diff options
author | Eli Zaretskii <eliz@gnu.org> | 2001-11-06 18:59:06 +0000 |
---|---|---|
committer | Eli Zaretskii <eliz@gnu.org> | 2001-11-06 18:59:06 +0000 |
commit | 136211a997eb94f7dc6f97219052317116e114da (patch) | |
tree | 014fd8ffa0fa5c5d81869ec26426fb262471ee23 /lisp/calc/calc-mtx.el | |
parent | 0ffbbdeb4464b5b0d63e83fe3f8e91674248d84d (diff) | |
download | emacs-136211a997eb94f7dc6f97219052317116e114da.tar.gz |
Initial import of Calc 2.02f.
Diffstat (limited to 'lisp/calc/calc-mtx.el')
-rw-r--r-- | lisp/calc/calc-mtx.el | 378 |
1 files changed, 378 insertions, 0 deletions
diff --git a/lisp/calc/calc-mtx.el b/lisp/calc/calc-mtx.el new file mode 100644 index 00000000000..b9dc2aa6d0b --- /dev/null +++ b/lisp/calc/calc-mtx.el @@ -0,0 +1,378 @@ +;; Calculator for GNU Emacs, part II [calc-mat.el] +;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc. +;; Written by Dave Gillespie, daveg@synaptics.com. + +;; This file is part of GNU Emacs. + +;; GNU Emacs is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY. No author or distributor +;; accepts responsibility to anyone for the consequences of using it +;; or for whether it serves any particular purpose or works at all, +;; unless he says so in writing. Refer to the GNU Emacs General Public +;; License for full details. + +;; Everyone is granted permission to copy, modify and redistribute +;; GNU Emacs, but only under the conditions described in the +;; GNU Emacs General Public License. A copy of this license is +;; supposed to have been given to you along with GNU Emacs so you +;; can know your rights and responsibilities. It should be in a +;; file named COPYING. Among other things, the copyright notice +;; and this notice must be preserved on all copies. + + + +;; This file is autoloaded from calc-ext.el. +(require 'calc-ext) + +(require 'calc-macs) + +(defun calc-Need-calc-mat () nil) + + +(defun calc-mdet (arg) + (interactive "P") + (calc-slow-wrapper + (calc-unary-op "mdet" 'calcFunc-det arg)) +) + +(defun calc-mtrace (arg) + (interactive "P") + (calc-slow-wrapper + (calc-unary-op "mtr" 'calcFunc-tr arg)) +) + +(defun calc-mlud (arg) + (interactive "P") + (calc-slow-wrapper + (calc-unary-op "mlud" 'calcFunc-lud arg)) +) + + +;;; Coerce row vector A to be a matrix. [V V] +(defun math-row-matrix (a) + (if (and (Math-vectorp a) + (not (math-matrixp a))) + (list 'vec a) + a) +) + +;;; Coerce column vector A to be a matrix. [V V] +(defun math-col-matrix (a) + (if (and (Math-vectorp a) + (not (math-matrixp a))) + (cons 'vec (mapcar (function (lambda (x) (list 'vec x))) (cdr a))) + a) +) + + + +;;; Multiply matrices A and B. [V V V] +(defun math-mul-mats (a b) + (let ((mat nil) + (cols (length (nth 1 b))) + row col ap bp accum) + (while (setq a (cdr a)) + (setq col cols + row nil) + (while (> (setq col (1- col)) 0) + (setq ap (cdr (car a)) + bp (cdr b) + accum (math-mul (car ap) (nth col (car bp)))) + (while (setq ap (cdr ap) bp (cdr bp)) + (setq accum (math-add accum (math-mul (car ap) (nth col (car bp)))))) + (setq row (cons accum row))) + (setq mat (cons (cons 'vec row) mat))) + (cons 'vec (nreverse mat))) +) + +(defun math-mul-mat-vec (a b) + (cons 'vec (mapcar (function (lambda (row) + (math-dot-product row b))) + (cdr a))) +) + + + +(defun calcFunc-tr (mat) ; [Public] + (if (math-square-matrixp mat) + (math-matrix-trace-step 2 (1- (length mat)) mat (nth 1 (nth 1 mat))) + (math-reject-arg mat 'square-matrixp)) +) + +(defun math-matrix-trace-step (n size mat sum) + (if (<= n size) + (math-matrix-trace-step (1+ n) size mat + (math-add sum (nth n (nth n mat)))) + sum) +) + + +;;; Matrix inverse and determinant. +(defun math-matrix-inv-raw (m) + (let ((n (1- (length m)))) + (if (<= n 3) + (let ((det (math-det-raw m))) + (and (not (math-zerop det)) + (math-div + (cond ((= n 1) 1) + ((= n 2) + (list 'vec + (list 'vec + (nth 2 (nth 2 m)) + (math-neg (nth 2 (nth 1 m)))) + (list 'vec + (math-neg (nth 1 (nth 2 m))) + (nth 1 (nth 1 m))))) + ((= n 3) + (list 'vec + (list 'vec + (math-sub (math-mul (nth 3 (nth 3 m)) + (nth 2 (nth 2 m))) + (math-mul (nth 3 (nth 2 m)) + (nth 2 (nth 3 m)))) + (math-sub (math-mul (nth 3 (nth 1 m)) + (nth 2 (nth 3 m))) + (math-mul (nth 3 (nth 3 m)) + (nth 2 (nth 1 m)))) + (math-sub (math-mul (nth 3 (nth 2 m)) + (nth 2 (nth 1 m))) + (math-mul (nth 3 (nth 1 m)) + (nth 2 (nth 2 m))))) + (list 'vec + (math-sub (math-mul (nth 3 (nth 2 m)) + (nth 1 (nth 3 m))) + (math-mul (nth 3 (nth 3 m)) + (nth 1 (nth 2 m)))) + (math-sub (math-mul (nth 3 (nth 3 m)) + (nth 1 (nth 1 m))) + (math-mul (nth 3 (nth 1 m)) + (nth 1 (nth 3 m)))) + (math-sub (math-mul (nth 3 (nth 1 m)) + (nth 1 (nth 2 m))) + (math-mul (nth 3 (nth 2 m)) + (nth 1 (nth 1 m))))) + (list 'vec + (math-sub (math-mul (nth 2 (nth 3 m)) + (nth 1 (nth 2 m))) + (math-mul (nth 2 (nth 2 m)) + (nth 1 (nth 3 m)))) + (math-sub (math-mul (nth 2 (nth 1 m)) + (nth 1 (nth 3 m))) + (math-mul (nth 2 (nth 3 m)) + (nth 1 (nth 1 m)))) + (math-sub (math-mul (nth 2 (nth 2 m)) + (nth 1 (nth 1 m))) + (math-mul (nth 2 (nth 1 m)) + (nth 1 (nth 2 m)))))))) + det))) + (let ((lud (math-matrix-lud m))) + (and lud + (math-lud-solve lud (calcFunc-idn 1 n)))))) +) + +(defun calcFunc-det (m) + (if (math-square-matrixp m) + (math-with-extra-prec 2 (math-det-raw m)) + (if (and (eq (car-safe m) 'calcFunc-idn) + (or (math-zerop (nth 1 m)) + (math-equal-int (nth 1 m) 1))) + (nth 1 m) + (math-reject-arg m 'square-matrixp))) +) + +(defun math-det-raw (m) + (let ((n (1- (length m)))) + (cond ((= n 1) + (nth 1 (nth 1 m))) + ((= n 2) + (math-sub (math-mul (nth 1 (nth 1 m)) + (nth 2 (nth 2 m))) + (math-mul (nth 2 (nth 1 m)) + (nth 1 (nth 2 m))))) + ((= n 3) + (math-sub + (math-sub + (math-sub + (math-add + (math-add + (math-mul (nth 1 (nth 1 m)) + (math-mul (nth 2 (nth 2 m)) + (nth 3 (nth 3 m)))) + (math-mul (nth 2 (nth 1 m)) + (math-mul (nth 3 (nth 2 m)) + (nth 1 (nth 3 m))))) + (math-mul (nth 3 (nth 1 m)) + (math-mul (nth 1 (nth 2 m)) + (nth 2 (nth 3 m))))) + (math-mul (nth 3 (nth 1 m)) + (math-mul (nth 2 (nth 2 m)) + (nth 1 (nth 3 m))))) + (math-mul (nth 1 (nth 1 m)) + (math-mul (nth 3 (nth 2 m)) + (nth 2 (nth 3 m))))) + (math-mul (nth 2 (nth 1 m)) + (math-mul (nth 1 (nth 2 m)) + (nth 3 (nth 3 m)))))) + (t (let ((lud (math-matrix-lud m))) + (if lud + (let ((lu (car lud))) + (math-det-step n (nth 2 lud))) + 0))))) +) + +(defun math-det-step (n prod) + (if (> n 0) + (math-det-step (1- n) (math-mul prod (nth n (nth n lu)))) + prod) +) + +;;; This returns a list (LU index d), or NIL if not possible. +;;; Argument M must be a square matrix. +(defun math-matrix-lud (m) + (let ((old (assoc m math-lud-cache)) + (context (list calc-internal-prec calc-prefer-frac))) + (if (and old (equal (nth 1 old) context)) + (cdr (cdr old)) + (let* ((lud (catch 'singular (math-do-matrix-lud m))) + (entry (cons context lud))) + (if old + (setcdr old entry) + (setq math-lud-cache (cons (cons m entry) math-lud-cache))) + lud))) +) +(defvar math-lud-cache nil) + +;;; Numerical Recipes section 2.3; implicit pivoting omitted. +(defun math-do-matrix-lud (m) + (let* ((lu (math-copy-matrix m)) + (n (1- (length lu))) + i (j 1) k imax sum big + (d 1) (index nil)) + (while (<= j n) + (setq i 1 + big 0 + imax j) + (while (< i j) + (math-working "LUD step" (format "%d/%d" j i)) + (setq sum (nth j (nth i lu)) + k 1) + (while (< k i) + (setq sum (math-sub sum (math-mul (nth k (nth i lu)) + (nth j (nth k lu)))) + k (1+ k))) + (setcar (nthcdr j (nth i lu)) sum) + (setq i (1+ i))) + (while (<= i n) + (math-working "LUD step" (format "%d/%d" j i)) + (setq sum (nth j (nth i lu)) + k 1) + (while (< k j) + (setq sum (math-sub sum (math-mul (nth k (nth i lu)) + (nth j (nth k lu)))) + k (1+ k))) + (setcar (nthcdr j (nth i lu)) sum) + (let ((dum (math-abs-approx sum))) + (if (Math-lessp big dum) + (setq big dum + imax i))) + (setq i (1+ i))) + (if (> imax j) + (setq lu (math-swap-rows lu j imax) + d (- d))) + (setq index (cons imax index)) + (let ((pivot (nth j (nth j lu)))) + (if (math-zerop pivot) + (throw 'singular nil) + (setq i j) + (while (<= (setq i (1+ i)) n) + (setcar (nthcdr j (nth i lu)) + (math-div (nth j (nth i lu)) pivot))))) + (setq j (1+ j))) + (list lu (nreverse index) d)) +) + +(defun math-swap-rows (m r1 r2) + (or (= r1 r2) + (let* ((r1prev (nthcdr (1- r1) m)) + (row1 (cdr r1prev)) + (r2prev (nthcdr (1- r2) m)) + (row2 (cdr r2prev)) + (r2next (cdr row2))) + (setcdr r2prev row1) + (setcdr r1prev row2) + (setcdr row2 (cdr row1)) + (setcdr row1 r2next))) + m +) + + +(defun math-lud-solve (lud b &optional need) + (if lud + (let* ((x (math-copy-matrix b)) + (n (1- (length x))) + (m (1- (length (nth 1 x)))) + (lu (car lud)) + (col 1) + i j ip ii index sum) + (while (<= col m) + (math-working "LUD solver step" col) + (setq i 1 + ii nil + index (nth 1 lud)) + (while (<= i n) + (setq ip (car index) + index (cdr index) + sum (nth col (nth ip x))) + (setcar (nthcdr col (nth ip x)) (nth col (nth i x))) + (if (null ii) + (or (math-zerop sum) + (setq ii i)) + (setq j ii) + (while (< j i) + (setq sum (math-sub sum (math-mul (nth j (nth i lu)) + (nth col (nth j x)))) + j (1+ j)))) + (setcar (nthcdr col (nth i x)) sum) + (setq i (1+ i))) + (while (>= (setq i (1- i)) 1) + (setq sum (nth col (nth i x)) + j i) + (while (<= (setq j (1+ j)) n) + (setq sum (math-sub sum (math-mul (nth j (nth i lu)) + (nth col (nth j x)))))) + (setcar (nthcdr col (nth i x)) + (math-div sum (nth i (nth i lu))))) + (setq col (1+ col))) + x) + (and need + (math-reject-arg need "*Singular matrix"))) +) + +(defun calcFunc-lud (m) + (if (math-square-matrixp m) + (or (math-with-extra-prec 2 + (let ((lud (math-matrix-lud m))) + (and lud + (let* ((lmat (math-copy-matrix (car lud))) + (umat (math-copy-matrix (car lud))) + (n (1- (length (car lud)))) + (perm (calcFunc-idn 1 n)) + i (j 1)) + (while (<= j n) + (setq i 1) + (while (< i j) + (setcar (nthcdr j (nth i lmat)) 0) + (setq i (1+ i))) + (setcar (nthcdr j (nth j lmat)) 1) + (while (<= (setq i (1+ i)) n) + (setcar (nthcdr j (nth i umat)) 0)) + (setq j (1+ j))) + (while (>= (setq j (1- j)) 1) + (let ((pos (nth (1- j) (nth 1 lud)))) + (or (= pos j) + (setq perm (math-swap-rows perm j pos))))) + (list 'vec perm lmat umat))))) + (math-reject-arg m "*Singular matrix")) + (math-reject-arg m 'square-matrixp)) +) + |