/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
Copyright (C) 1988, 1993-1994, 1999, 2001-2014 Free Software Foundation, Inc.
Author: Wolfgang Rupprecht
(according to ack.texi)
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
/* C89 requires only the following math.h functions, and Emacs omits
the starred functions since we haven't found a use for them:
acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh,
sqrt, tan, *tanh.
C99 and C11 require the following math.h functions in addition to
the C89 functions. Of these, Emacs currently exports only the
starred ones to Lisp, since we haven't found a use for the others:
acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma,
fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater,
isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan,
isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb
(approximately), lrint/llrint, lround/llround, nan, nearbyint,
nextafter, nexttoward, remainder, remquo, *rint, round, scalbln,
scalbn, signbit, tgamma, trunc.
*/
#include
#include "lisp.h"
#include
/* 'isfinite' and 'isnan' cause build failures on Solaris 10 with the
bundled GCC in c99 mode. Work around the bugs with simple
implementations that are good enough. */
#undef isfinite
#define isfinite(x) ((x) - (x) == 0)
#undef isnan
#define isnan(x) ((x) != (x))
/* Check that X is a floating point number. */
static void
CHECK_FLOAT (Lisp_Object x)
{
CHECK_TYPE (FLOATP (x), Qfloatp, x);
}
/* Extract a Lisp number as a `double', or signal an error. */
double
extract_float (Lisp_Object num)
{
CHECK_NUMBER_OR_FLOAT (num);
if (FLOATP (num))
return XFLOAT_DATA (num);
return (double) XINT (num);
}
/* Trig functions. */
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
doc: /* Return the inverse cosine of ARG. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = acos (d);
return make_float (d);
}
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
doc: /* Return the inverse sine of ARG. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = asin (d);
return make_float (d);
}
DEFUN ("atan", Fatan, Satan, 1, 2, 0,
doc: /* Return the inverse tangent of the arguments.
If only one argument Y is given, return the inverse tangent of Y.
If two arguments Y and X are given, return the inverse tangent of Y
divided by X, i.e. the angle in radians between the vector (X, Y)
and the x-axis. */)
(Lisp_Object y, Lisp_Object x)
{
double d = extract_float (y);
if (NILP (x))
d = atan (d);
else
{
double d2 = extract_float (x);
d = atan2 (d, d2);
}
return make_float (d);
}
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
doc: /* Return the cosine of ARG. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = cos (d);
return make_float (d);
}
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
doc: /* Return the sine of ARG. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = sin (d);
return make_float (d);
}
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
doc: /* Return the tangent of ARG. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = tan (d);
return make_float (d);
}
DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
doc: /* Return non nil if argument X is a NaN. */)
(Lisp_Object x)
{
CHECK_FLOAT (x);
return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
}
#ifdef HAVE_COPYSIGN
DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0,
doc: /* Copy sign of X2 to value of X1, and return the result.
Cause an error if X1 or X2 is not a float. */)
(Lisp_Object x1, Lisp_Object x2)
{
double f1, f2;
CHECK_FLOAT (x1);
CHECK_FLOAT (x2);
f1 = XFLOAT_DATA (x1);
f2 = XFLOAT_DATA (x2);
return make_float (copysign (f1, f2));
}
#endif
DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
doc: /* Get significand and exponent of a floating point number.
Breaks the floating point number X into its binary significand SGNFCAND
\(a floating point value between 0.5 (included) and 1.0 (excluded))
and an integral exponent EXP for 2, such that:
X = SGNFCAND * 2^EXP
The function returns the cons cell (SGNFCAND . EXP).
If X is zero, both parts (SGNFCAND and EXP) are zero. */)
(Lisp_Object x)
{
double f = XFLOATINT (x);
int exponent;
double sgnfcand = frexp (f, &exponent);
return Fcons (make_float (sgnfcand), make_number (exponent));
}
DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
doc: /* Construct number X from significand SGNFCAND and exponent EXP.
Returns the floating point value resulting from multiplying SGNFCAND
(the significand) by 2 raised to the power of EXP (the exponent). */)
(Lisp_Object sgnfcand, Lisp_Object exponent)
{
CHECK_NUMBER (exponent);
return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent)));
}
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
doc: /* Return the exponential base e of ARG. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = exp (d);
return make_float (d);
}
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
doc: /* Return the exponential ARG1 ** ARG2. */)
(Lisp_Object arg1, Lisp_Object arg2)
{
double f1, f2, f3;
CHECK_NUMBER_OR_FLOAT (arg1);
CHECK_NUMBER_OR_FLOAT (arg2);
if (INTEGERP (arg1) /* common lisp spec */
&& INTEGERP (arg2) /* don't promote, if both are ints, and */
&& XINT (arg2) >= 0) /* we are sure the result is not fractional */
{ /* this can be improved by pre-calculating */
EMACS_INT y; /* some binary powers of x then accumulating */
EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */
Lisp_Object val;
x = XINT (arg1);
y = XINT (arg2);
acc = (y & 1 ? x : 1);
while ((y >>= 1) != 0)
{
x *= x;
if (y & 1)
acc *= x;
}
XSETINT (val, acc);
return val;
}
f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
f3 = pow (f1, f2);
return make_float (f3);
}
DEFUN ("log", Flog, Slog, 1, 2, 0,
doc: /* Return the natural logarithm of ARG.
If the optional argument BASE is given, return log ARG using that base. */)
(Lisp_Object arg, Lisp_Object base)
{
double d = extract_float (arg);
if (NILP (base))
d = log (d);
else
{
double b = extract_float (base);
if (b == 10.0)
d = log10 (d);
#if HAVE_LOG2
else if (b == 2.0)
d = log2 (d);
#endif
else
d = log (d) / log (b);
}
return make_float (d);
}
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
doc: /* Return the square root of ARG. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = sqrt (d);
return make_float (d);
}
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
doc: /* Return the absolute value of ARG. */)
(register Lisp_Object arg)
{
CHECK_NUMBER_OR_FLOAT (arg);
if (FLOATP (arg))
arg = make_float (fabs (XFLOAT_DATA (arg)));
else if (XINT (arg) < 0)
XSETINT (arg, - XINT (arg));
return arg;
}
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
doc: /* Return the floating point number equal to ARG. */)
(register Lisp_Object arg)
{
CHECK_NUMBER_OR_FLOAT (arg);
if (INTEGERP (arg))
return make_float ((double) XINT (arg));
else /* give 'em the same float back */
return arg;
}
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
This is the same as the exponent of a float. */)
(Lisp_Object arg)
{
Lisp_Object val;
EMACS_INT value;
double f = extract_float (arg);
if (f == 0.0)
value = MOST_NEGATIVE_FIXNUM;
else if (isfinite (f))
{
int ivalue;
frexp (f, &ivalue);
value = ivalue - 1;
}
else
value = MOST_POSITIVE_FIXNUM;
XSETINT (val, value);
return val;
}
/* the rounding functions */
static Lisp_Object
rounding_driver (Lisp_Object arg, Lisp_Object divisor,
double (*double_round) (double),
EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
const char *name)
{
CHECK_NUMBER_OR_FLOAT (arg);
if (! NILP (divisor))
{
EMACS_INT i1, i2;
CHECK_NUMBER_OR_FLOAT (divisor);
if (FLOATP (arg) || FLOATP (divisor))
{
double f1, f2;
f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
if (! IEEE_FLOATING_POINT && f2 == 0)
xsignal0 (Qarith_error);
f1 = (*double_round) (f1 / f2);
if (FIXNUM_OVERFLOW_P (f1))
xsignal3 (Qrange_error, build_string (name), arg, divisor);
arg = make_number (f1);
return arg;
}
i1 = XINT (arg);
i2 = XINT (divisor);
if (i2 == 0)
xsignal0 (Qarith_error);
XSETINT (arg, (*int_round2) (i1, i2));
return arg;
}
if (FLOATP (arg))
{
double d = (*double_round) (XFLOAT_DATA (arg));
if (FIXNUM_OVERFLOW_P (d))
xsignal2 (Qrange_error, build_string (name), arg);
arg = make_number (d);
}
return arg;
}
/* With C's /, the result is implementation-defined if either operand
is negative, so take care with negative operands in the following
integer functions. */
static EMACS_INT
ceiling2 (EMACS_INT i1, EMACS_INT i2)
{
return (i2 < 0
? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
: (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
}
static EMACS_INT
floor2 (EMACS_INT i1, EMACS_INT i2)
{
return (i2 < 0
? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
: (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
}
static EMACS_INT
truncate2 (EMACS_INT i1, EMACS_INT i2)
{
return (i2 < 0
? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
: (i1 < 0 ? - (-i1 / i2) : i1 / i2));
}
static EMACS_INT
round2 (EMACS_INT i1, EMACS_INT i2)
{
/* The C language's division operator gives us one remainder R, but
we want the remainder R1 on the other side of 0 if R1 is closer
to 0 than R is; because we want to round to even, we also want R1
if R and R1 are the same distance from 0 and if C's quotient is
odd. */
EMACS_INT q = i1 / i2;
EMACS_INT r = i1 % i2;
EMACS_INT abs_r = eabs (r);
EMACS_INT abs_r1 = eabs (i2) - abs_r;
return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
}
/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
if `rint' exists but does not work right. */
#ifdef HAVE_RINT
#define emacs_rint rint
#else
static double
emacs_rint (double d)
{
double d1 = d + 0.5;
double r = floor (d1);
return r - (r == d1 && fmod (r, 2) != 0);
}
#endif
static double
double_identity (double d)
{
return d;
}
DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
doc: /* Return the smallest integer no less than ARG.
This rounds the value towards +inf.
With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
(Lisp_Object arg, Lisp_Object divisor)
{
return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
}
DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
doc: /* Return the largest integer no greater than ARG.
This rounds the value towards -inf.
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
(Lisp_Object arg, Lisp_Object divisor)
{
return rounding_driver (arg, divisor, floor, floor2, "floor");
}
DEFUN ("round", Fround, Sround, 1, 2, 0,
doc: /* Return the nearest integer to ARG.
With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
Rounding a value equidistant between two integers may choose the
integer closer to zero, or it may prefer an even integer, depending on
your machine. For example, \(round 2.5\) can return 3 on some
systems, but 2 on others. */)
(Lisp_Object arg, Lisp_Object divisor)
{
return rounding_driver (arg, divisor, emacs_rint, round2, "round");
}
DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
doc: /* Truncate a floating point number to an int.
Rounds ARG toward zero.
With optional DIVISOR, truncate ARG/DIVISOR. */)
(Lisp_Object arg, Lisp_Object divisor)
{
return rounding_driver (arg, divisor, double_identity, truncate2,
"truncate");
}
Lisp_Object
fmod_float (Lisp_Object x, Lisp_Object y)
{
double f1, f2;
f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
f1 = fmod (f1, f2);
/* If the "remainder" comes out with the wrong sign, fix it. */
if (f2 < 0 ? f1 > 0 : f1 < 0)
f1 += f2;
return make_float (f1);
}
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
doc: /* Return the smallest integer no less than ARG, as a float.
\(Round toward +inf.\) */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = ceil (d);
return make_float (d);
}
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
doc: /* Return the largest integer no greater than ARG, as a float.
\(Round towards -inf.\) */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = floor (d);
return make_float (d);
}
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
doc: /* Return the nearest integer to ARG, as a float. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
d = emacs_rint (d);
return make_float (d);
}
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
doc: /* Truncate a floating point number to an integral float value.
Rounds the value toward zero. */)
(Lisp_Object arg)
{
double d = extract_float (arg);
if (d >= 0.0)
d = floor (d);
else
d = ceil (d);
return make_float (d);
}
void
syms_of_floatfns (void)
{
defsubr (&Sacos);
defsubr (&Sasin);
defsubr (&Satan);
defsubr (&Scos);
defsubr (&Ssin);
defsubr (&Stan);
defsubr (&Sisnan);
#ifdef HAVE_COPYSIGN
defsubr (&Scopysign);
#endif
defsubr (&Sfrexp);
defsubr (&Sldexp);
defsubr (&Sfceiling);
defsubr (&Sffloor);
defsubr (&Sfround);
defsubr (&Sftruncate);
defsubr (&Sexp);
defsubr (&Sexpt);
defsubr (&Slog);
defsubr (&Ssqrt);
defsubr (&Sabs);
defsubr (&Sfloat);
defsubr (&Slogb);
defsubr (&Sceiling);
defsubr (&Sfloor);
defsubr (&Sround);
defsubr (&Struncate);
}