/* Execution of byte code produced by bytecomp.el.
Copyright (C) 1985-1988, 1993, 2000-2018 Free Software Foundation,
Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
#include
#include "lisp.h"
#include "blockinput.h"
#include "character.h"
#include "buffer.h"
#include "keyboard.h"
#include "ptr-bounds.h"
#include "syntax.h"
#include "window.h"
/* Work around GCC bug 54561. */
#if GNUC_PREREQ (4, 3, 0)
# pragma GCC diagnostic ignored "-Wclobbered"
#endif
/* Define BYTE_CODE_SAFE true to enable some minor sanity checking,
useful for debugging the byte compiler. It defaults to false. */
#ifndef BYTE_CODE_SAFE
# define BYTE_CODE_SAFE false
#endif
/* Define BYTE_CODE_METER to generate a byte-op usage histogram. */
/* #define BYTE_CODE_METER */
/* If BYTE_CODE_THREADED is defined, then the interpreter will be
indirect threaded, using GCC's computed goto extension. This code,
as currently implemented, is incompatible with BYTE_CODE_SAFE and
BYTE_CODE_METER. */
#if (defined __GNUC__ && !defined __STRICT_ANSI__ && !defined __CHKP__ \
&& !BYTE_CODE_SAFE && !defined BYTE_CODE_METER)
#define BYTE_CODE_THREADED
#endif
#ifdef BYTE_CODE_METER
#define METER_2(code1, code2) \
(*aref_addr (AREF (Vbyte_code_meter, code1), code2))
#define METER_1(code) METER_2 (0, code)
#define METER_CODE(last_code, this_code) \
{ \
if (byte_metering_on) \
{ \
if (XFASTINT (METER_1 (this_code)) < MOST_POSITIVE_FIXNUM) \
XSETFASTINT (METER_1 (this_code), \
XFASTINT (METER_1 (this_code)) + 1); \
if (last_code \
&& (XFASTINT (METER_2 (last_code, this_code)) \
< MOST_POSITIVE_FIXNUM)) \
XSETFASTINT (METER_2 (last_code, this_code), \
XFASTINT (METER_2 (last_code, this_code)) + 1); \
} \
}
#endif /* BYTE_CODE_METER */
/* Byte codes: */
#define BYTE_CODES \
DEFINE (Bstack_ref, 0) /* Actually, Bstack_ref+0 is not implemented: use dup. */ \
DEFINE (Bstack_ref1, 1) \
DEFINE (Bstack_ref2, 2) \
DEFINE (Bstack_ref3, 3) \
DEFINE (Bstack_ref4, 4) \
DEFINE (Bstack_ref5, 5) \
DEFINE (Bstack_ref6, 6) \
DEFINE (Bstack_ref7, 7) \
DEFINE (Bvarref, 010) \
DEFINE (Bvarref1, 011) \
DEFINE (Bvarref2, 012) \
DEFINE (Bvarref3, 013) \
DEFINE (Bvarref4, 014) \
DEFINE (Bvarref5, 015) \
DEFINE (Bvarref6, 016) \
DEFINE (Bvarref7, 017) \
DEFINE (Bvarset, 020) \
DEFINE (Bvarset1, 021) \
DEFINE (Bvarset2, 022) \
DEFINE (Bvarset3, 023) \
DEFINE (Bvarset4, 024) \
DEFINE (Bvarset5, 025) \
DEFINE (Bvarset6, 026) \
DEFINE (Bvarset7, 027) \
DEFINE (Bvarbind, 030) \
DEFINE (Bvarbind1, 031) \
DEFINE (Bvarbind2, 032) \
DEFINE (Bvarbind3, 033) \
DEFINE (Bvarbind4, 034) \
DEFINE (Bvarbind5, 035) \
DEFINE (Bvarbind6, 036) \
DEFINE (Bvarbind7, 037) \
DEFINE (Bcall, 040) \
DEFINE (Bcall1, 041) \
DEFINE (Bcall2, 042) \
DEFINE (Bcall3, 043) \
DEFINE (Bcall4, 044) \
DEFINE (Bcall5, 045) \
DEFINE (Bcall6, 046) \
DEFINE (Bcall7, 047) \
DEFINE (Bunbind, 050) \
DEFINE (Bunbind1, 051) \
DEFINE (Bunbind2, 052) \
DEFINE (Bunbind3, 053) \
DEFINE (Bunbind4, 054) \
DEFINE (Bunbind5, 055) \
DEFINE (Bunbind6, 056) \
DEFINE (Bunbind7, 057) \
\
DEFINE (Bpophandler, 060) \
DEFINE (Bpushconditioncase, 061) \
DEFINE (Bpushcatch, 062) \
\
DEFINE (Bnth, 070) \
DEFINE (Bsymbolp, 071) \
DEFINE (Bconsp, 072) \
DEFINE (Bstringp, 073) \
DEFINE (Blistp, 074) \
DEFINE (Beq, 075) \
DEFINE (Bmemq, 076) \
DEFINE (Bnot, 077) \
DEFINE (Bcar, 0100) \
DEFINE (Bcdr, 0101) \
DEFINE (Bcons, 0102) \
DEFINE (Blist1, 0103) \
DEFINE (Blist2, 0104) \
DEFINE (Blist3, 0105) \
DEFINE (Blist4, 0106) \
DEFINE (Blength, 0107) \
DEFINE (Baref, 0110) \
DEFINE (Baset, 0111) \
DEFINE (Bsymbol_value, 0112) \
DEFINE (Bsymbol_function, 0113) \
DEFINE (Bset, 0114) \
DEFINE (Bfset, 0115) \
DEFINE (Bget, 0116) \
DEFINE (Bsubstring, 0117) \
DEFINE (Bconcat2, 0120) \
DEFINE (Bconcat3, 0121) \
DEFINE (Bconcat4, 0122) \
DEFINE (Bsub1, 0123) \
DEFINE (Badd1, 0124) \
DEFINE (Beqlsign, 0125) \
DEFINE (Bgtr, 0126) \
DEFINE (Blss, 0127) \
DEFINE (Bleq, 0130) \
DEFINE (Bgeq, 0131) \
DEFINE (Bdiff, 0132) \
DEFINE (Bnegate, 0133) \
DEFINE (Bplus, 0134) \
DEFINE (Bmax, 0135) \
DEFINE (Bmin, 0136) \
DEFINE (Bmult, 0137) \
\
DEFINE (Bpoint, 0140) \
/* Was Bmark in v17. */ \
DEFINE (Bsave_current_buffer, 0141) /* Obsolete. */ \
DEFINE (Bgoto_char, 0142) \
DEFINE (Binsert, 0143) \
DEFINE (Bpoint_max, 0144) \
DEFINE (Bpoint_min, 0145) \
DEFINE (Bchar_after, 0146) \
DEFINE (Bfollowing_char, 0147) \
DEFINE (Bpreceding_char, 0150) \
DEFINE (Bcurrent_column, 0151) \
DEFINE (Bindent_to, 0152) \
DEFINE (Beolp, 0154) \
DEFINE (Beobp, 0155) \
DEFINE (Bbolp, 0156) \
DEFINE (Bbobp, 0157) \
DEFINE (Bcurrent_buffer, 0160) \
DEFINE (Bset_buffer, 0161) \
DEFINE (Bsave_current_buffer_1, 0162) /* Replacing Bsave_current_buffer. */ \
DEFINE (Binteractive_p, 0164) /* Obsolete since Emacs-24.1. */ \
\
DEFINE (Bforward_char, 0165) \
DEFINE (Bforward_word, 0166) \
DEFINE (Bskip_chars_forward, 0167) \
DEFINE (Bskip_chars_backward, 0170) \
DEFINE (Bforward_line, 0171) \
DEFINE (Bchar_syntax, 0172) \
DEFINE (Bbuffer_substring, 0173) \
DEFINE (Bdelete_region, 0174) \
DEFINE (Bnarrow_to_region, 0175) \
DEFINE (Bwiden, 0176) \
DEFINE (Bend_of_line, 0177) \
\
DEFINE (Bconstant2, 0201) \
DEFINE (Bgoto, 0202) \
DEFINE (Bgotoifnil, 0203) \
DEFINE (Bgotoifnonnil, 0204) \
DEFINE (Bgotoifnilelsepop, 0205) \
DEFINE (Bgotoifnonnilelsepop, 0206) \
DEFINE (Breturn, 0207) \
DEFINE (Bdiscard, 0210) \
DEFINE (Bdup, 0211) \
\
DEFINE (Bsave_excursion, 0212) \
DEFINE (Bsave_window_excursion, 0213) /* Obsolete since Emacs-24.1. */ \
DEFINE (Bsave_restriction, 0214) \
DEFINE (Bcatch, 0215) \
\
DEFINE (Bunwind_protect, 0216) \
DEFINE (Bcondition_case, 0217) \
DEFINE (Btemp_output_buffer_setup, 0220) /* Obsolete since Emacs-24.1. */ \
DEFINE (Btemp_output_buffer_show, 0221) /* Obsolete since Emacs-24.1. */ \
\
DEFINE (Bunbind_all, 0222) /* Obsolete. Never used. */ \
\
DEFINE (Bset_marker, 0223) \
DEFINE (Bmatch_beginning, 0224) \
DEFINE (Bmatch_end, 0225) \
DEFINE (Bupcase, 0226) \
DEFINE (Bdowncase, 0227) \
\
DEFINE (Bstringeqlsign, 0230) \
DEFINE (Bstringlss, 0231) \
DEFINE (Bequal, 0232) \
DEFINE (Bnthcdr, 0233) \
DEFINE (Belt, 0234) \
DEFINE (Bmember, 0235) \
DEFINE (Bassq, 0236) \
DEFINE (Bnreverse, 0237) \
DEFINE (Bsetcar, 0240) \
DEFINE (Bsetcdr, 0241) \
DEFINE (Bcar_safe, 0242) \
DEFINE (Bcdr_safe, 0243) \
DEFINE (Bnconc, 0244) \
DEFINE (Bquo, 0245) \
DEFINE (Brem, 0246) \
DEFINE (Bnumberp, 0247) \
DEFINE (Bintegerp, 0250) \
\
DEFINE (BRgoto, 0252) \
DEFINE (BRgotoifnil, 0253) \
DEFINE (BRgotoifnonnil, 0254) \
DEFINE (BRgotoifnilelsepop, 0255) \
DEFINE (BRgotoifnonnilelsepop, 0256) \
\
DEFINE (BlistN, 0257) \
DEFINE (BconcatN, 0260) \
DEFINE (BinsertN, 0261) \
\
/* Bstack_ref is code 0. */ \
DEFINE (Bstack_set, 0262) \
DEFINE (Bstack_set2, 0263) \
DEFINE (BdiscardN, 0266) \
\
DEFINE (Bswitch, 0267) \
\
DEFINE (Bconstant, 0300)
enum byte_code_op
{
#define DEFINE(name, value) name = value,
BYTE_CODES
#undef DEFINE
#if BYTE_CODE_SAFE
Bscan_buffer = 0153, /* No longer generated as of v18. */
Bset_mark = 0163, /* this loser is no longer generated as of v18 */
#endif
};
/* Fetch the next byte from the bytecode stream. */
#define FETCH (*pc++)
/* Fetch two bytes from the bytecode stream and make a 16-bit number
out of them. */
#define FETCH2 (op = FETCH, op + (FETCH << 8))
/* Push X onto the execution stack. The expression X should not
contain TOP, to avoid competing side effects. */
#define PUSH(x) (*++top = (x))
/* Pop a value off the execution stack. */
#define POP (*top--)
/* Discard n values from the execution stack. */
#define DISCARD(n) (top -= (n))
/* Get the value which is at the top of the execution stack, but don't
pop it. */
#define TOP (*top)
DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
doc: /* Function used internally in byte-compiled code.
The first argument, BYTESTR, is a string of byte code;
the second, VECTOR, a vector of constants;
the third, MAXDEPTH, the maximum stack depth used in this function.
If the third argument is incorrect, Emacs may crash. */)
(Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
{
return exec_byte_code (bytestr, vector, maxdepth, Qnil, 0, NULL);
}
static void
bcall0 (Lisp_Object f)
{
Ffuncall (1, &f);
}
/* Execute the byte-code in BYTESTR. VECTOR is the constant vector, and
MAXDEPTH is the maximum stack depth used (if MAXDEPTH is incorrect,
emacs may crash!). If ARGS_TEMPLATE is non-nil, it should be a lisp
argument list (including &rest, &optional, etc.), and ARGS, of size
NARGS, should be a vector of the actual arguments. The arguments in
ARGS are pushed on the stack according to ARGS_TEMPLATE before
executing BYTESTR. */
Lisp_Object
exec_byte_code (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth,
Lisp_Object args_template, ptrdiff_t nargs, Lisp_Object *args)
{
#ifdef BYTE_CODE_METER
int volatile this_op = 0;
#endif
CHECK_STRING (bytestr);
CHECK_VECTOR (vector);
CHECK_NATNUM (maxdepth);
ptrdiff_t const_length = ASIZE (vector);
if (STRING_MULTIBYTE (bytestr))
/* BYTESTR must have been produced by Emacs 20.2 or the earlier
because they produced a raw 8-bit string for byte-code and now
such a byte-code string is loaded as multibyte while raw 8-bit
characters converted to multibyte form. Thus, now we must
convert them back to the originally intended unibyte form. */
bytestr = Fstring_as_unibyte (bytestr);
ptrdiff_t bytestr_length = SBYTES (bytestr);
Lisp_Object *vectorp = XVECTOR (vector)->contents;
unsigned char quitcounter = 1;
EMACS_INT stack_items = XFASTINT (maxdepth) + 1;
USE_SAFE_ALLOCA;
void *alloc;
SAFE_ALLOCA_LISP_EXTRA (alloc, stack_items, bytestr_length);
ptrdiff_t item_bytes = stack_items * word_size;
Lisp_Object *stack_base = ptr_bounds_clip (alloc, item_bytes);
Lisp_Object *top = stack_base;
Lisp_Object *stack_lim = stack_base + stack_items;
unsigned char *bytestr_data = alloc;
bytestr_data = ptr_bounds_clip (bytestr_data + item_bytes, bytestr_length);
memcpy (bytestr_data, SDATA (bytestr), bytestr_length);
unsigned char const *pc = bytestr_data;
ptrdiff_t count = SPECPDL_INDEX ();
if (!NILP (args_template))
{
eassert (INTEGERP (args_template));
ptrdiff_t at = XINT (args_template);
bool rest = (at & 128) != 0;
int mandatory = at & 127;
ptrdiff_t nonrest = at >> 8;
ptrdiff_t maxargs = rest ? PTRDIFF_MAX : nonrest;
if (! (mandatory <= nargs && nargs <= maxargs))
Fsignal (Qwrong_number_of_arguments,
list2 (Fcons (make_number (mandatory), make_number (nonrest)),
make_number (nargs)));
ptrdiff_t pushedargs = min (nonrest, nargs);
for (ptrdiff_t i = 0; i < pushedargs; i++, args++)
PUSH (*args);
if (nonrest < nargs)
PUSH (Flist (nargs - nonrest, args));
else
for (ptrdiff_t i = nargs - rest; i < nonrest; i++)
PUSH (Qnil);
}
while (true)
{
int op;
enum handlertype type;
if (BYTE_CODE_SAFE && ! (stack_base <= top && top < stack_lim))
emacs_abort ();
#ifdef BYTE_CODE_METER
int prev_op = this_op;
this_op = op = FETCH;
METER_CODE (prev_op, op);
#elif !defined BYTE_CODE_THREADED
op = FETCH;
#endif
/* The interpreter can be compiled one of two ways: as an
ordinary switch-based interpreter, or as a threaded
interpreter. The threaded interpreter relies on GCC's
computed goto extension, so it is not available everywhere.
Threading provides a performance boost. These macros are how
we allow the code to be compiled both ways. */
#ifdef BYTE_CODE_THREADED
/* The CASE macro introduces an instruction's body. It is
either a label or a case label. */
#define CASE(OP) insn_ ## OP
/* NEXT is invoked at the end of an instruction to go to the
next instruction. It is either a computed goto, or a
plain break. */
#define NEXT goto *(targets[op = FETCH])
/* FIRST is like NEXT, but is only used at the start of the
interpreter body. In the switch-based interpreter it is the
switch, so the threaded definition must include a semicolon. */
#define FIRST NEXT;
/* Most cases are labeled with the CASE macro, above.
CASE_DEFAULT is one exception; it is used if the interpreter
being built requires a default case. The threaded
interpreter does not, because the dispatch table is
completely filled. */
#define CASE_DEFAULT
/* This introduces an instruction that is known to call abort. */
#define CASE_ABORT CASE (Bstack_ref): CASE (default)
#else
/* See above for the meaning of the various defines. */
#define CASE(OP) case OP
#define NEXT break
#define FIRST switch (op)
#define CASE_DEFAULT case 255: default:
#define CASE_ABORT case 0
#endif
#ifdef BYTE_CODE_THREADED
/* A convenience define that saves us a lot of typing and makes
the table clearer. */
#define LABEL(OP) [OP] = &&insn_ ## OP
/* This is the dispatch table for the threaded interpreter. */
static const void *const targets[256] =
{
[0 ... (Bconstant - 1)] = &&insn_default,
[Bconstant ... 255] = &&insn_Bconstant,
#define DEFINE(name, value) LABEL (name) ,
BYTE_CODES
#undef DEFINE
};
#endif
FIRST
{
CASE (Bvarref7):
op = FETCH2;
goto varref;
CASE (Bvarref):
CASE (Bvarref1):
CASE (Bvarref2):
CASE (Bvarref3):
CASE (Bvarref4):
CASE (Bvarref5):
op -= Bvarref;
goto varref;
/* This seems to be the most frequently executed byte-code
among the Bvarref's, so avoid a goto here. */
CASE (Bvarref6):
op = FETCH;
varref:
{
Lisp_Object v1 = vectorp[op], v2;
if (!SYMBOLP (v1)
|| XSYMBOL (v1)->u.s.redirect != SYMBOL_PLAINVAL
|| (v2 = SYMBOL_VAL (XSYMBOL (v1)), EQ (v2, Qunbound)))
v2 = Fsymbol_value (v1);
PUSH (v2);
NEXT;
}
CASE (Bgotoifnil):
{
Lisp_Object v1 = POP;
op = FETCH2;
if (NILP (v1))
goto op_branch;
NEXT;
}
CASE (Bcar):
if (CONSP (TOP))
TOP = XCAR (TOP);
else if (!NILP (TOP))
wrong_type_argument (Qlistp, TOP);
NEXT;
CASE (Beq):
{
Lisp_Object v1 = POP;
TOP = EQ (v1, TOP) ? Qt : Qnil;
NEXT;
}
CASE (Bmemq):
{
Lisp_Object v1 = POP;
TOP = Fmemq (TOP, v1);
NEXT;
}
CASE (Bcdr):
{
if (CONSP (TOP))
TOP = XCDR (TOP);
else if (!NILP (TOP))
wrong_type_argument (Qlistp, TOP);
NEXT;
}
CASE (Bvarset):
CASE (Bvarset1):
CASE (Bvarset2):
CASE (Bvarset3):
CASE (Bvarset4):
CASE (Bvarset5):
op -= Bvarset;
goto varset;
CASE (Bvarset7):
op = FETCH2;
goto varset;
CASE (Bvarset6):
op = FETCH;
varset:
{
Lisp_Object sym = vectorp[op];
Lisp_Object val = POP;
/* Inline the most common case. */
if (SYMBOLP (sym)
&& !EQ (val, Qunbound)
&& !XSYMBOL (sym)->u.s.redirect
&& !SYMBOL_TRAPPED_WRITE_P (sym))
SET_SYMBOL_VAL (XSYMBOL (sym), val);
else
set_internal (sym, val, Qnil, SET_INTERNAL_SET);
}
NEXT;
CASE (Bdup):
{
Lisp_Object v1 = TOP;
PUSH (v1);
NEXT;
}
/* ------------------ */
CASE (Bvarbind6):
op = FETCH;
goto varbind;
CASE (Bvarbind7):
op = FETCH2;
goto varbind;
CASE (Bvarbind):
CASE (Bvarbind1):
CASE (Bvarbind2):
CASE (Bvarbind3):
CASE (Bvarbind4):
CASE (Bvarbind5):
op -= Bvarbind;
varbind:
/* Specbind can signal and thus GC. */
specbind (vectorp[op], POP);
NEXT;
CASE (Bcall6):
op = FETCH;
goto docall;
CASE (Bcall7):
op = FETCH2;
goto docall;
CASE (Bcall):
CASE (Bcall1):
CASE (Bcall2):
CASE (Bcall3):
CASE (Bcall4):
CASE (Bcall5):
op -= Bcall;
docall:
{
DISCARD (op);
#ifdef BYTE_CODE_METER
if (byte_metering_on && SYMBOLP (TOP))
{
Lisp_Object v1 = TOP;
Lisp_Object v2 = Fget (v1, Qbyte_code_meter);
if (INTEGERP (v2)
&& XINT (v2) < MOST_POSITIVE_FIXNUM)
{
XSETINT (v2, XINT (v2) + 1);
Fput (v1, Qbyte_code_meter, v2);
}
}
#endif
TOP = Ffuncall (op + 1, &TOP);
NEXT;
}
CASE (Bunbind6):
op = FETCH;
goto dounbind;
CASE (Bunbind7):
op = FETCH2;
goto dounbind;
CASE (Bunbind):
CASE (Bunbind1):
CASE (Bunbind2):
CASE (Bunbind3):
CASE (Bunbind4):
CASE (Bunbind5):
op -= Bunbind;
dounbind:
unbind_to (SPECPDL_INDEX () - op, Qnil);
NEXT;
CASE (Bunbind_all): /* Obsolete. Never used. */
/* To unbind back to the beginning of this frame. Not used yet,
but will be needed for tail-recursion elimination. */
unbind_to (count, Qnil);
NEXT;
CASE (Bgoto):
op = FETCH2;
op_branch:
op -= pc - bytestr_data;
op_relative_branch:
if (BYTE_CODE_SAFE
&& ! (bytestr_data - pc <= op
&& op < bytestr_data + bytestr_length - pc))
emacs_abort ();
quitcounter += op < 0;
if (!quitcounter)
{
quitcounter = 1;
maybe_gc ();
maybe_quit ();
}
pc += op;
NEXT;
CASE (Bgotoifnonnil):
op = FETCH2;
if (!NILP (POP))
goto op_branch;
NEXT;
CASE (Bgotoifnilelsepop):
op = FETCH2;
if (NILP (TOP))
goto op_branch;
DISCARD (1);
NEXT;
CASE (Bgotoifnonnilelsepop):
op = FETCH2;
if (!NILP (TOP))
goto op_branch;
DISCARD (1);
NEXT;
CASE (BRgoto):
op = FETCH - 128;
goto op_relative_branch;
CASE (BRgotoifnil):
op = FETCH - 128;
if (NILP (POP))
goto op_relative_branch;
NEXT;
CASE (BRgotoifnonnil):
op = FETCH - 128;
if (!NILP (POP))
goto op_relative_branch;
NEXT;
CASE (BRgotoifnilelsepop):
op = FETCH - 128;
if (NILP (TOP))
goto op_relative_branch;
DISCARD (1);
NEXT;
CASE (BRgotoifnonnilelsepop):
op = FETCH - 128;
if (!NILP (TOP))
goto op_relative_branch;
DISCARD (1);
NEXT;
CASE (Breturn):
goto exit;
CASE (Bdiscard):
DISCARD (1);
NEXT;
CASE (Bconstant2):
PUSH (vectorp[FETCH2]);
NEXT;
CASE (Bsave_excursion):
record_unwind_protect (save_excursion_restore,
save_excursion_save ());
NEXT;
CASE (Bsave_current_buffer): /* Obsolete since ??. */
CASE (Bsave_current_buffer_1):
record_unwind_current_buffer ();
NEXT;
CASE (Bsave_window_excursion): /* Obsolete since 24.1. */
{
ptrdiff_t count1 = SPECPDL_INDEX ();
record_unwind_protect (restore_window_configuration,
Fcurrent_window_configuration (Qnil));
TOP = Fprogn (TOP);
unbind_to (count1, TOP);
NEXT;
}
CASE (Bsave_restriction):
record_unwind_protect (save_restriction_restore,
save_restriction_save ());
NEXT;
CASE (Bcatch): /* Obsolete since 24.4. */
{
Lisp_Object v1 = POP;
TOP = internal_catch (TOP, eval_sub, v1);
NEXT;
}
CASE (Bpushcatch): /* New in 24.4. */
type = CATCHER;
goto pushhandler;
CASE (Bpushconditioncase): /* New in 24.4. */
type = CONDITION_CASE;
pushhandler:
{
struct handler *c = push_handler (POP, type);
c->bytecode_dest = FETCH2;
c->bytecode_top = top;
if (sys_setjmp (c->jmp))
{
struct handler *c = handlerlist;
top = c->bytecode_top;
op = c->bytecode_dest;
handlerlist = c->next;
PUSH (c->val);
goto op_branch;
}
NEXT;
}
CASE (Bpophandler): /* New in 24.4. */
handlerlist = handlerlist->next;
NEXT;
CASE (Bunwind_protect): /* FIXME: avoid closure for lexbind. */
{
Lisp_Object handler = POP;
/* Support for a function here is new in 24.4. */
record_unwind_protect (FUNCTIONP (handler) ? bcall0 : prog_ignore,
handler);
NEXT;
}
CASE (Bcondition_case): /* Obsolete since 24.4. */
{
Lisp_Object handlers = POP, body = POP;
TOP = internal_lisp_condition_case (TOP, body, handlers);
NEXT;
}
CASE (Btemp_output_buffer_setup): /* Obsolete since 24.1. */
CHECK_STRING (TOP);
temp_output_buffer_setup (SSDATA (TOP));
TOP = Vstandard_output;
NEXT;
CASE (Btemp_output_buffer_show): /* Obsolete since 24.1. */
{
Lisp_Object v1 = POP;
temp_output_buffer_show (TOP);
TOP = v1;
/* pop binding of standard-output */
unbind_to (SPECPDL_INDEX () - 1, Qnil);
NEXT;
}
CASE (Bnth):
{
Lisp_Object v2 = POP, v1 = TOP;
CHECK_NUMBER (v1);
for (EMACS_INT n = XINT (v1); 0 < n && CONSP (v2); n--)
{
v2 = XCDR (v2);
rarely_quit (n);
}
TOP = CAR (v2);
NEXT;
}
CASE (Bsymbolp):
TOP = SYMBOLP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bconsp):
TOP = CONSP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bstringp):
TOP = STRINGP (TOP) ? Qt : Qnil;
NEXT;
CASE (Blistp):
TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bnot):
TOP = NILP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bcons):
{
Lisp_Object v1 = POP;
TOP = Fcons (TOP, v1);
NEXT;
}
CASE (Blist1):
TOP = list1 (TOP);
NEXT;
CASE (Blist2):
{
Lisp_Object v1 = POP;
TOP = list2 (TOP, v1);
NEXT;
}
CASE (Blist3):
DISCARD (2);
TOP = Flist (3, &TOP);
NEXT;
CASE (Blist4):
DISCARD (3);
TOP = Flist (4, &TOP);
NEXT;
CASE (BlistN):
op = FETCH;
DISCARD (op - 1);
TOP = Flist (op, &TOP);
NEXT;
CASE (Blength):
TOP = Flength (TOP);
NEXT;
CASE (Baref):
{
Lisp_Object v1 = POP;
TOP = Faref (TOP, v1);
NEXT;
}
CASE (Baset):
{
Lisp_Object v2 = POP, v1 = POP;
TOP = Faset (TOP, v1, v2);
NEXT;
}
CASE (Bsymbol_value):
TOP = Fsymbol_value (TOP);
NEXT;
CASE (Bsymbol_function):
TOP = Fsymbol_function (TOP);
NEXT;
CASE (Bset):
{
Lisp_Object v1 = POP;
TOP = Fset (TOP, v1);
NEXT;
}
CASE (Bfset):
{
Lisp_Object v1 = POP;
TOP = Ffset (TOP, v1);
NEXT;
}
CASE (Bget):
{
Lisp_Object v1 = POP;
TOP = Fget (TOP, v1);
NEXT;
}
CASE (Bsubstring):
{
Lisp_Object v2 = POP, v1 = POP;
TOP = Fsubstring (TOP, v1, v2);
NEXT;
}
CASE (Bconcat2):
DISCARD (1);
TOP = Fconcat (2, &TOP);
NEXT;
CASE (Bconcat3):
DISCARD (2);
TOP = Fconcat (3, &TOP);
NEXT;
CASE (Bconcat4):
DISCARD (3);
TOP = Fconcat (4, &TOP);
NEXT;
CASE (BconcatN):
op = FETCH;
DISCARD (op - 1);
TOP = Fconcat (op, &TOP);
NEXT;
CASE (Bsub1):
TOP = INTEGERP (TOP) ? make_number (XINT (TOP) - 1) : Fsub1 (TOP);
NEXT;
CASE (Badd1):
TOP = INTEGERP (TOP) ? make_number (XINT (TOP) + 1) : Fadd1 (TOP);
NEXT;
CASE (Beqlsign):
{
Lisp_Object v2 = POP, v1 = TOP;
if (FLOATP (v1) || FLOATP (v2))
TOP = arithcompare (v1, v2, ARITH_EQUAL);
else
{
CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
TOP = EQ (v1, v2) ? Qt : Qnil;
}
NEXT;
}
CASE (Bgtr):
{
Lisp_Object v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_GRTR);
NEXT;
}
CASE (Blss):
{
Lisp_Object v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_LESS);
NEXT;
}
CASE (Bleq):
{
Lisp_Object v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_LESS_OR_EQUAL);
NEXT;
}
CASE (Bgeq):
{
Lisp_Object v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_GRTR_OR_EQUAL);
NEXT;
}
CASE (Bdiff):
DISCARD (1);
TOP = Fminus (2, &TOP);
NEXT;
CASE (Bnegate):
TOP = INTEGERP (TOP) ? make_number (- XINT (TOP)) : Fminus (1, &TOP);
NEXT;
CASE (Bplus):
DISCARD (1);
TOP = Fplus (2, &TOP);
NEXT;
CASE (Bmax):
DISCARD (1);
TOP = Fmax (2, &TOP);
NEXT;
CASE (Bmin):
DISCARD (1);
TOP = Fmin (2, &TOP);
NEXT;
CASE (Bmult):
DISCARD (1);
TOP = Ftimes (2, &TOP);
NEXT;
CASE (Bquo):
DISCARD (1);
TOP = Fquo (2, &TOP);
NEXT;
CASE (Brem):
{
Lisp_Object v1 = POP;
TOP = Frem (TOP, v1);
NEXT;
}
CASE (Bpoint):
PUSH (make_natnum (PT));
NEXT;
CASE (Bgoto_char):
TOP = Fgoto_char (TOP);
NEXT;
CASE (Binsert):
TOP = Finsert (1, &TOP);
NEXT;
CASE (BinsertN):
op = FETCH;
DISCARD (op - 1);
TOP = Finsert (op, &TOP);
NEXT;
CASE (Bpoint_max):
{
Lisp_Object v1;
XSETFASTINT (v1, ZV);
PUSH (v1);
NEXT;
}
CASE (Bpoint_min):
PUSH (make_natnum (BEGV));
NEXT;
CASE (Bchar_after):
TOP = Fchar_after (TOP);
NEXT;
CASE (Bfollowing_char):
PUSH (Ffollowing_char ());
NEXT;
CASE (Bpreceding_char):
PUSH (Fprevious_char ());
NEXT;
CASE (Bcurrent_column):
PUSH (make_natnum (current_column ()));
NEXT;
CASE (Bindent_to):
TOP = Findent_to (TOP, Qnil);
NEXT;
CASE (Beolp):
PUSH (Feolp ());
NEXT;
CASE (Beobp):
PUSH (Feobp ());
NEXT;
CASE (Bbolp):
PUSH (Fbolp ());
NEXT;
CASE (Bbobp):
PUSH (Fbobp ());
NEXT;
CASE (Bcurrent_buffer):
PUSH (Fcurrent_buffer ());
NEXT;
CASE (Bset_buffer):
TOP = Fset_buffer (TOP);
NEXT;
CASE (Binteractive_p): /* Obsolete since 24.1. */
PUSH (call0 (intern ("interactive-p")));
NEXT;
CASE (Bforward_char):
TOP = Fforward_char (TOP);
NEXT;
CASE (Bforward_word):
TOP = Fforward_word (TOP);
NEXT;
CASE (Bskip_chars_forward):
{
Lisp_Object v1 = POP;
TOP = Fskip_chars_forward (TOP, v1);
NEXT;
}
CASE (Bskip_chars_backward):
{
Lisp_Object v1 = POP;
TOP = Fskip_chars_backward (TOP, v1);
NEXT;
}
CASE (Bforward_line):
TOP = Fforward_line (TOP);
NEXT;
CASE (Bchar_syntax):
{
CHECK_CHARACTER (TOP);
int c = XFASTINT (TOP);
if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
MAKE_CHAR_MULTIBYTE (c);
XSETFASTINT (TOP, syntax_code_spec[SYNTAX (c)]);
}
NEXT;
CASE (Bbuffer_substring):
{
Lisp_Object v1 = POP;
TOP = Fbuffer_substring (TOP, v1);
NEXT;
}
CASE (Bdelete_region):
{
Lisp_Object v1 = POP;
TOP = Fdelete_region (TOP, v1);
NEXT;
}
CASE (Bnarrow_to_region):
{
Lisp_Object v1 = POP;
TOP = Fnarrow_to_region (TOP, v1);
NEXT;
}
CASE (Bwiden):
PUSH (Fwiden ());
NEXT;
CASE (Bend_of_line):
TOP = Fend_of_line (TOP);
NEXT;
CASE (Bset_marker):
{
Lisp_Object v2 = POP, v1 = POP;
TOP = Fset_marker (TOP, v1, v2);
NEXT;
}
CASE (Bmatch_beginning):
TOP = Fmatch_beginning (TOP);
NEXT;
CASE (Bmatch_end):
TOP = Fmatch_end (TOP);
NEXT;
CASE (Bupcase):
TOP = Fupcase (TOP);
NEXT;
CASE (Bdowncase):
TOP = Fdowncase (TOP);
NEXT;
CASE (Bstringeqlsign):
{
Lisp_Object v1 = POP;
TOP = Fstring_equal (TOP, v1);
NEXT;
}
CASE (Bstringlss):
{
Lisp_Object v1 = POP;
TOP = Fstring_lessp (TOP, v1);
NEXT;
}
CASE (Bequal):
{
Lisp_Object v1 = POP;
TOP = Fequal (TOP, v1);
NEXT;
}
CASE (Bnthcdr):
{
Lisp_Object v1 = POP;
TOP = Fnthcdr (TOP, v1);
NEXT;
}
CASE (Belt):
{
if (CONSP (TOP))
{
/* Exchange args and then do nth. */
Lisp_Object v2 = POP, v1 = TOP;
CHECK_NUMBER (v2);
for (EMACS_INT n = XINT (v2); 0 < n && CONSP (v1); n--)
{
v1 = XCDR (v1);
rarely_quit (n);
}
TOP = CAR (v1);
}
else
{
Lisp_Object v1 = POP;
TOP = Felt (TOP, v1);
}
NEXT;
}
CASE (Bmember):
{
Lisp_Object v1 = POP;
TOP = Fmember (TOP, v1);
NEXT;
}
CASE (Bassq):
{
Lisp_Object v1 = POP;
TOP = Fassq (TOP, v1);
NEXT;
}
CASE (Bnreverse):
TOP = Fnreverse (TOP);
NEXT;
CASE (Bsetcar):
{
Lisp_Object v1 = POP;
TOP = Fsetcar (TOP, v1);
NEXT;
}
CASE (Bsetcdr):
{
Lisp_Object v1 = POP;
TOP = Fsetcdr (TOP, v1);
NEXT;
}
CASE (Bcar_safe):
TOP = CAR_SAFE (TOP);
NEXT;
CASE (Bcdr_safe):
TOP = CDR_SAFE (TOP);
NEXT;
CASE (Bnconc):
DISCARD (1);
TOP = Fnconc (2, &TOP);
NEXT;
CASE (Bnumberp):
TOP = NUMBERP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bintegerp):
TOP = INTEGERP (TOP) ? Qt : Qnil;
NEXT;
#if BYTE_CODE_SAFE
/* These are intentionally written using 'case' syntax,
because they are incompatible with the threaded
interpreter. */
case Bset_mark:
error ("set-mark is an obsolete bytecode");
break;
case Bscan_buffer:
error ("scan-buffer is an obsolete bytecode");
break;
#endif
CASE_ABORT:
/* Actually this is Bstack_ref with offset 0, but we use Bdup
for that instead. */
/* CASE (Bstack_ref): */
error ("Invalid byte opcode: op=%d, ptr=%"pD"d",
op, pc - 1 - bytestr_data);
/* Handy byte-codes for lexical binding. */
CASE (Bstack_ref1):
CASE (Bstack_ref2):
CASE (Bstack_ref3):
CASE (Bstack_ref4):
CASE (Bstack_ref5):
{
Lisp_Object v1 = top[Bstack_ref - op];
PUSH (v1);
NEXT;
}
CASE (Bstack_ref6):
{
Lisp_Object v1 = top[- FETCH];
PUSH (v1);
NEXT;
}
CASE (Bstack_ref7):
{
Lisp_Object v1 = top[- FETCH2];
PUSH (v1);
NEXT;
}
CASE (Bstack_set):
/* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */
{
Lisp_Object *ptr = top - FETCH;
*ptr = POP;
NEXT;
}
CASE (Bstack_set2):
{
Lisp_Object *ptr = top - FETCH2;
*ptr = POP;
NEXT;
}
CASE (BdiscardN):
op = FETCH;
if (op & 0x80)
{
op &= 0x7F;
top[-op] = TOP;
}
DISCARD (op);
NEXT;
CASE (Bswitch):
{
/* TODO: Perhaps introduce another byte-code for switch when the
number of cases is less, which uses a simple vector for linear
search as the jump table. */
Lisp_Object jmp_table = POP;
if (BYTE_CODE_SAFE && !HASH_TABLE_P (jmp_table))
emacs_abort ();
Lisp_Object v1 = POP;
ptrdiff_t i;
struct Lisp_Hash_Table *h = XHASH_TABLE (jmp_table);
/* h->count is a faster approximation for HASH_TABLE_SIZE (h)
here. */
if (h->count <= 5)
{ /* Do a linear search if there are not many cases
FIXME: 5 is arbitrarily chosen. */
Lisp_Object hash_code = h->test.cmpfn
? make_number (h->test.hashfn (&h->test, v1)) : Qnil;
for (i = h->count; 0 <= --i; )
if (EQ (v1, HASH_KEY (h, i))
|| (h->test.cmpfn
&& EQ (hash_code, HASH_HASH (h, i))
&& h->test.cmpfn (&h->test, v1, HASH_KEY (h, i))))
break;
}
else
i = hash_lookup (h, v1, NULL);
if (i >= 0)
{
Lisp_Object val = HASH_VALUE (h, i);
if (BYTE_CODE_SAFE && !INTEGERP (val))
emacs_abort ();
op = XINT (val);
goto op_branch;
}
}
NEXT;
CASE_DEFAULT
CASE (Bconstant):
if (BYTE_CODE_SAFE
&& ! (Bconstant <= op && op < Bconstant + const_length))
emacs_abort ();
PUSH (vectorp[op - Bconstant]);
NEXT;
}
}
exit:
/* Binds and unbinds are supposed to be compiled balanced. */
if (SPECPDL_INDEX () != count)
{
if (SPECPDL_INDEX () > count)
unbind_to (count, Qnil);
error ("binding stack not balanced (serious byte compiler bug)");
}
Lisp_Object result = TOP;
SAFE_FREE ();
return result;
}
/* `args_template' has the same meaning as in exec_byte_code() above. */
Lisp_Object
get_byte_code_arity (Lisp_Object args_template)
{
eassert (NATNUMP (args_template));
EMACS_INT at = XINT (args_template);
bool rest = (at & 128) != 0;
int mandatory = at & 127;
EMACS_INT nonrest = at >> 8;
return Fcons (make_number (mandatory),
rest ? Qmany : make_number (nonrest));
}
void
syms_of_bytecode (void)
{
defsubr (&Sbyte_code);
#ifdef BYTE_CODE_METER
DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
doc: /* A vector of vectors which holds a histogram of byte-code usage.
\(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
opcode CODE has been executed.
\(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
indicates how many times the byte opcodes CODE1 and CODE2 have been
executed in succession. */);
DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
doc: /* If non-nil, keep profiling information on byte code usage.
The variable byte-code-meter indicates how often each byte opcode is used.
If a symbol has a property named `byte-code-meter' whose value is an
integer, it is incremented each time that symbol's function is called. */);
byte_metering_on = false;
Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
DEFSYM (Qbyte_code_meter, "byte-code-meter");
{
int i = 256;
while (i--)
ASET (Vbyte_code_meter, i,
Fmake_vector (make_number (256), make_number (0)));
}
#endif
}