summaryrefslogtreecommitdiff
path: root/src/ccl.c
diff options
context:
space:
mode:
authorKarl Heuer <kwzh@gnu.org>1997-02-20 07:02:49 +0000
committerKarl Heuer <kwzh@gnu.org>1997-02-20 07:02:49 +0000
commit4ed4686978bd18292e2bb7b87a7b0e0407ecb3b1 (patch)
tree860ad83f81c8c630fe7051e3c5379ca8a9658f69 /src/ccl.c
parentadb572fb93ddfee88f9c5e9681434517fd241232 (diff)
downloademacs-4ed4686978bd18292e2bb7b87a7b0e0407ecb3b1.tar.gz
Initial revision
Diffstat (limited to 'src/ccl.c')
-rw-r--r--src/ccl.c1140
1 files changed, 1140 insertions, 0 deletions
diff --git a/src/ccl.c b/src/ccl.c
new file mode 100644
index 00000000000..11c1ae500d6
--- /dev/null
+++ b/src/ccl.c
@@ -0,0 +1,1140 @@
+/* CCL (Code Conversion Language) interpreter.
+ Ver.1.0
+
+ Copyright (C) 1995 Free Software Foundation, Inc.
+ Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include <stdio.h>
+
+#ifdef emacs
+
+#include <config.h>
+#include "lisp.h"
+#include "charset.h"
+#include "ccl.h"
+#include "coding.h"
+
+#else /* not emacs */
+
+#include "mulelib.h"
+
+#endif /* not emacs */
+
+/* Alist of fontname patterns vs corresponding CCL program. */
+Lisp_Object Vfont_ccl_encoder_alist;
+
+/* Vector of CCL program names vs corresponding program data. */
+Lisp_Object Vccl_program_table;
+
+/* CCL (Code Conversion Language) is a simple language which has
+ operations on one input buffer, one output buffer, and 7 registers.
+ The syntax of CCL is described in `ccl.el'. Emacs Lisp function
+ `ccl-compile' compiles a CCL program and produces a CCL code which
+ is a vector of integers. The structure of this vector is as
+ follows: The 1st element: buffer-magnification, a factor for the
+ size of output buffer compared with the size of input buffer. The
+ 2nd element: address of CCL code to be executed when encountered
+ with end of input stream. The 3rd and the remaining elements: CCL
+ codes. */
+
+/* Header of CCL compiled code */
+#define CCL_HEADER_BUF_MAG 0
+#define CCL_HEADER_EOF 1
+#define CCL_HEADER_MAIN 2
+
+/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
+ MSB is always 0), each contains CCL command and/or arguments in the
+ following format:
+
+ |----------------- integer (28-bit) ------------------|
+ |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
+ |--constant argument--|-register-|-register-|-command-|
+ ccccccccccccccccc RRR rrr XXXXX
+ or
+ |------- relative address -------|-register-|-command-|
+ cccccccccccccccccccc rrr XXXXX
+ or
+ |------------- constant or other args ----------------|
+ cccccccccccccccccccccccccccc
+
+ where, `cc...c' is a non-negative integer indicating constant value
+ (the left most `c' is always 0) or an absolute jump address, `RRR'
+ and `rrr' are CCL register number, `XXXXX' is one of the following
+ CCL commands. */
+
+/* CCL commands
+
+ Each comment fields shows one or more lines for command syntax and
+ the following lines for semantics of the command. In semantics, IC
+ stands for Instruction Counter. */
+
+#define CCL_SetRegister 0x00 /* Set register a register value:
+ 1:00000000000000000RRRrrrXXXXX
+ ------------------------------
+ reg[rrr] = reg[RRR];
+ */
+
+#define CCL_SetShortConst 0x01 /* Set register a short constant value:
+ 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
+ ------------------------------
+ reg[rrr] = CCCCCCCCCCCCCCCCCCC;
+ */
+
+#define CCL_SetConst 0x02 /* Set register a constant value:
+ 1:00000000000000000000rrrXXXXX
+ 2:CONSTANT
+ ------------------------------
+ reg[rrr] = CONSTANT;
+ IC++;
+ */
+
+#define CCL_SetArray 0x03 /* Set register an element of array:
+ 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
+ 2:ELEMENT[0]
+ 3:ELEMENT[1]
+ ...
+ ------------------------------
+ if (0 <= reg[RRR] < CC..C)
+ reg[rrr] = ELEMENT[reg[RRR]];
+ IC += CC..C;
+ */
+
+#define CCL_Jump 0x04 /* Jump:
+ 1:A--D--D--R--E--S--S-000XXXXX
+ ------------------------------
+ IC += ADDRESS;
+ */
+
+/* Note: If CC..C is greater than 0, the second code is omitted. */
+
+#define CCL_JumpCond 0x05 /* Jump conditional:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ ------------------------------
+ if (!reg[rrr])
+ IC += ADDRESS;
+ */
+
+
+#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ ------------------------------
+ write (reg[rrr]);
+ IC += ADDRESS;
+ */
+
+#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ 2:A--D--D--R--E--S--S-rrrYYYYY
+ -----------------------------
+ write (reg[rrr]);
+ IC++;
+ read (reg[rrr]);
+ IC += ADDRESS;
+ */
+/* Note: If read is suspended, the resumed execution starts from the
+ second code (YYYYY == CCL_ReadJump). */
+
+#define CCL_WriteConstJump 0x08 /* Write constant and jump:
+ 1:A--D--D--R--E--S--S-000XXXXX
+ 2:CONST
+ ------------------------------
+ write (CONST);
+ IC += ADDRESS;
+ */
+
+#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ 2:CONST
+ 3:A--D--D--R--E--S--S-rrrYYYYY
+ -----------------------------
+ write (CONST);
+ IC += 2;
+ read (reg[rrr]);
+ IC += ADDRESS;
+ */
+/* Note: If read is suspended, the resumed execution starts from the
+ second code (YYYYY == CCL_ReadJump). */
+
+#define CCL_WriteStringJump 0x0A /* Write string and jump:
+ 1:A--D--D--R--E--S--S-000XXXXX
+ 2:LENGTH
+ 3:0000STRIN[0]STRIN[1]STRIN[2]
+ ...
+ ------------------------------
+ write_string (STRING, LENGTH);
+ IC += ADDRESS;
+ */
+
+#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ 2:LENGTH
+ 3:ELEMENET[0]
+ 4:ELEMENET[1]
+ ...
+ N:A--D--D--R--E--S--S-rrrYYYYY
+ ------------------------------
+ if (0 <= reg[rrr] < LENGTH)
+ write (ELEMENT[reg[rrr]]);
+ IC += LENGTH + 2; (... pointing at N+1)
+ read (reg[rrr]);
+ IC += ADDRESS;
+ */
+/* Note: If read is suspended, the resumed execution starts from the
+ Mth code (YYYYY == CCL_ReadJump). */
+
+#define CCL_ReadJump 0x0C /* Read and jump:
+ 1:A--D--D--R--E--S--S-rrrYYYYY
+ -----------------------------
+ read (reg[rrr]);
+ IC += ADDRESS;
+ */
+
+#define CCL_Branch 0x0D /* Jump by branch table:
+ 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
+ 2:A--D--D--R--E-S-S[0]000XXXXX
+ 3:A--D--D--R--E-S-S[1]000XXXXX
+ ...
+ ------------------------------
+ if (0 <= reg[rrr] < CC..C)
+ IC += ADDRESS[reg[rrr]];
+ else
+ IC += ADDRESS[CC..C];
+ */
+
+#define CCL_ReadRegister 0x0E /* Read bytes into registers:
+ 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
+ 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
+ ...
+ ------------------------------
+ while (CCC--)
+ read (reg[rrr]);
+ */
+
+#define CCL_WriteExprConst 0x0F /* write result of expression:
+ 1:00000OPERATION000RRR000XXXXX
+ 2:CONSTANT
+ ------------------------------
+ write (reg[RRR] OPERATION CONSTANT);
+ IC++;
+ */
+
+/* Note: If the Nth read is suspended, the resumed execution starts
+ from the Nth code. */
+
+#define CCL_ReadBranch 0x10 /* Read one byte into a register,
+ and jump by branch table:
+ 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
+ 2:A--D--D--R--E-S-S[0]000XXXXX
+ 3:A--D--D--R--E-S-S[1]000XXXXX
+ ...
+ ------------------------------
+ read (read[rrr]);
+ if (0 <= reg[rrr] < CC..C)
+ IC += ADDRESS[reg[rrr]];
+ else
+ IC += ADDRESS[CC..C];
+ */
+
+#define CCL_WriteRegister 0x11 /* Write registers:
+ 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
+ 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
+ ...
+ ------------------------------
+ while (CCC--)
+ write (reg[rrr]);
+ ...
+ */
+
+/* Note: If the Nth write is suspended, the resumed execution
+ starts from the Nth code. */
+
+#define CCL_WriteExprRegister 0x12 /* Write result of expression
+ 1:00000OPERATIONRrrRRR000XXXXX
+ ------------------------------
+ write (reg[RRR] OPERATION reg[Rrr]);
+ */
+
+#define CCL_Call 0x13 /* Write a constant:
+ 1:CCCCCCCCCCCCCCCCCCCC000XXXXX
+ ------------------------------
+ call (CC..C)
+ */
+
+#define CCL_WriteConstString 0x14 /* Write a constant or a string:
+ 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
+ [2:0000STRIN[0]STRIN[1]STRIN[2]]
+ [...]
+ -----------------------------
+ if (!rrr)
+ write (CC..C)
+ else
+ write_string (STRING, CC..C);
+ IC += (CC..C + 2) / 3;
+ */
+
+#define CCL_WriteArray 0x15 /* Write an element of array:
+ 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
+ 2:ELEMENT[0]
+ 3:ELEMENT[1]
+ ...
+ ------------------------------
+ if (0 <= reg[rrr] < CC..C)
+ write (ELEMENT[reg[rrr]]);
+ IC += CC..C;
+ */
+
+#define CCL_End 0x16 /* Terminate:
+ 1:00000000000000000000000XXXXX
+ ------------------------------
+ terminate ();
+ */
+
+/* The following two codes execute an assignment arithmetic/logical
+ operation. The form of the operation is like REG OP= OPERAND. */
+
+#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
+ 1:00000OPERATION000000rrrXXXXX
+ 2:CONSTANT
+ ------------------------------
+ reg[rrr] OPERATION= CONSTANT;
+ */
+
+#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
+ 1:00000OPERATION000RRRrrrXXXXX
+ ------------------------------
+ reg[rrr] OPERATION= reg[RRR];
+ */
+
+/* The following codes execute an arithmetic/logical operation. The
+ form of the operation is like REG_X = REG_Y OP OPERAND2. */
+
+#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
+ 1:00000OPERATION000RRRrrrXXXXX
+ 2:CONSTANT
+ ------------------------------
+ reg[rrr] = reg[RRR] OPERATION CONSTANT;
+ IC++;
+ */
+
+#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
+ 1:00000OPERATIONRrrRRRrrrXXXXX
+ ------------------------------
+ reg[rrr] = reg[RRR] OPERATION reg[Rrr];
+ */
+
+#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
+ an operation on constant:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ 2:OPERATION
+ 3:CONSTANT
+ -----------------------------
+ reg[7] = reg[rrr] OPERATION CONSTANT;
+ if (!(reg[7]))
+ IC += ADDRESS;
+ else
+ IC += 2
+ */
+
+#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
+ an operation on register:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ 2:OPERATION
+ 3:RRR
+ -----------------------------
+ reg[7] = reg[rrr] OPERATION reg[RRR];
+ if (!reg[7])
+ IC += ADDRESS;
+ else
+ IC += 2;
+ */
+
+#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
+ to an operation on constant:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ 2:OPERATION
+ 3:CONSTANT
+ -----------------------------
+ read (reg[rrr]);
+ reg[7] = reg[rrr] OPERATION CONSTANT;
+ if (!reg[7])
+ IC += ADDRESS;
+ else
+ IC += 2;
+ */
+
+#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
+ to an operation on register:
+ 1:A--D--D--R--E--S--S-rrrXXXXX
+ 2:OPERATION
+ 3:RRR
+ -----------------------------
+ read (reg[rrr]);
+ reg[7] = reg[rrr] OPERATION reg[RRR];
+ if (!reg[7])
+ IC += ADDRESS;
+ else
+ IC += 2;
+ */
+
+#define CCL_Extention 0x1F /* Extended CCL code
+ 1:ExtendedCOMMNDRrrRRRrrrXXXXX
+ 2:ARGUEMENT
+ 3:...
+ ------------------------------
+ extended_command (rrr,RRR,Rrr,ARGS)
+ */
+
+
+/* CCL arithmetic/logical operators. */
+#define CCL_PLUS 0x00 /* X = Y + Z */
+#define CCL_MINUS 0x01 /* X = Y - Z */
+#define CCL_MUL 0x02 /* X = Y * Z */
+#define CCL_DIV 0x03 /* X = Y / Z */
+#define CCL_MOD 0x04 /* X = Y % Z */
+#define CCL_AND 0x05 /* X = Y & Z */
+#define CCL_OR 0x06 /* X = Y | Z */
+#define CCL_XOR 0x07 /* X = Y ^ Z */
+#define CCL_LSH 0x08 /* X = Y << Z */
+#define CCL_RSH 0x09 /* X = Y >> Z */
+#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
+#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
+#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
+#define CCL_LS 0x10 /* X = (X < Y) */
+#define CCL_GT 0x11 /* X = (X > Y) */
+#define CCL_EQ 0x12 /* X = (X == Y) */
+#define CCL_LE 0x13 /* X = (X <= Y) */
+#define CCL_GE 0x14 /* X = (X >= Y) */
+#define CCL_NE 0x15 /* X = (X != Y) */
+
+#define CCL_ENCODE_SJIS 0x16 /* X = HIGHER_BYTE (SJIS (Y, Z))
+ r[7] = LOWER_BYTE (SJIS (Y, Z) */
+#define CCL_DECODE_SJIS 0x17 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
+ r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
+
+/* Macros for exit status of CCL program. */
+#define CCL_STAT_SUCCESS 0 /* Terminated successfully. */
+#define CCL_STAT_SUSPEND 1 /* Terminated because of empty input
+ buffer or full output buffer. */
+#define CCL_STAT_INVALID_CMD 2 /* Terminated because of invalid
+ command. */
+#define CCL_STAT_QUIT 3 /* Terminated because of quit. */
+
+/* Terminate CCL program successfully. */
+#define CCL_SUCCESS \
+ do { \
+ ccl->status = CCL_STAT_SUCCESS; \
+ ccl->ic = CCL_HEADER_MAIN; \
+ goto ccl_finish; \
+ } while (0)
+
+/* Suspend CCL program because of reading from empty input buffer or
+ writing to full output buffer. When this program is resumed, the
+ same I/O command is executed. */
+#define CCL_SUSPEND \
+ do { \
+ ic--; \
+ ccl->status = CCL_STAT_SUSPEND; \
+ goto ccl_finish; \
+ } while (0)
+
+/* Terminate CCL program because of invalid command. Should not occur
+ in the normal case. */
+#define CCL_INVALID_CMD \
+ do { \
+ ccl->status = CCL_STAT_INVALID_CMD; \
+ goto ccl_error_handler; \
+ } while (0)
+
+/* Encode one character CH to multibyte form and write to the current
+ output buffer. If CH is negative, write one byte -CH. */
+#define CCL_WRITE_CHAR(ch) \
+ do { \
+ if (!dst) \
+ CCL_INVALID_CMD; \
+ else \
+ { \
+ unsigned char work[4], *str; \
+ int len = CHAR_STRING (ch, work, str); \
+ if (dst + len <= dst_end) \
+ { \
+ bcopy (str, dst, len); \
+ dst += len; \
+ } \
+ else \
+ CCL_SUSPEND; \
+ } \
+ } while (0)
+
+/* Write a string at ccl_prog[IC] of length LEN to the current output
+ buffer. */
+#define CCL_WRITE_STRING(len) \
+ do { \
+ if (!dst) \
+ CCL_INVALID_CMD; \
+ else if (dst + len <= dst_end) \
+ for (i = 0; i < len; i++) \
+ *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
+ >> ((2 - (i % 3)) * 8)) & 0xFF; \
+ else \
+ CCL_SUSPEND; \
+ } while (0)
+
+/* Read one byte from the current input buffer into Rth register. */
+#define CCL_READ_CHAR(r) \
+ do { \
+ if (!src) \
+ CCL_INVALID_CMD; \
+ else if (src < src_end) \
+ r = *src++; \
+ else if (ccl->last_block) \
+ { \
+ ic = ccl->eof_ic; \
+ goto ccl_finish; \
+ } \
+ else \
+ CCL_SUSPEND; \
+ } while (0)
+
+
+/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
+ text goes to a place pointed by DESTINATION, the length of which
+ should not exceed DST_BYTES. The bytes actually processed is
+ returned as *CONSUMED. The return value is the length of the
+ resulting text. As a side effect, the contents of CCL registers
+ are updated. If SOURCE or DESTINATION is NULL, only operations on
+ registers are permitted. */
+
+#ifdef CCL_DEBUG
+#define CCL_DEBUG_BACKTRACE_LEN 256
+int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
+int ccl_backtrace_idx;
+#endif
+
+struct ccl_prog_stack
+ {
+ int *ccl_prog; /* Pointer to an array of CCL code. */
+ int ic; /* Instruction Counter. */
+ };
+
+ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
+ struct ccl_program *ccl;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ register int *reg = ccl->reg;
+ register int ic = ccl->ic;
+ register int code, field1, field2;
+ register int *ccl_prog = ccl->prog;
+ unsigned char *src = source, *src_end = src + src_bytes;
+ unsigned char *dst = destination, *dst_end = dst + dst_bytes;
+ int jump_address;
+ int i, j, op;
+ int stack_idx = 0;
+ /* For the moment, we only support depth 256 of stack. */
+ struct ccl_prog_stack ccl_prog_stack_struct[256];
+
+ if (ic >= ccl->eof_ic)
+ ic = CCL_HEADER_MAIN;
+
+#ifdef CCL_DEBUG
+ ccl_backtrace_idx = 0;
+#endif
+
+ for (;;)
+ {
+#ifdef CCL_DEBUG
+ ccl_backtrace_table[ccl_backtrace_idx++] = ic;
+ if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
+ ccl_backtrace_idx = 0;
+ ccl_backtrace_table[ccl_backtrace_idx] = 0;
+#endif
+
+ if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
+ {
+ /* We can't just signal Qquit, instead break the loop as if
+ the whole data is processed. Don't reset Vquit_flag, it
+ must be handled later at a safer place. */
+ if (consumed)
+ src = source + src_bytes;
+ ccl->status = CCL_STAT_QUIT;
+ break;
+ }
+
+ code = XINT (ccl_prog[ic]); ic++;
+ field1 = code >> 8;
+ field2 = (code & 0xFF) >> 5;
+
+#define rrr field2
+#define RRR (field1 & 7)
+#define Rrr ((field1 >> 3) & 7)
+#define ADDR field1
+
+ switch (code & 0x1F)
+ {
+ case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
+ reg[rrr] = reg[RRR];
+ break;
+
+ case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
+ reg[rrr] = field1;
+ break;
+
+ case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
+ reg[rrr] = XINT (ccl_prog[ic]);
+ ic++;
+ break;
+
+ case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
+ i = reg[RRR];
+ j = field1 >> 3;
+ if ((unsigned int) i < j)
+ reg[rrr] = XINT (ccl_prog[ic + i]);
+ ic += j;
+ break;
+
+ case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
+ ic += ADDR;
+ break;
+
+ case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
+ if (!reg[rrr])
+ ic += ADDR;
+ break;
+
+ case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
+ i = reg[rrr];
+ CCL_WRITE_CHAR (i);
+ ic += ADDR;
+ break;
+
+ case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
+ i = reg[rrr];
+ CCL_WRITE_CHAR (i);
+ ic++;
+ CCL_READ_CHAR (reg[rrr]);
+ ic += ADDR - 1;
+ break;
+
+ case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
+ i = XINT (ccl_prog[ic]);
+ CCL_WRITE_CHAR (i);
+ ic += ADDR;
+ break;
+
+ case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
+ i = XINT (ccl_prog[ic]);
+ CCL_WRITE_CHAR (i);
+ ic++;
+ CCL_READ_CHAR (reg[rrr]);
+ ic += ADDR - 1;
+ break;
+
+ case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
+ j = XINT (ccl_prog[ic]);
+ ic++;
+ CCL_WRITE_STRING (j);
+ ic += ADDR - 1;
+ break;
+
+ case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
+ i = reg[rrr];
+ j = ccl_prog[ic++];
+ if ((unsigned int) i < j)
+ {
+ i = XINT (ccl_prog[ic + i]);
+ CCL_WRITE_CHAR (i);
+ }
+ ic += j + 1;
+ CCL_READ_CHAR (reg[rrr]);
+ ic += ADDR - (j + 2);
+ break;
+
+ case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
+ CCL_READ_CHAR (reg[rrr]);
+ ic += ADDR;
+ break;
+
+ case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
+ CCL_READ_CHAR (reg[rrr]);
+ /* fall through ... */
+ case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
+ if ((unsigned int) reg[rrr] < field1)
+ ic += XINT (ccl_prog[ic + reg[rrr]]);
+ else
+ ic += XINT (ccl_prog[ic + field1]);
+ break;
+
+ case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
+ while (1)
+ {
+ CCL_READ_CHAR (reg[rrr]);
+ if (!field1) break;
+ code = XINT (ccl_prog[ic]); ic++;
+ field1 = code >> 8;
+ field2 = (code & 0xFF) >> 5;
+ }
+ break;
+
+ case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
+ rrr = 7;
+ i = reg[RRR];
+ j = XINT (ccl_prog[ic]);
+ op = field1 >> 6;
+ ic++;
+ goto ccl_set_expr;
+
+ case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
+ while (1)
+ {
+ i = reg[rrr];
+ CCL_WRITE_CHAR (i);
+ if (!field1) break;
+ code = XINT (ccl_prog[ic]); ic++;
+ field1 = code >> 8;
+ field2 = (code & 0xFF) >> 5;
+ }
+ break;
+
+ case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
+ rrr = 7;
+ i = reg[RRR];
+ j = reg[Rrr];
+ op = field1 >> 6;
+ goto ccl_set_expr;
+
+ case CCL_Call: /* CCCCCCCCCCCCCCCCCCCC000XXXXX */
+ {
+ Lisp_Object slot;
+
+ if (stack_idx >= 256
+ || field1 < 0
+ || field1 >= XVECTOR (Vccl_program_table)->size
+ || (slot = XVECTOR (Vccl_program_table)->contents[field1],
+ !CONSP (slot))
+ || !VECTORP (XCONS (slot)->cdr))
+ {
+ if (stack_idx > 0)
+ {
+ ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
+ ic = ccl_prog_stack_struct[0].ic;
+ }
+ CCL_INVALID_CMD;
+ }
+
+ ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
+ ccl_prog_stack_struct[stack_idx].ic = ic;
+ stack_idx++;
+ ccl_prog = XVECTOR (XCONS (slot)->cdr)->contents;
+ ic = CCL_HEADER_MAIN;
+ }
+ break;
+
+ case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
+ if (!rrr)
+ CCL_WRITE_CHAR (field1);
+ else
+ {
+ CCL_WRITE_STRING (field1);
+ ic += (field1 + 2) / 3;
+ }
+ break;
+
+ case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
+ i = reg[rrr];
+ if ((unsigned int) i < field1)
+ {
+ j = XINT (ccl_prog[ic + i]);
+ CCL_WRITE_CHAR (j);
+ }
+ ic += field1;
+ break;
+
+ case CCL_End: /* 0000000000000000000000XXXXX */
+ if (stack_idx-- > 0)
+ {
+ ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
+ ic = ccl_prog_stack_struct[stack_idx].ic;
+ break;
+ }
+ CCL_SUCCESS;
+
+ case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
+ i = XINT (ccl_prog[ic]);
+ ic++;
+ op = field1 >> 6;
+ goto ccl_expr_self;
+
+ case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
+ i = reg[RRR];
+ op = field1 >> 6;
+
+ ccl_expr_self:
+ switch (op)
+ {
+ case CCL_PLUS: reg[rrr] += i; break;
+ case CCL_MINUS: reg[rrr] -= i; break;
+ case CCL_MUL: reg[rrr] *= i; break;
+ case CCL_DIV: reg[rrr] /= i; break;
+ case CCL_MOD: reg[rrr] %= i; break;
+ case CCL_AND: reg[rrr] &= i; break;
+ case CCL_OR: reg[rrr] |= i; break;
+ case CCL_XOR: reg[rrr] ^= i; break;
+ case CCL_LSH: reg[rrr] <<= i; break;
+ case CCL_RSH: reg[rrr] >>= i; break;
+ case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
+ case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
+ case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
+ case CCL_LS: reg[rrr] = reg[rrr] < i; break;
+ case CCL_GT: reg[rrr] = reg[rrr] > i; break;
+ case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
+ case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
+ case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
+ case CCL_NE: reg[rrr] = reg[rrr] != i; break;
+ default: CCL_INVALID_CMD;
+ }
+ break;
+
+ case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
+ i = reg[RRR];
+ j = XINT (ccl_prog[ic]);
+ op = field1 >> 6;
+ jump_address = ++ic;
+ goto ccl_set_expr;
+
+ case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
+ i = reg[RRR];
+ j = reg[Rrr];
+ op = field1 >> 6;
+ jump_address = ic;
+ goto ccl_set_expr;
+
+ case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
+ CCL_READ_CHAR (reg[rrr]);
+ case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
+ i = reg[rrr];
+ op = XINT (ccl_prog[ic]);
+ jump_address = ic++ + ADDR;
+ j = XINT (ccl_prog[ic]);
+ ic++;
+ rrr = 7;
+ goto ccl_set_expr;
+
+ case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
+ CCL_READ_CHAR (reg[rrr]);
+ case CCL_JumpCondExprReg:
+ i = reg[rrr];
+ op = XINT (ccl_prog[ic]);
+ jump_address = ic++ + ADDR;
+ j = reg[XINT (ccl_prog[ic])];
+ ic++;
+ rrr = 7;
+
+ ccl_set_expr:
+ switch (op)
+ {
+ case CCL_PLUS: reg[rrr] = i + j; break;
+ case CCL_MINUS: reg[rrr] = i - j; break;
+ case CCL_MUL: reg[rrr] = i * j; break;
+ case CCL_DIV: reg[rrr] = i / j; break;
+ case CCL_MOD: reg[rrr] = i % j; break;
+ case CCL_AND: reg[rrr] = i & j; break;
+ case CCL_OR: reg[rrr] = i | j; break;
+ case CCL_XOR: reg[rrr] = i ^ j;; break;
+ case CCL_LSH: reg[rrr] = i << j; break;
+ case CCL_RSH: reg[rrr] = i >> j; break;
+ case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
+ case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
+ case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
+ case CCL_LS: reg[rrr] = i < j; break;
+ case CCL_GT: reg[rrr] = i > j; break;
+ case CCL_EQ: reg[rrr] = i == j; break;
+ case CCL_LE: reg[rrr] = i <= j; break;
+ case CCL_GE: reg[rrr] = i >= j; break;
+ case CCL_NE: reg[rrr] = i != j; break;
+ case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
+ case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
+ default: CCL_INVALID_CMD;
+ }
+ code &= 0x1F;
+ if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
+ {
+ i = reg[rrr];
+ CCL_WRITE_CHAR (i);
+ }
+ else if (!reg[rrr])
+ ic = jump_address;
+ break;
+
+ default:
+ CCL_INVALID_CMD;
+ }
+ }
+
+ ccl_error_handler:
+ if (destination)
+ {
+ /* We can insert an error message only if DESTINATION is
+ specified and we still have a room to store the message
+ there. */
+ char msg[256];
+ int msglen;
+
+ switch (ccl->status)
+ {
+ case CCL_STAT_INVALID_CMD:
+ sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
+ code & 0x1F, code, ic);
+#ifdef CCL_DEBUG
+ {
+ int i = ccl_backtrace_idx - 1;
+ int j;
+
+ msglen = strlen (msg);
+ if (dst + msglen <= dst_end)
+ {
+ bcopy (msg, dst, msglen);
+ dst += msglen;
+ }
+
+ for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
+ {
+ if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
+ if (ccl_backtrace_table[i] == 0)
+ break;
+ sprintf(msg, " %d", ccl_backtrace_table[i]);
+ msglen = strlen (msg);
+ if (dst + msglen > dst_end)
+ break;
+ bcopy (msg, dst, msglen);
+ dst += msglen;
+ }
+ }
+ goto ccl_finish;
+#endif
+
+ case CCL_STAT_QUIT:
+ sprintf(msg, "\nCCL: Quited.");
+ break;
+
+ default:
+ sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
+ }
+
+ msglen = strlen (msg);
+ if (dst + msglen <= dst_end)
+ {
+ bcopy (msg, dst, msglen);
+ dst += msglen;
+ }
+ }
+
+ ccl_finish:
+ ccl->ic = ic;
+ if (consumed) *consumed = src - source;
+ return dst - destination;
+}
+
+/* Setup fields of the structure pointed by CCL appropriately for the
+ execution of compiled CCL code in VEC (vector of integer). */
+setup_ccl_program (ccl, vec)
+ struct ccl_program *ccl;
+ Lisp_Object vec;
+{
+ int i;
+
+ ccl->size = XVECTOR (vec)->size;
+ ccl->prog = XVECTOR (vec)->contents;
+ ccl->ic = CCL_HEADER_MAIN;
+ ccl->eof_ic = XINT (XVECTOR (vec)->contents[CCL_HEADER_EOF]);
+ ccl->buf_magnification = XINT (XVECTOR (vec)->contents[CCL_HEADER_BUF_MAG]);
+ for (i = 0; i < 8; i++)
+ ccl->reg[i] = 0;
+ ccl->last_block = 0;
+ ccl->status = 0;
+}
+
+#ifdef emacs
+
+DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
+ "Execute CCL-PROGRAM with registers initialized by REGISTERS.\n\
+CCL-PROGRAM is a compiled code generated by `ccl-compile',\n\
+ no I/O commands should appear in the CCL program.\n\
+REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value\n\
+ of Nth register.\n\
+As side effect, each element of REGISTER holds the value of\n\
+ corresponding register after the execution.")
+ (ccl_prog, reg)
+ Lisp_Object ccl_prog, reg;
+{
+ struct ccl_program ccl;
+ int i;
+
+ CHECK_VECTOR (ccl_prog, 0);
+ CHECK_VECTOR (reg, 1);
+ if (XVECTOR (reg)->size != 8)
+ error ("Invalid length of vector REGISTERS");
+
+ setup_ccl_program (&ccl, ccl_prog);
+ for (i = 0; i < 8; i++)
+ ccl.reg[i] = (INTEGERP (XVECTOR (reg)->contents[i])
+ ? XINT (XVECTOR (reg)->contents[i])
+ : 0);
+
+ ccl_driver (&ccl, (char *)0, (char *)0, 0, 0, (int *)0);
+ QUIT;
+ if (ccl.status != CCL_STAT_SUCCESS)
+ error ("Error in CCL program at %dth code", ccl.ic);
+
+ for (i = 0; i < 8; i++)
+ XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]);
+ return Qnil;
+}
+
+DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
+ 3, 3, 0,
+ "Execute CCL-PROGRAM with initial STATUS on STRING.\n\
+CCL-PROGRAM is a compiled code generated by `ccl-compile'.\n\
+Read buffer is set to STRING, and write buffer is allocated automatically.\n\
+STATUS is a vector of [R0 R1 ... R7 IC], where\n\
+ R0..R7 are initial values of corresponding registers,\n\
+ IC is the instruction counter specifying from where to start the program.\n\
+If R0..R7 are nil, they are initialized to 0.\n\
+If IC is nil, it is initialized to head of the CCL program.\n\
+Returns the contents of write buffer as a string,\n\
+ and as side effect, STATUS is updated.")
+ (ccl_prog, status, str)
+ Lisp_Object ccl_prog, status, str;
+{
+ Lisp_Object val;
+ struct ccl_program ccl;
+ int i, produced;
+ int outbufsize;
+ char *outbuf;
+ struct gcpro gcpro1, gcpro2, gcpro3;
+
+ CHECK_VECTOR (ccl_prog, 0);
+ CHECK_VECTOR (status, 1);
+ if (XVECTOR (status)->size != 9)
+ error ("Invalid length of vector STATUS");
+ CHECK_STRING (str, 2);
+ GCPRO3 (ccl_prog, status, str);
+
+ setup_ccl_program (&ccl, ccl_prog);
+ for (i = 0; i < 8; i++)
+ {
+ if (NILP (XVECTOR (status)->contents[i]))
+ XSETINT (XVECTOR (status)->contents[i], 0);
+ if (INTEGERP (XVECTOR (status)->contents[i]))
+ ccl.reg[i] = XINT (XVECTOR (status)->contents[i]);
+ }
+ if (INTEGERP (XVECTOR (status)->contents[i]))
+ {
+ i = XFASTINT (XVECTOR (status)->contents[8]);
+ if (ccl.ic < i && i < ccl.size)
+ ccl.ic = i;
+ }
+ outbufsize = XSTRING (str)->size * ccl.buf_magnification + 256;
+ outbuf = (char *) xmalloc (outbufsize);
+ if (!outbuf)
+ error ("Not enough memory");
+ ccl.last_block = 1;
+ produced = ccl_driver (&ccl, XSTRING (str)->data, outbuf,
+ XSTRING (str)->size, outbufsize, (int *)0);
+ for (i = 0; i < 8; i++)
+ XSET (XVECTOR (status)->contents[i], Lisp_Int, ccl.reg[i]);
+ XSETINT (XVECTOR (status)->contents[8], ccl.ic);
+ UNGCPRO;
+
+ val = make_string (outbuf, produced);
+ free (outbuf);
+ QUIT;
+ if (ccl.status != CCL_STAT_SUCCESS
+ && ccl.status != CCL_STAT_SUSPEND)
+ error ("Error in CCL program at %dth code", ccl.ic);
+
+ return val;
+}
+
+DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
+ 2, 2, 0,
+ "Register CCL program PROGRAM of NAME in `ccl-program-table'.
+PROGRAM should be a compiled code of CCL program, or nil.
+Return index number of the registered CCL program.")
+ (name, ccl_prog)
+ Lisp_Object name, ccl_prog;
+{
+ int len = XVECTOR (Vccl_program_table)->size;
+ int i, idx;
+
+ CHECK_SYMBOL (name, 0);
+ if (!NILP (ccl_prog))
+ CHECK_VECTOR (ccl_prog, 1);
+
+ for (i = 0; i < len; i++)
+ {
+ Lisp_Object slot = XVECTOR (Vccl_program_table)->contents[i];
+
+ if (!CONSP (slot))
+ break;
+
+ if (EQ (name, XCONS (slot)->car))
+ {
+ XCONS (slot)->cdr = ccl_prog;
+ return make_number (i);
+ }
+ }
+
+ if (i == len)
+ {
+ Lisp_Object new_table = Fmake_vector (len * 2, Qnil);
+ int j;
+
+ for (j = 0; j < len; j++)
+ XVECTOR (new_table)->contents[j]
+ = XVECTOR (Vccl_program_table)->contents[j];
+ Vccl_program_table = new_table;
+ }
+
+ XVECTOR (Vccl_program_table)->contents[i] = Fcons (name, ccl_prog);
+ return make_number (i);
+}
+
+syms_of_ccl ()
+{
+ staticpro (&Vccl_program_table);
+ Vccl_program_table = Fmake_vector (32, Qnil);
+
+ DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
+ "Alist of fontname patterns vs corresponding CCL program.\n\
+Each element looks like (REGEXP . CCL-CODE),\n\
+ where CCL-CODE is a compiled CCL program.\n\
+When a font whose name matches REGEXP is used for displaying a character,\n\
+ CCL-CODE is executed to calculate the code point in the font\n\
+ from the charset number and position code(s) of the character which are set\n\
+ in CCL registers R0, R1, and R2 before the execution.\n\
+The code point in the font is set in CCL registers R1 and R2\n\
+ when the execution terminated.\n\
+If the font is single-byte font, the register R2 is not used.");
+ Vfont_ccl_encoder_alist = Qnil;
+
+ defsubr (&Sccl_execute);
+ defsubr (&Sccl_execute_on_string);
+ defsubr (&Sregister_ccl_program);
+}
+
+#endif /* emacs */