/* Primitive operations on floating point for GNU Emacs Lisp interpreter. Copyright (C) 1988, 1993-1994, 1999, 2001-2014 Free Software Foundation, Inc. Author: Wolfgang Rupprecht (according to ack.texi) This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ /* C89 requires only the following math.h functions, and Emacs omits the starred functions since we haven't found a use for them: acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh, sqrt, tan, *tanh. C99 and C11 require the following math.h functions in addition to the C89 functions. Of these, Emacs currently exports only the starred ones to Lisp, since we haven't found a use for the others: acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma, fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater, isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan, isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb (approximately), lrint/llrint, lround/llround, nan, nearbyint, nextafter, nexttoward, remainder, remquo, *rint, round, scalbln, scalbn, signbit, tgamma, trunc. */ #include #include "lisp.h" #include /* 'isfinite' and 'isnan' cause build failures on Solaris 10 with the bundled GCC in c99 mode. Work around the bugs with simple implementations that are good enough. */ #undef isfinite #define isfinite(x) ((x) - (x) == 0) #undef isnan #define isnan(x) ((x) != (x)) /* Check that X is a floating point number. */ static void CHECK_FLOAT (Lisp_Object x) { CHECK_TYPE (FLOATP (x), Qfloatp, x); } /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { CHECK_NUMBER_OR_FLOAT (num); if (FLOATP (num)) return XFLOAT_DATA (num); return (double) XINT (num); } /* Trig functions. */ DEFUN ("acos", Facos, Sacos, 1, 1, 0, doc: /* Return the inverse cosine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = acos (d); return make_float (d); } DEFUN ("asin", Fasin, Sasin, 1, 1, 0, doc: /* Return the inverse sine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = asin (d); return make_float (d); } DEFUN ("atan", Fatan, Satan, 1, 2, 0, doc: /* Return the inverse tangent of the arguments. If only one argument Y is given, return the inverse tangent of Y. If two arguments Y and X are given, return the inverse tangent of Y divided by X, i.e. the angle in radians between the vector (X, Y) and the x-axis. */) (Lisp_Object y, Lisp_Object x) { double d = extract_float (y); if (NILP (x)) d = atan (d); else { double d2 = extract_float (x); d = atan2 (d, d2); } return make_float (d); } DEFUN ("cos", Fcos, Scos, 1, 1, 0, doc: /* Return the cosine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = cos (d); return make_float (d); } DEFUN ("sin", Fsin, Ssin, 1, 1, 0, doc: /* Return the sine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = sin (d); return make_float (d); } DEFUN ("tan", Ftan, Stan, 1, 1, 0, doc: /* Return the tangent of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = tan (d); return make_float (d); } DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0, doc: /* Return non nil if argument X is a NaN. */) (Lisp_Object x) { CHECK_FLOAT (x); return isnan (XFLOAT_DATA (x)) ? Qt : Qnil; } #ifdef HAVE_COPYSIGN DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0, doc: /* Copy sign of X2 to value of X1, and return the result. Cause an error if X1 or X2 is not a float. */) (Lisp_Object x1, Lisp_Object x2) { double f1, f2; CHECK_FLOAT (x1); CHECK_FLOAT (x2); f1 = XFLOAT_DATA (x1); f2 = XFLOAT_DATA (x2); return make_float (copysign (f1, f2)); } #endif DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0, doc: /* Get significand and exponent of a floating point number. Breaks the floating point number X into its binary significand SGNFCAND \(a floating point value between 0.5 (included) and 1.0 (excluded)) and an integral exponent EXP for 2, such that: X = SGNFCAND * 2^EXP The function returns the cons cell (SGNFCAND . EXP). If X is zero, both parts (SGNFCAND and EXP) are zero. */) (Lisp_Object x) { double f = XFLOATINT (x); int exponent; double sgnfcand = frexp (f, &exponent); return Fcons (make_float (sgnfcand), make_number (exponent)); } DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0, doc: /* Construct number X from significand SGNFCAND and exponent EXP. Returns the floating point value resulting from multiplying SGNFCAND (the significand) by 2 raised to the power of EXP (the exponent). */) (Lisp_Object sgnfcand, Lisp_Object exponent) { CHECK_NUMBER (exponent); return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent))); } DEFUN ("exp", Fexp, Sexp, 1, 1, 0, doc: /* Return the exponential base e of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = exp (d); return make_float (d); } DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, doc: /* Return the exponential ARG1 ** ARG2. */) (Lisp_Object arg1, Lisp_Object arg2) { double f1, f2, f3; CHECK_NUMBER_OR_FLOAT (arg1); CHECK_NUMBER_OR_FLOAT (arg2); if (INTEGERP (arg1) /* common lisp spec */ && INTEGERP (arg2) /* don't promote, if both are ints, and */ && XINT (arg2) >= 0) /* we are sure the result is not fractional */ { /* this can be improved by pre-calculating */ EMACS_INT y; /* some binary powers of x then accumulating */ EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */ Lisp_Object val; x = XINT (arg1); y = XINT (arg2); acc = (y & 1 ? x : 1); while ((y >>= 1) != 0) { x *= x; if (y & 1) acc *= x; } XSETINT (val, acc); return val; } f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1); f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2); f3 = pow (f1, f2); return make_float (f3); } DEFUN ("log", Flog, Slog, 1, 2, 0, doc: /* Return the natural logarithm of ARG. If the optional argument BASE is given, return log ARG using that base. */) (Lisp_Object arg, Lisp_Object base) { double d = extract_float (arg); if (NILP (base)) d = log (d); else { double b = extract_float (base); if (b == 10.0) d = log10 (d); #if HAVE_LOG2 else if (b == 2.0) d = log2 (d); #endif else d = log (d) / log (b); } return make_float (d); } DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0, doc: /* Return the square root of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = sqrt (d); return make_float (d); } DEFUN ("abs", Fabs, Sabs, 1, 1, 0, doc: /* Return the absolute value of ARG. */) (register Lisp_Object arg) { CHECK_NUMBER_OR_FLOAT (arg); if (FLOATP (arg)) arg = make_float (fabs (XFLOAT_DATA (arg))); else if (XINT (arg) < 0) XSETINT (arg, - XINT (arg)); return arg; } DEFUN ("float", Ffloat, Sfloat, 1, 1, 0, doc: /* Return the floating point number equal to ARG. */) (register Lisp_Object arg) { CHECK_NUMBER_OR_FLOAT (arg); if (INTEGERP (arg)) return make_float ((double) XINT (arg)); else /* give 'em the same float back */ return arg; } DEFUN ("logb", Flogb, Slogb, 1, 1, 0, doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG. This is the same as the exponent of a float. */) (Lisp_Object arg) { Lisp_Object val; EMACS_INT value; double f = extract_float (arg); if (f == 0.0) value = MOST_NEGATIVE_FIXNUM; else if (isfinite (f)) { int ivalue; frexp (f, &ivalue); value = ivalue - 1; } else value = MOST_POSITIVE_FIXNUM; XSETINT (val, value); return val; } /* the rounding functions */ static Lisp_Object rounding_driver (Lisp_Object arg, Lisp_Object divisor, double (*double_round) (double), EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT), const char *name) { CHECK_NUMBER_OR_FLOAT (arg); if (! NILP (divisor)) { EMACS_INT i1, i2; CHECK_NUMBER_OR_FLOAT (divisor); if (FLOATP (arg) || FLOATP (divisor)) { double f1, f2; f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg); f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor)); if (! IEEE_FLOATING_POINT && f2 == 0) xsignal0 (Qarith_error); f1 = (*double_round) (f1 / f2); if (FIXNUM_OVERFLOW_P (f1)) xsignal3 (Qrange_error, build_string (name), arg, divisor); arg = make_number (f1); return arg; } i1 = XINT (arg); i2 = XINT (divisor); if (i2 == 0) xsignal0 (Qarith_error); XSETINT (arg, (*int_round2) (i1, i2)); return arg; } if (FLOATP (arg)) { double d = (*double_round) (XFLOAT_DATA (arg)); if (FIXNUM_OVERFLOW_P (d)) xsignal2 (Qrange_error, build_string (name), arg); arg = make_number (d); } return arg; } /* With C's /, the result is implementation-defined if either operand is negative, so take care with negative operands in the following integer functions. */ static EMACS_INT ceiling2 (EMACS_INT i1, EMACS_INT i2) { return (i2 < 0 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2)) : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1)); } static EMACS_INT floor2 (EMACS_INT i1, EMACS_INT i2) { return (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); } static EMACS_INT truncate2 (EMACS_INT i1, EMACS_INT i2) { return (i2 < 0 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2)) : (i1 < 0 ? - (-i1 / i2) : i1 / i2)); } static EMACS_INT round2 (EMACS_INT i1, EMACS_INT i2) { /* The C language's division operator gives us one remainder R, but we want the remainder R1 on the other side of 0 if R1 is closer to 0 than R is; because we want to round to even, we also want R1 if R and R1 are the same distance from 0 and if C's quotient is odd. */ EMACS_INT q = i1 / i2; EMACS_INT r = i1 % i2; EMACS_INT abs_r = eabs (r); EMACS_INT abs_r1 = eabs (i2) - abs_r; return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1); } /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double d) { double d1 = d + 0.5; double r = floor (d1); return r - (r == d1 && fmod (r, 2) != 0); } #endif static double double_identity (double d) { return d; } DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0, doc: /* Return the smallest integer no less than ARG. This rounds the value towards +inf. With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling"); } DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0, doc: /* Return the largest integer no greater than ARG. This rounds the value towards -inf. With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, floor, floor2, "floor"); } DEFUN ("round", Fround, Sround, 1, 2, 0, doc: /* Return the nearest integer to ARG. With optional DIVISOR, return the nearest integer to ARG/DIVISOR. Rounding a value equidistant between two integers may choose the integer closer to zero, or it may prefer an even integer, depending on your machine. For example, \(round 2.5\) can return 3 on some systems, but 2 on others. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, emacs_rint, round2, "round"); } DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0, doc: /* Truncate a floating point number to an int. Rounds ARG toward zero. With optional DIVISOR, truncate ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, double_identity, truncate2, "truncate"); } Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y) { double f1, f2; f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x); f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y); f1 = fmod (f1, f2); /* If the "remainder" comes out with the wrong sign, fix it. */ if (f2 < 0 ? f1 > 0 : f1 < 0) f1 += f2; return make_float (f1); } DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0, doc: /* Return the smallest integer no less than ARG, as a float. \(Round toward +inf.\) */) (Lisp_Object arg) { double d = extract_float (arg); d = ceil (d); return make_float (d); } DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0, doc: /* Return the largest integer no greater than ARG, as a float. \(Round towards -inf.\) */) (Lisp_Object arg) { double d = extract_float (arg); d = floor (d); return make_float (d); } DEFUN ("fround", Ffround, Sfround, 1, 1, 0, doc: /* Return the nearest integer to ARG, as a float. */) (Lisp_Object arg) { double d = extract_float (arg); d = emacs_rint (d); return make_float (d); } DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0, doc: /* Truncate a floating point number to an integral float value. Rounds the value toward zero. */) (Lisp_Object arg) { double d = extract_float (arg); if (d >= 0.0) d = floor (d); else d = ceil (d); return make_float (d); } void syms_of_floatfns (void) { defsubr (&Sacos); defsubr (&Sasin); defsubr (&Satan); defsubr (&Scos); defsubr (&Ssin); defsubr (&Stan); defsubr (&Sisnan); #ifdef HAVE_COPYSIGN defsubr (&Scopysign); #endif defsubr (&Sfrexp); defsubr (&Sldexp); defsubr (&Sfceiling); defsubr (&Sffloor); defsubr (&Sfround); defsubr (&Sftruncate); defsubr (&Sexp); defsubr (&Sexpt); defsubr (&Slog); defsubr (&Ssqrt); defsubr (&Sabs); defsubr (&Sfloat); defsubr (&Slogb); defsubr (&Sceiling); defsubr (&Sfloor); defsubr (&Sround); defsubr (&Struncate); }