summaryrefslogtreecommitdiff
path: root/doc/lispref/numbers.texi
diff options
context:
space:
mode:
authorPaul Eggert <eggert@cs.ucla.edu>2011-06-03 11:49:33 -0700
committerPaul Eggert <eggert@cs.ucla.edu>2011-06-03 11:49:33 -0700
commitbe14b9ab109c8deb5745dc47cbc471e97be06486 (patch)
tree1926a234ed0eabcba764462e4b99c1ea58b2fcb7 /doc/lispref/numbers.texi
parentb047e7acb5d18ccabb7548e3e7d79eba711008bf (diff)
downloademacs-be14b9ab109c8deb5745dc47cbc471e97be06486.tar.gz
Document wide integers better.
* files.texi (File Attributes): Document ino_t values better. * numbers.texi (Integer Basics, Integer Basics, Arithmetic Operations): (Bitwise Operations): * objects.texi (Integer Type): Integers are typically 62 bits now. * os.texi (Time Conversion): Document time_t values better.
Diffstat (limited to 'doc/lispref/numbers.texi')
-rw-r--r--doc/lispref/numbers.texi154
1 files changed, 77 insertions, 77 deletions
diff --git a/doc/lispref/numbers.texi b/doc/lispref/numbers.texi
index 2c73a03a26c..ff057c22254 100644
--- a/doc/lispref/numbers.texi
+++ b/doc/lispref/numbers.texi
@@ -36,22 +36,24 @@ exact; they have a fixed, limited amount of precision.
@section Integer Basics
The range of values for an integer depends on the machine. The
-minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
+typical range is @minus{}2305843009213693952 to 2305843009213693951
+(62 bits; i.e.,
@ifnottex
--2**29
+-2**61
@end ifnottex
@tex
-@math{-2^{29}}
+@math{-2^{61}}
@end tex
to
@ifnottex
-2**29 - 1),
+2**61 - 1)
@end ifnottex
@tex
-@math{2^{29}-1}),
+@math{2^{61}-1})
@end tex
-but some machines may provide a wider range. Many examples in this
-chapter assume an integer has 30 bits.
+but some older machines provide only 30 bits. Many examples in this
+chapter assume that an integer has 62 bits and that floating point
+numbers are IEEE double precision.
@cindex overflow
The Lisp reader reads an integer as a sequence of digits with optional
@@ -63,7 +65,8 @@ Emacs range is treated as a floating-point number.
1. ; @r{The integer 1.}
+1 ; @r{Also the integer 1.}
-1 ; @r{The integer @minus{}1.}
- 1073741825 ; @r{The floating point number 1073741825.0.}
+ 4611686018427387904
+ ; @r{The floating point number 4.611686018427388e+18.}
0 ; @r{The integer 0.}
-0 ; @r{The integer 0.}
@end example
@@ -94,25 +97,21 @@ from 2 to 36. For example:
bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
view the numbers in their binary form.
- In 30-bit binary, the decimal integer 5 looks like this:
+ In 62-bit binary, the decimal integer 5 looks like this:
@example
-00 0000 0000 0000 0000 0000 0000 0101
+0000...000101 (62 bits total)
@end example
-@noindent
-(We have inserted spaces between groups of 4 bits, and two spaces
-between groups of 8 bits, to make the binary integer easier to read.)
-
The integer @minus{}1 looks like this:
@example
-11 1111 1111 1111 1111 1111 1111 1111
+1111...111111 (62 bits total)
@end example
@noindent
@cindex two's complement
-@minus{}1 is represented as 30 ones. (This is called @dfn{two's
+@minus{}1 is represented as 62 ones. (This is called @dfn{two's
complement} notation.)
The negative integer, @minus{}5, is creating by subtracting 4 from
@@ -120,24 +119,24 @@ complement} notation.)
@minus{}5 looks like this:
@example
-11 1111 1111 1111 1111 1111 1111 1011
+1111...111011 (62 bits total)
@end example
- In this implementation, the largest 30-bit binary integer value is
-536,870,911 in decimal. In binary, it looks like this:
+ In this implementation, the largest 62-bit binary integer value is
+2,305,843,009,213,693,951 in decimal. In binary, it looks like this:
@example
-01 1111 1111 1111 1111 1111 1111 1111
+0111...111111 (62 bits total)
@end example
Since the arithmetic functions do not check whether integers go
-outside their range, when you add 1 to 536,870,911, the value is the
-negative integer @minus{}536,870,912:
+outside their range, when you add 1 to 2,305,843,009,213,693,951, the value is the
+negative integer @minus{}2,305,843,009,213,693,952:
@example
-(+ 1 536870911)
- @result{} -536870912
- @result{} 10 0000 0000 0000 0000 0000 0000 0000
+(+ 1 2305843009213693951)
+ @result{} -2305843009213693952
+ @result{} 1000...000000 (62 bits total)
@end example
Many of the functions described in this chapter accept markers for
@@ -508,8 +507,8 @@ commonly used.
if any argument is floating.
It is important to note that in Emacs Lisp, arithmetic functions
-do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to
-@minus{}268435456, depending on your hardware.
+do not check for overflow. Thus @code{(1+ 2305843009213693951)} may
+evaluate to @minus{}2305843009213693952, depending on your hardware.
@defun 1+ number-or-marker
This function returns @var{number-or-marker} plus 1.
@@ -829,19 +828,19 @@ value of a positive integer by two, rounding downward.
The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
not check for overflow, so shifting left can discard significant bits
and change the sign of the number. For example, left shifting
-536,870,911 produces @minus{}2 on a 30-bit machine:
+2,305,843,009,213,693,951 produces @minus{}2 on a typical machine:
@example
-(lsh 536870911 1) ; @r{left shift}
+(lsh 2305843009213693951 1) ; @r{left shift}
@result{} -2
@end example
-In binary, in the 30-bit implementation, the argument looks like this:
+In binary, in the 62-bit implementation, the argument looks like this:
@example
@group
-;; @r{Decimal 536,870,911}
-01 1111 1111 1111 1111 1111 1111 1111
+;; @r{Decimal 2,305,843,009,213,693,951}
+0111...111111 (62 bits total)
@end group
@end example
@@ -851,7 +850,7 @@ which becomes the following when left shifted:
@example
@group
;; @r{Decimal @minus{}2}
-11 1111 1111 1111 1111 1111 1111 1110
+1111...111110 (62 bits total)
@end group
@end example
@end defun
@@ -874,9 +873,9 @@ looks like this:
@group
(ash -6 -1) @result{} -3
;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
-11 1111 1111 1111 1111 1111 1111 1010
+1111...111010 (62 bits total)
@result{}
-11 1111 1111 1111 1111 1111 1111 1101
+1111...111101 (62 bits total)
@end group
@end example
@@ -885,11 +884,11 @@ In contrast, shifting the pattern of bits one place to the right with
@example
@group
-(lsh -6 -1) @result{} 536870909
-;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
-11 1111 1111 1111 1111 1111 1111 1010
+(lsh -6 -1) @result{} 2305843009213693949
+;; @r{Decimal @minus{}6 becomes decimal 2,305,843,009,213,693,949.}
+1111...111010 (62 bits total)
@result{}
-01 1111 1111 1111 1111 1111 1111 1101
+0111...111101 (62 bits total)
@end group
@end example
@@ -899,34 +898,35 @@ Here are other examples:
@c with smallbook but not with regular book! --rjc 16mar92
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 62-bit binary values}
-(lsh 5 2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 20 ; = @r{00 0000 0000 0000 0000 0000 0001 0100}
+(lsh 5 2) ; 5 = @r{0000...000101}
+ @result{} 20 ; = @r{0000...010100}
@end group
@group
(ash 5 2)
@result{} 20
-(lsh -5 2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011}
- @result{} -20 ; = @r{11 1111 1111 1111 1111 1111 1110 1100}
+(lsh -5 2) ; -5 = @r{1111...111011}
+ @result{} -20 ; = @r{1111...101100}
(ash -5 2)
@result{} -20
@end group
@group
-(lsh 5 -2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 1 ; = @r{00 0000 0000 0000 0000 0000 0000 0001}
+(lsh 5 -2) ; 5 = @r{0000...000101}
+ @result{} 1 ; = @r{0000...000001}
@end group
@group
(ash 5 -2)
@result{} 1
@end group
@group
-(lsh -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011}
- @result{} 268435454 ; = @r{00 0111 1111 1111 1111 1111 1111 1110}
+(lsh -5 -2) ; -5 = @r{1111...111011}
+ @result{} 1152921504606846974
+ ; = @r{0011...111110}
@end group
@group
-(ash -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011}
- @result{} -2 ; = @r{11 1111 1111 1111 1111 1111 1111 1110}
+(ash -5 -2) ; -5 = @r{1111...111011}
+ @result{} -2 ; = @r{1111...111110}
@end group
@end smallexample
@end defun
@@ -961,23 +961,23 @@ because its binary representation consists entirely of ones. If
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 62-bit binary values}
-(logand 14 13) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101}
- @result{} 12 ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
+(logand 14 13) ; 14 = @r{0000...001110}
+ ; 13 = @r{0000...001101}
+ @result{} 12 ; 12 = @r{0000...001100}
@end group
@group
-(logand 14 13 4) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101}
- ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100}
- @result{} 4 ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100}
+(logand 14 13 4) ; 14 = @r{0000...001110}
+ ; 13 = @r{0000...001101}
+ ; 4 = @r{0000...000100}
+ @result{} 4 ; 4 = @r{0000...000100}
@end group
@group
(logand)
- @result{} -1 ; -1 = @r{11 1111 1111 1111 1111 1111 1111 1111}
+ @result{} -1 ; -1 = @r{1111...111111}
@end group
@end smallexample
@end defun
@@ -991,18 +991,18 @@ passed just one argument, it returns that argument.
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 62-bit binary values}
-(logior 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 13 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101}
+(logior 12 5) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ @result{} 13 ; 13 = @r{0000...001101}
@end group
@group
-(logior 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111}
- @result{} 15 ; 15 = @r{00 0000 0000 0000 0000 0000 0000 1111}
+(logior 12 5 7) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ ; 7 = @r{0000...000111}
+ @result{} 15 ; 15 = @r{0000...001111}
@end group
@end smallexample
@end defun
@@ -1016,18 +1016,18 @@ result is 0, which is an identity element for this operation. If
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 62-bit binary values}
-(logxor 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 9 ; 9 = @r{00 0000 0000 0000 0000 0000 0000 1001}
+(logxor 12 5) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ @result{} 9 ; 9 = @r{0000...001001}
@end group
@group
-(logxor 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111}
- @result{} 14 ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110}
+(logxor 12 5 7) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ ; 7 = @r{0000...000111}
+ @result{} 14 ; 14 = @r{0000...001110}
@end group
@end smallexample
@end defun
@@ -1040,9 +1040,9 @@ bit is one in the result if, and only if, the @var{n}th bit is zero in
@example
(lognot 5)
@result{} -6
-;; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
+;; 5 = @r{0000...000101} (62 bits total)
;; @r{becomes}
-;; -6 = @r{11 1111 1111 1111 1111 1111 1111 1010}
+;; -6 = @r{1111...111010} (62 bits total)
@end example
@end defun