integer do
  @moduledoc """
  Functions for working with integers.
  """

  import Bitwise

  @doc """
  Determines if `integer` is odd.

  Returns `true` if the given `integer` is an odd number,
  otherwise it returns `false`.

  Allowed in guard clauses.

  ## Examples

      iex> Integer.is_odd(5)
      true

      iex> Integer.is_odd(6)
      false

      iex> Integer.is_odd(-5)
      true

      iex> Integer.is_odd(0)
      false

  """
  defguard is_odd(integer) when is_integer(integer) and (integer &&& 1) == 1

  @doc """
  Determines if an `integer` is even.

  Returns `true` if the given `integer` is an even number,
  otherwise it returns `false`.

  Allowed in guard clauses.

  ## Examples

      iex> Integer.is_even(10)
      true

      iex> Integer.is_even(5)
      false

      iex> Integer.is_even(-10)
      true

      iex> Integer.is_even(0)
      true

  """
  defguard is_even(integer) when is_integer(integer) and (integer &&& 1) == 0

  @doc """
  Computes the modulo remainder of an integer division.

  `Integer.mod/2` uses floored division, which means that
  the result will always have the sign of the `divisor`.

  Raises an `ArithmeticError` exception if one of the arguments is not an
  integer, or when the `divisor` is `0`.

  ## Examples

      iex> Integer.mod(5, 2)
      1
      iex> Integer.mod(6, -4)
      -2

  """
  @spec mod(integer, neg_integer | pos_integer) :: integer
  def mod(dividend, divisor) do
    remainder = rem(dividend, divisor)

    if remainder * divisor < 0 do
      remainder + divisor
    else
      remainder
    end
  end

  @doc """
  Performs a floored integer division.

  Raises an `ArithmeticError` exception if one of the arguments is not an
  integer, or when the `divisor` is `0`.

  `Integer.floor_div/2` performs *floored* integer division. This means that
  the result is always rounded towards negative infinity.

  If you want to perform truncated integer division (rounding towards zero),
  use `Kernel.div/2` instead.

  ## Examples

      iex> Integer.floor_div(5, 2)
      2
      iex> Integer.floor_div(6, -4)
      -2
      iex> Integer.floor_div(-99, 2)
      -50

  """
  @spec floor_div(integer, neg_integer | pos_integer) :: integer
  def floor_div(dividend, divisor) do
    if dividend * divisor < 0 and rem(dividend, divisor) != 0 do
      div(dividend, divisor) - 1
    else
      div(dividend, divisor)
    end
  end

  @doc """
  Returns the ordered digits for the given `integer`.

  An optional `base` value may be provided representing the radix for the returned
  digits. This one must be an integer >= 2.

  ## Examples

      iex> Integer.digits(123)
      [1, 2, 3]

      iex> Integer.digits(170, 2)
      [1, 0, 1, 0, 1, 0, 1, 0]

      iex> Integer.digits(-170, 2)
      [-1, 0, -1, 0, -1, 0, -1, 0]

  """
  @spec digits(integer, pos_integer) :: [integer, ...]
  def digits(integer, base \\ 10)
      when is_integer(integer) and is_integer(base) and base >= 2 do
    do_digits(integer, base, [])
  end

  defp do_digits(digit, base, []) when abs(digit) < base, do: [digit]
  defp do_digits(digit, base, []) when digit == -base, do: [-1, 0]
  defp do_digits(base, base, []), do: [1, 0]
  defp do_digits(0, _base, acc), do: acc

  defp do_digits(integer, base, acc),
    do: do_digits(div(integer, base), base, [rem(integer, base) | acc])

  @doc """
  Returns the integer represented by the ordered `digits`.

  An optional `base` value may be provided representing the radix for the `digits`.
  Base has to be an integer greater or equal than `2`.

  ## Examples

      iex> Integer.undigits([1, 2, 3])
      123

      iex> Integer.undigits([1, 4], 16)
      20

      iex> Integer.undigits([])
      0

  """
  @spec undigits([integer], pos_integer) :: integer
  def undigits(digits, base \\ 10) when is_list(digits) and is_integer(base) and base >= 2 do
    do_undigits(digits, base, 0)
  end

  defp do_undigits([], _base, 0), do: 0
  defp do_undigits([digit], base, 0) when is_integer(digit) and digit < base, do: digit
  defp do_undigits([1, 0], base, 0), do: base
  defp do_undigits([0 | tail], base, 0), do: do_undigits(tail, base, 0)
  defp do_undigits([], _base, acc), do: acc

  defp do_undigits([digit | _], base, _) when is_integer(digit) and digit >= base,
    do: raise(ArgumentError, "invalid digit #{digit} in base #{base}")

  defp do_undigits([digit | tail], base, acc) when is_integer(digit),
    do: do_undigits(tail, base, acc * base + digit)

  @doc """
  Parses a text representation of an integer.

  An optional `base` to the corresponding integer can be provided.
  If `base` is not given, 10 will be used.

  If successful, returns a tuple in the form of `{integer, remainder_of_binary}`.
  Otherwise `:error`.

  Raises an error if `base` is less than 2 or more than 36.

  If you want to convert a string-formatted integer directly to a integer,
  `String.to_integer/1` or `String.to_integer/2` can be used instead.

  ## Examples

      iex> Integer.parse("34")
      {34, ""}

      iex> Integer.parse("34.5")
      {34, ".5"}

      iex> Integer.parse("three")
      :error

      iex> Integer.parse("34", 10)
      {34, ""}

      iex> Integer.parse("f4", 16)
      {244, ""}

      iex> Integer.parse("Awww++", 36)
      {509216, "++"}

      iex> Integer.parse("fab", 10)
      :error

      iex> Integer.parse("a2", 38)
      ** (ArgumentError) invalid base 38

  """
  @spec parse(binary, 2..36) :: {integer, binary} | :error
  def parse(binary, base \\ 10)

  def parse(_binary, base) when base not in 2..36 do
    raise ArgumentError, "invalid base #{inspect(base)}"
  end

  def parse(binary, base) do
    case count_digits(binary, base) do
      0 ->
        :error

      count ->
        {digits, rem} = :erlang.split_binary(binary, count)
        {:erlang.binary_to_integer(digits, base), rem}
    end
  end

  defp count_digits(<<sign, rest::binary>>, base) when sign in '+-' do
    case count_digits_nosign(rest, base, 1) do
      1 -> 0
      count -> count
    end
  end

  defp count_digits(<<rest::binary>>, base) do
    count_digits_nosign(rest, base, 0)
  end

  digits = [{?0..?9, -?0}, {?A..?Z, 10 - ?A}, {?a..?z, 10 - ?a}]

  for {chars, diff} <- digits,
      char <- chars do
    digit = char + diff

    defp count_digits_nosign(<<unquote(char), rest::binary>>, base, count)
         when base > unquote(digit) do
      count_digits_nosign(rest, base, count + 1)
    end
  end

  defp count_digits_nosign(<<_::binary>>, _, count), do: count

  @doc """
  Returns a binary which corresponds to the text representation
  of `integer`.

  Inlined by the compiler.

  ## Examples

      iex> Integer.to_string(123)
      "123"

      iex> Integer.to_string(+456)
      "456"

      iex> Integer.to_string(-789)
      "-789"

      iex> Integer.to_string(0123)
      "123"

  """
  @spec to_string(integer) :: String.t()
  def to_string(integer) do
    :erlang.integer_to_binary(integer)
  end

  @doc """
  Returns a binary which corresponds to the text representation
  of `integer` in the given `base`.

  `base` can be an integer between 2 and 36.

  Inlined by the compiler.

  ## Examples

      iex> Integer.to_string(100, 16)
      "64"

      iex> Integer.to_string(-100, 16)
      "-64"

      iex> Integer.to_string(882681651, 36)
      "ELIXIR"

  """
  @spec to_string(integer, 2..36) :: String.t()
  def to_string(integer, base) do
    :erlang.integer_to_binary(integer, base)
  end

  @doc """
  Returns a charlist which corresponds to the text representation of the given `integer`.

  Inlined by the compiler.

  ## Examples

      iex> Integer.to_charlist(123)
      '123'

      iex> Integer.to_charlist(+456)
      '456'

      iex> Integer.to_charlist(-789)
      '-789'

      iex> Integer.to_charlist(0123)
      '123'

  """
  @spec to_charlist(integer) :: charlist
  def to_charlist(integer) do
    :erlang.integer_to_list(integer)
  end

  @doc """
  Returns a charlist which corresponds to the text representation of `integer` in the given `base`.

  `base` can be an integer between 2 and 36.

  Inlined by the compiler.

  ## Examples

      iex> Integer.to_charlist(100, 16)
      '64'

      iex> Integer.to_charlist(-100, 16)
      '-64'

      iex> Integer.to_charlist(882681651, 36)
      'ELIXIR'

  """
  @spec to_charlist(integer, 2..36) :: charlist
  def to_charlist(integer, base) do
    :erlang.integer_to_list(integer, base)
  end

  @doc """
  Returns the greatest common divisor of the two given integers.

  The greatest common divisor (GCD) of `integer1` and `integer2` is the largest positive
  integer that divides both `integer1` and `integer2` without leaving a remainder.

  By convention, `gcd(0, 0)` returns `0`.

  ## Examples

      iex> Integer.gcd(2, 3)
      1

      iex> Integer.gcd(8, 12)
      4

      iex> Integer.gcd(8, -12)
      4

      iex> Integer.gcd(10, 0)
      10

      iex> Integer.gcd(7, 7)
      7

      iex> Integer.gcd(0, 0)
      0

  """
  @spec gcd(0, 0) :: 0
  @spec gcd(integer, integer) :: pos_integer
  def gcd(integer1, integer2) when is_integer(integer1) and is_integer(integer2) do
    gcd_positive(abs(integer1), abs(integer2))
  end

  defp gcd_positive(0, integer2), do: integer2
  defp gcd_positive(integer1, 0), do: integer1
  defp gcd_positive(integer1, integer2), do: gcd_positive(integer2, rem(integer1, integer2))

  # TODO: Remove by 2.0
  # (hard-deprecated in elixir_dispatch)
  @doc false
  @spec to_char_list(integer) :: charlist
  def to_char_list(integer), do: Integer.to_charlist(integer)

  # TODO: Remove by 2.0
  # (hard-deprecated in elixir_dispatch)
  @doc false
  @spec to_char_list(integer, 2..36) :: charlist
  def to_char_list(integer, base), do: Integer.to_charlist(integer, base)
end