summaryrefslogtreecommitdiff
path: root/lisp/calc/calc-mtx.el
diff options
context:
space:
mode:
authorEli Zaretskii <eliz@gnu.org>2001-11-06 18:59:06 +0000
committerEli Zaretskii <eliz@gnu.org>2001-11-06 18:59:06 +0000
commit136211a997eb94f7dc6f97219052317116e114da (patch)
tree014fd8ffa0fa5c5d81869ec26426fb262471ee23 /lisp/calc/calc-mtx.el
parent0ffbbdeb4464b5b0d63e83fe3f8e91674248d84d (diff)
downloademacs-136211a997eb94f7dc6f97219052317116e114da.tar.gz
Initial import of Calc 2.02f.
Diffstat (limited to 'lisp/calc/calc-mtx.el')
-rw-r--r--lisp/calc/calc-mtx.el378
1 files changed, 378 insertions, 0 deletions
diff --git a/lisp/calc/calc-mtx.el b/lisp/calc/calc-mtx.el
new file mode 100644
index 00000000000..b9dc2aa6d0b
--- /dev/null
+++ b/lisp/calc/calc-mtx.el
@@ -0,0 +1,378 @@
+;; Calculator for GNU Emacs, part II [calc-mat.el]
+;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
+;; Written by Dave Gillespie, daveg@synaptics.com.
+
+;; This file is part of GNU Emacs.
+
+;; GNU Emacs is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY. No author or distributor
+;; accepts responsibility to anyone for the consequences of using it
+;; or for whether it serves any particular purpose or works at all,
+;; unless he says so in writing. Refer to the GNU Emacs General Public
+;; License for full details.
+
+;; Everyone is granted permission to copy, modify and redistribute
+;; GNU Emacs, but only under the conditions described in the
+;; GNU Emacs General Public License. A copy of this license is
+;; supposed to have been given to you along with GNU Emacs so you
+;; can know your rights and responsibilities. It should be in a
+;; file named COPYING. Among other things, the copyright notice
+;; and this notice must be preserved on all copies.
+
+
+
+;; This file is autoloaded from calc-ext.el.
+(require 'calc-ext)
+
+(require 'calc-macs)
+
+(defun calc-Need-calc-mat () nil)
+
+
+(defun calc-mdet (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-unary-op "mdet" 'calcFunc-det arg))
+)
+
+(defun calc-mtrace (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-unary-op "mtr" 'calcFunc-tr arg))
+)
+
+(defun calc-mlud (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-unary-op "mlud" 'calcFunc-lud arg))
+)
+
+
+;;; Coerce row vector A to be a matrix. [V V]
+(defun math-row-matrix (a)
+ (if (and (Math-vectorp a)
+ (not (math-matrixp a)))
+ (list 'vec a)
+ a)
+)
+
+;;; Coerce column vector A to be a matrix. [V V]
+(defun math-col-matrix (a)
+ (if (and (Math-vectorp a)
+ (not (math-matrixp a)))
+ (cons 'vec (mapcar (function (lambda (x) (list 'vec x))) (cdr a)))
+ a)
+)
+
+
+
+;;; Multiply matrices A and B. [V V V]
+(defun math-mul-mats (a b)
+ (let ((mat nil)
+ (cols (length (nth 1 b)))
+ row col ap bp accum)
+ (while (setq a (cdr a))
+ (setq col cols
+ row nil)
+ (while (> (setq col (1- col)) 0)
+ (setq ap (cdr (car a))
+ bp (cdr b)
+ accum (math-mul (car ap) (nth col (car bp))))
+ (while (setq ap (cdr ap) bp (cdr bp))
+ (setq accum (math-add accum (math-mul (car ap) (nth col (car bp))))))
+ (setq row (cons accum row)))
+ (setq mat (cons (cons 'vec row) mat)))
+ (cons 'vec (nreverse mat)))
+)
+
+(defun math-mul-mat-vec (a b)
+ (cons 'vec (mapcar (function (lambda (row)
+ (math-dot-product row b)))
+ (cdr a)))
+)
+
+
+
+(defun calcFunc-tr (mat) ; [Public]
+ (if (math-square-matrixp mat)
+ (math-matrix-trace-step 2 (1- (length mat)) mat (nth 1 (nth 1 mat)))
+ (math-reject-arg mat 'square-matrixp))
+)
+
+(defun math-matrix-trace-step (n size mat sum)
+ (if (<= n size)
+ (math-matrix-trace-step (1+ n) size mat
+ (math-add sum (nth n (nth n mat))))
+ sum)
+)
+
+
+;;; Matrix inverse and determinant.
+(defun math-matrix-inv-raw (m)
+ (let ((n (1- (length m))))
+ (if (<= n 3)
+ (let ((det (math-det-raw m)))
+ (and (not (math-zerop det))
+ (math-div
+ (cond ((= n 1) 1)
+ ((= n 2)
+ (list 'vec
+ (list 'vec
+ (nth 2 (nth 2 m))
+ (math-neg (nth 2 (nth 1 m))))
+ (list 'vec
+ (math-neg (nth 1 (nth 2 m)))
+ (nth 1 (nth 1 m)))))
+ ((= n 3)
+ (list 'vec
+ (list 'vec
+ (math-sub (math-mul (nth 3 (nth 3 m))
+ (nth 2 (nth 2 m)))
+ (math-mul (nth 3 (nth 2 m))
+ (nth 2 (nth 3 m))))
+ (math-sub (math-mul (nth 3 (nth 1 m))
+ (nth 2 (nth 3 m)))
+ (math-mul (nth 3 (nth 3 m))
+ (nth 2 (nth 1 m))))
+ (math-sub (math-mul (nth 3 (nth 2 m))
+ (nth 2 (nth 1 m)))
+ (math-mul (nth 3 (nth 1 m))
+ (nth 2 (nth 2 m)))))
+ (list 'vec
+ (math-sub (math-mul (nth 3 (nth 2 m))
+ (nth 1 (nth 3 m)))
+ (math-mul (nth 3 (nth 3 m))
+ (nth 1 (nth 2 m))))
+ (math-sub (math-mul (nth 3 (nth 3 m))
+ (nth 1 (nth 1 m)))
+ (math-mul (nth 3 (nth 1 m))
+ (nth 1 (nth 3 m))))
+ (math-sub (math-mul (nth 3 (nth 1 m))
+ (nth 1 (nth 2 m)))
+ (math-mul (nth 3 (nth 2 m))
+ (nth 1 (nth 1 m)))))
+ (list 'vec
+ (math-sub (math-mul (nth 2 (nth 3 m))
+ (nth 1 (nth 2 m)))
+ (math-mul (nth 2 (nth 2 m))
+ (nth 1 (nth 3 m))))
+ (math-sub (math-mul (nth 2 (nth 1 m))
+ (nth 1 (nth 3 m)))
+ (math-mul (nth 2 (nth 3 m))
+ (nth 1 (nth 1 m))))
+ (math-sub (math-mul (nth 2 (nth 2 m))
+ (nth 1 (nth 1 m)))
+ (math-mul (nth 2 (nth 1 m))
+ (nth 1 (nth 2 m))))))))
+ det)))
+ (let ((lud (math-matrix-lud m)))
+ (and lud
+ (math-lud-solve lud (calcFunc-idn 1 n))))))
+)
+
+(defun calcFunc-det (m)
+ (if (math-square-matrixp m)
+ (math-with-extra-prec 2 (math-det-raw m))
+ (if (and (eq (car-safe m) 'calcFunc-idn)
+ (or (math-zerop (nth 1 m))
+ (math-equal-int (nth 1 m) 1)))
+ (nth 1 m)
+ (math-reject-arg m 'square-matrixp)))
+)
+
+(defun math-det-raw (m)
+ (let ((n (1- (length m))))
+ (cond ((= n 1)
+ (nth 1 (nth 1 m)))
+ ((= n 2)
+ (math-sub (math-mul (nth 1 (nth 1 m))
+ (nth 2 (nth 2 m)))
+ (math-mul (nth 2 (nth 1 m))
+ (nth 1 (nth 2 m)))))
+ ((= n 3)
+ (math-sub
+ (math-sub
+ (math-sub
+ (math-add
+ (math-add
+ (math-mul (nth 1 (nth 1 m))
+ (math-mul (nth 2 (nth 2 m))
+ (nth 3 (nth 3 m))))
+ (math-mul (nth 2 (nth 1 m))
+ (math-mul (nth 3 (nth 2 m))
+ (nth 1 (nth 3 m)))))
+ (math-mul (nth 3 (nth 1 m))
+ (math-mul (nth 1 (nth 2 m))
+ (nth 2 (nth 3 m)))))
+ (math-mul (nth 3 (nth 1 m))
+ (math-mul (nth 2 (nth 2 m))
+ (nth 1 (nth 3 m)))))
+ (math-mul (nth 1 (nth 1 m))
+ (math-mul (nth 3 (nth 2 m))
+ (nth 2 (nth 3 m)))))
+ (math-mul (nth 2 (nth 1 m))
+ (math-mul (nth 1 (nth 2 m))
+ (nth 3 (nth 3 m))))))
+ (t (let ((lud (math-matrix-lud m)))
+ (if lud
+ (let ((lu (car lud)))
+ (math-det-step n (nth 2 lud)))
+ 0)))))
+)
+
+(defun math-det-step (n prod)
+ (if (> n 0)
+ (math-det-step (1- n) (math-mul prod (nth n (nth n lu))))
+ prod)
+)
+
+;;; This returns a list (LU index d), or NIL if not possible.
+;;; Argument M must be a square matrix.
+(defun math-matrix-lud (m)
+ (let ((old (assoc m math-lud-cache))
+ (context (list calc-internal-prec calc-prefer-frac)))
+ (if (and old (equal (nth 1 old) context))
+ (cdr (cdr old))
+ (let* ((lud (catch 'singular (math-do-matrix-lud m)))
+ (entry (cons context lud)))
+ (if old
+ (setcdr old entry)
+ (setq math-lud-cache (cons (cons m entry) math-lud-cache)))
+ lud)))
+)
+(defvar math-lud-cache nil)
+
+;;; Numerical Recipes section 2.3; implicit pivoting omitted.
+(defun math-do-matrix-lud (m)
+ (let* ((lu (math-copy-matrix m))
+ (n (1- (length lu)))
+ i (j 1) k imax sum big
+ (d 1) (index nil))
+ (while (<= j n)
+ (setq i 1
+ big 0
+ imax j)
+ (while (< i j)
+ (math-working "LUD step" (format "%d/%d" j i))
+ (setq sum (nth j (nth i lu))
+ k 1)
+ (while (< k i)
+ (setq sum (math-sub sum (math-mul (nth k (nth i lu))
+ (nth j (nth k lu))))
+ k (1+ k)))
+ (setcar (nthcdr j (nth i lu)) sum)
+ (setq i (1+ i)))
+ (while (<= i n)
+ (math-working "LUD step" (format "%d/%d" j i))
+ (setq sum (nth j (nth i lu))
+ k 1)
+ (while (< k j)
+ (setq sum (math-sub sum (math-mul (nth k (nth i lu))
+ (nth j (nth k lu))))
+ k (1+ k)))
+ (setcar (nthcdr j (nth i lu)) sum)
+ (let ((dum (math-abs-approx sum)))
+ (if (Math-lessp big dum)
+ (setq big dum
+ imax i)))
+ (setq i (1+ i)))
+ (if (> imax j)
+ (setq lu (math-swap-rows lu j imax)
+ d (- d)))
+ (setq index (cons imax index))
+ (let ((pivot (nth j (nth j lu))))
+ (if (math-zerop pivot)
+ (throw 'singular nil)
+ (setq i j)
+ (while (<= (setq i (1+ i)) n)
+ (setcar (nthcdr j (nth i lu))
+ (math-div (nth j (nth i lu)) pivot)))))
+ (setq j (1+ j)))
+ (list lu (nreverse index) d))
+)
+
+(defun math-swap-rows (m r1 r2)
+ (or (= r1 r2)
+ (let* ((r1prev (nthcdr (1- r1) m))
+ (row1 (cdr r1prev))
+ (r2prev (nthcdr (1- r2) m))
+ (row2 (cdr r2prev))
+ (r2next (cdr row2)))
+ (setcdr r2prev row1)
+ (setcdr r1prev row2)
+ (setcdr row2 (cdr row1))
+ (setcdr row1 r2next)))
+ m
+)
+
+
+(defun math-lud-solve (lud b &optional need)
+ (if lud
+ (let* ((x (math-copy-matrix b))
+ (n (1- (length x)))
+ (m (1- (length (nth 1 x))))
+ (lu (car lud))
+ (col 1)
+ i j ip ii index sum)
+ (while (<= col m)
+ (math-working "LUD solver step" col)
+ (setq i 1
+ ii nil
+ index (nth 1 lud))
+ (while (<= i n)
+ (setq ip (car index)
+ index (cdr index)
+ sum (nth col (nth ip x)))
+ (setcar (nthcdr col (nth ip x)) (nth col (nth i x)))
+ (if (null ii)
+ (or (math-zerop sum)
+ (setq ii i))
+ (setq j ii)
+ (while (< j i)
+ (setq sum (math-sub sum (math-mul (nth j (nth i lu))
+ (nth col (nth j x))))
+ j (1+ j))))
+ (setcar (nthcdr col (nth i x)) sum)
+ (setq i (1+ i)))
+ (while (>= (setq i (1- i)) 1)
+ (setq sum (nth col (nth i x))
+ j i)
+ (while (<= (setq j (1+ j)) n)
+ (setq sum (math-sub sum (math-mul (nth j (nth i lu))
+ (nth col (nth j x))))))
+ (setcar (nthcdr col (nth i x))
+ (math-div sum (nth i (nth i lu)))))
+ (setq col (1+ col)))
+ x)
+ (and need
+ (math-reject-arg need "*Singular matrix")))
+)
+
+(defun calcFunc-lud (m)
+ (if (math-square-matrixp m)
+ (or (math-with-extra-prec 2
+ (let ((lud (math-matrix-lud m)))
+ (and lud
+ (let* ((lmat (math-copy-matrix (car lud)))
+ (umat (math-copy-matrix (car lud)))
+ (n (1- (length (car lud))))
+ (perm (calcFunc-idn 1 n))
+ i (j 1))
+ (while (<= j n)
+ (setq i 1)
+ (while (< i j)
+ (setcar (nthcdr j (nth i lmat)) 0)
+ (setq i (1+ i)))
+ (setcar (nthcdr j (nth j lmat)) 1)
+ (while (<= (setq i (1+ i)) n)
+ (setcar (nthcdr j (nth i umat)) 0))
+ (setq j (1+ j)))
+ (while (>= (setq j (1- j)) 1)
+ (let ((pos (nth (1- j) (nth 1 lud))))
+ (or (= pos j)
+ (setq perm (math-swap-rows perm j pos)))))
+ (list 'vec perm lmat umat)))))
+ (math-reject-arg m "*Singular matrix"))
+ (math-reject-arg m 'square-matrixp))
+)
+