/* Process support for GNU Emacs on the Microsoft Windows API. Copyright (C) 1992, 1995, 1999-2012 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ /* Drew Bliss Oct 14, 1993 Adapted from alarm.c by Tim Fleehart */ #include #include #include #include #include #include #include #include /* must include CRT headers *before* config.h */ #include #undef signal #undef wait #undef spawnve #undef select #undef kill #include #ifdef __GNUC__ /* This definition is missing from mingw32 headers. */ extern BOOL WINAPI IsValidLocale (LCID, DWORD); #endif #ifdef HAVE_LANGINFO_CODESET #include #include #endif #include "lisp.h" #include "w32.h" #include "w32common.h" #include "w32heap.h" #include "systime.h" #include "syswait.h" #include "process.h" #include "syssignal.h" #include "w32term.h" #include "dispextern.h" /* for xstrcasecmp */ #include "coding.h" #define RVA_TO_PTR(var,section,filedata) \ ((void *)((section)->PointerToRawData \ + ((DWORD_PTR)(var) - (section)->VirtualAddress) \ + (filedata).file_base)) Lisp_Object Qhigh, Qlow; /* Signal handlers...SIG_DFL == 0 so this is initialized correctly. */ static signal_handler sig_handlers[NSIG]; static sigset_t sig_mask; static CRITICAL_SECTION crit_sig; /* Improve on the CRT 'signal' implementation so that we could record the SIGCHLD handler and fake interval timers. */ signal_handler sys_signal (int sig, signal_handler handler) { signal_handler old; /* SIGCHLD is needed for supporting subprocesses, see sys_kill below. SIGALRM and SIGPROF are used by setitimer. All the others are the only ones supported by the MS runtime. */ if (!(sig == SIGCHLD || sig == SIGSEGV || sig == SIGILL || sig == SIGFPE || sig == SIGABRT || sig == SIGTERM || sig == SIGALRM || sig == SIGPROF)) { errno = EINVAL; return SIG_ERR; } old = sig_handlers[sig]; /* SIGABRT is treated specially because w32.c installs term_ntproc as its handler, so we don't want to override that afterwards. Aborting Emacs works specially anyway: either by calling emacs_abort directly or through terminate_due_to_signal, which calls emacs_abort through emacs_raise. */ if (!(sig == SIGABRT && old == term_ntproc)) { sig_handlers[sig] = handler; if (!(sig == SIGCHLD || sig == SIGALRM || sig == SIGPROF)) signal (sig, handler); } return old; } /* Emulate sigaction. */ int sigaction (int sig, const struct sigaction *act, struct sigaction *oact) { signal_handler old = SIG_DFL; int retval = 0; if (act) old = sys_signal (sig, act->sa_handler); else if (oact) old = sig_handlers[sig]; if (old == SIG_ERR) { errno = EINVAL; retval = -1; } if (oact) { oact->sa_handler = old; oact->sa_flags = 0; oact->sa_mask = empty_mask; } return retval; } /* Emulate signal sets and blocking of signals used by timers. */ int sigemptyset (sigset_t *set) { *set = 0; return 0; } int sigaddset (sigset_t *set, int signo) { if (!set) { errno = EINVAL; return -1; } if (signo < 0 || signo >= NSIG) { errno = EINVAL; return -1; } *set |= (1U << signo); return 0; } int sigfillset (sigset_t *set) { if (!set) { errno = EINVAL; return -1; } *set = 0xFFFFFFFF; return 0; } int sigprocmask (int how, const sigset_t *set, sigset_t *oset) { if (!(how == SIG_BLOCK || how == SIG_UNBLOCK || how == SIG_SETMASK)) { errno = EINVAL; return -1; } if (oset) *oset = sig_mask; if (!set) return 0; switch (how) { case SIG_BLOCK: sig_mask |= *set; break; case SIG_SETMASK: sig_mask = *set; break; case SIG_UNBLOCK: /* FIXME: Catch signals that are blocked and reissue them when they are unblocked. Important for SIGALRM and SIGPROF only. */ sig_mask &= ~(*set); break; } return 0; } int pthread_sigmask (int how, const sigset_t *set, sigset_t *oset) { if (sigprocmask (how, set, oset) == -1) return EINVAL; return 0; } int sigismember (const sigset_t *set, int signo) { if (signo < 0 || signo >= NSIG) { errno = EINVAL; return -1; } if (signo > sizeof (*set) * BITS_PER_CHAR) emacs_abort (); return (*set & (1U << signo)) != 0; } pid_t getpgrp (void) { return getpid (); } pid_t tcgetpgrp (int fd) { return getpid (); } int setpgid (pid_t pid, pid_t pgid) { return 0; } pid_t setsid (void) { return getpid (); } /* Emulations of interval timers. Limitations: only ITIMER_REAL and ITIMER_PROF are supported. Implementation: a separate thread is started for each timer type, the thread calls the appropriate signal handler when the timer expires, after stopping the thread which installed the timer. */ struct itimer_data { volatile ULONGLONG expire; volatile ULONGLONG reload; volatile int terminate; int type; HANDLE caller_thread; HANDLE timer_thread; }; static ULONGLONG ticks_now; static struct itimer_data real_itimer, prof_itimer; static ULONGLONG clocks_min; /* If non-zero, itimers are disabled. Used during shutdown, when we delete the critical sections used by the timer threads. */ static int disable_itimers; static CRITICAL_SECTION crit_real, crit_prof; /* GetThreadTimes is not available on Windows 9X and possibly also on 2K. */ typedef BOOL (WINAPI *GetThreadTimes_Proc) ( HANDLE hThread, LPFILETIME lpCreationTime, LPFILETIME lpExitTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime); static GetThreadTimes_Proc s_pfn_Get_Thread_Times; #define MAX_SINGLE_SLEEP 30 #define TIMER_TICKS_PER_SEC 1000 /* Return a suitable time value, in 1-ms units, for THREAD, a handle to a thread. If THREAD is NULL or an invalid handle, return the current wall-clock time since January 1, 1601 (UTC). Otherwise, return the sum of kernel and user times used by THREAD since it was created, plus its creation time. */ static ULONGLONG w32_get_timer_time (HANDLE thread) { ULONGLONG retval; int use_system_time = 1; /* The functions below return times in 100-ns units. */ const int tscale = 10 * TIMER_TICKS_PER_SEC; if (thread && thread != INVALID_HANDLE_VALUE && s_pfn_Get_Thread_Times != NULL) { FILETIME creation_ftime, exit_ftime, kernel_ftime, user_ftime; ULARGE_INTEGER temp_creation, temp_kernel, temp_user; if (s_pfn_Get_Thread_Times (thread, &creation_ftime, &exit_ftime, &kernel_ftime, &user_ftime)) { use_system_time = 0; temp_creation.LowPart = creation_ftime.dwLowDateTime; temp_creation.HighPart = creation_ftime.dwHighDateTime; temp_kernel.LowPart = kernel_ftime.dwLowDateTime; temp_kernel.HighPart = kernel_ftime.dwHighDateTime; temp_user.LowPart = user_ftime.dwLowDateTime; temp_user.HighPart = user_ftime.dwHighDateTime; retval = temp_creation.QuadPart / tscale + temp_kernel.QuadPart / tscale + temp_user.QuadPart / tscale; } else DebPrint (("GetThreadTimes failed with error code %lu\n", GetLastError ())); } if (use_system_time) { FILETIME current_ftime; ULARGE_INTEGER temp; GetSystemTimeAsFileTime (¤t_ftime); temp.LowPart = current_ftime.dwLowDateTime; temp.HighPart = current_ftime.dwHighDateTime; retval = temp.QuadPart / tscale; } return retval; } /* Thread function for a timer thread. */ static DWORD WINAPI timer_loop (LPVOID arg) { struct itimer_data *itimer = (struct itimer_data *)arg; int which = itimer->type; int sig = (which == ITIMER_REAL) ? SIGALRM : SIGPROF; CRITICAL_SECTION *crit = (which == ITIMER_REAL) ? &crit_real : &crit_prof; const DWORD max_sleep = MAX_SINGLE_SLEEP * 1000 / TIMER_TICKS_PER_SEC; HANDLE hth = (which == ITIMER_REAL) ? NULL : itimer->caller_thread; while (1) { DWORD sleep_time; signal_handler handler; ULONGLONG now, expire, reload; /* Load new values if requested by setitimer. */ EnterCriticalSection (crit); expire = itimer->expire; reload = itimer->reload; LeaveCriticalSection (crit); if (itimer->terminate) return 0; if (expire == 0) { /* We are idle. */ Sleep (max_sleep); continue; } if (expire > (now = w32_get_timer_time (hth))) sleep_time = expire - now; else sleep_time = 0; /* Don't sleep too long at a time, to be able to see the termination flag without too long a delay. */ while (sleep_time > max_sleep) { if (itimer->terminate) return 0; Sleep (max_sleep); EnterCriticalSection (crit); expire = itimer->expire; LeaveCriticalSection (crit); sleep_time = (expire > (now = w32_get_timer_time (hth))) ? expire - now : 0; } if (itimer->terminate) return 0; if (sleep_time > 0) { Sleep (sleep_time * 1000 / TIMER_TICKS_PER_SEC); /* Always sleep past the expiration time, to make sure we never call the handler _before_ the expiration time, always slightly after it. Sleep(5) makes sure we don't hog the CPU by calling 'w32_get_timer_time' with high frequency, and also let other threads work. */ while (w32_get_timer_time (hth) < expire) Sleep (5); } EnterCriticalSection (crit); expire = itimer->expire; LeaveCriticalSection (crit); if (expire == 0) continue; /* Time's up. */ handler = sig_handlers[sig]; if (!(handler == SIG_DFL || handler == SIG_IGN || handler == SIG_ERR) /* FIXME: Don't ignore masked signals. Instead, record that they happened and reissue them when the signal is unblocked. */ && !sigismember (&sig_mask, sig) /* Simulate masking of SIGALRM and SIGPROF when processing fatal signals. */ && !fatal_error_in_progress && itimer->caller_thread) { /* Simulate a signal delivered to the thread which installed the timer, by suspending that thread while the handler runs. */ HANDLE th = itimer->caller_thread; DWORD result = SuspendThread (th); if (result == (DWORD)-1) return 2; handler (sig); ResumeThread (th); } /* Update expiration time and loop. */ EnterCriticalSection (crit); expire = itimer->expire; if (expire == 0) { LeaveCriticalSection (crit); continue; } reload = itimer->reload; if (reload > 0) { now = w32_get_timer_time (hth); if (expire <= now) { ULONGLONG lag = now - expire; /* If we missed some opportunities (presumably while sleeping or while the signal handler ran), skip them. */ if (lag > reload) expire = now - (lag % reload); expire += reload; } } else expire = 0; /* become idle */ itimer->expire = expire; LeaveCriticalSection (crit); } return 0; } static void stop_timer_thread (int which) { struct itimer_data *itimer = (which == ITIMER_REAL) ? &real_itimer : &prof_itimer; int i; DWORD err, exit_code = 255; BOOL status; /* Signal the thread that it should terminate. */ itimer->terminate = 1; if (itimer->timer_thread == NULL) return; /* Wait for the timer thread to terminate voluntarily, then kill it if it doesn't. This loop waits twice more than the maximum amount of time a timer thread sleeps, see above. */ for (i = 0; i < MAX_SINGLE_SLEEP / 5; i++) { if (!((status = GetExitCodeThread (itimer->timer_thread, &exit_code)) && exit_code == STILL_ACTIVE)) break; Sleep (10); } if ((status == FALSE && (err = GetLastError ()) == ERROR_INVALID_HANDLE) || exit_code == STILL_ACTIVE) { if (!(status == FALSE && err == ERROR_INVALID_HANDLE)) TerminateThread (itimer->timer_thread, 0); } /* Clean up. */ CloseHandle (itimer->timer_thread); itimer->timer_thread = NULL; if (itimer->caller_thread) { CloseHandle (itimer->caller_thread); itimer->caller_thread = NULL; } } /* This is called at shutdown time from term_ntproc. */ void term_timers (void) { if (real_itimer.timer_thread) stop_timer_thread (ITIMER_REAL); if (prof_itimer.timer_thread) stop_timer_thread (ITIMER_PROF); /* We are going to delete the critical sections, so timers cannot work after this. */ disable_itimers = 1; DeleteCriticalSection (&crit_real); DeleteCriticalSection (&crit_prof); DeleteCriticalSection (&crit_sig); } /* This is called at initialization time from init_ntproc. */ void init_timers (void) { /* GetThreadTimes is not available on all versions of Windows, so need to probe for its availability dynamically, and call it through a pointer. */ s_pfn_Get_Thread_Times = NULL; /* in case dumped Emacs comes with a value */ if (os_subtype != OS_9X) s_pfn_Get_Thread_Times = (GetThreadTimes_Proc)GetProcAddress (GetModuleHandle ("kernel32.dll"), "GetThreadTimes"); /* Make sure we start with zeroed out itimer structures, since dumping may have left there traces of threads long dead. */ memset (&real_itimer, 0, sizeof real_itimer); memset (&prof_itimer, 0, sizeof prof_itimer); InitializeCriticalSection (&crit_real); InitializeCriticalSection (&crit_prof); InitializeCriticalSection (&crit_sig); disable_itimers = 0; } static int start_timer_thread (int which) { DWORD exit_code; HANDLE th; struct itimer_data *itimer = (which == ITIMER_REAL) ? &real_itimer : &prof_itimer; if (itimer->timer_thread && GetExitCodeThread (itimer->timer_thread, &exit_code) && exit_code == STILL_ACTIVE) return 0; /* Clean up after possibly exited thread. */ if (itimer->timer_thread) { CloseHandle (itimer->timer_thread); itimer->timer_thread = NULL; } if (itimer->caller_thread) { CloseHandle (itimer->caller_thread); itimer->caller_thread = NULL; } /* Start a new thread. */ if (!DuplicateHandle (GetCurrentProcess (), GetCurrentThread (), GetCurrentProcess (), &th, 0, FALSE, DUPLICATE_SAME_ACCESS)) { errno = ESRCH; return -1; } itimer->terminate = 0; itimer->type = which; itimer->caller_thread = th; /* Request that no more than 64KB of stack be reserved for this thread, to avoid reserving too much memory, which would get in the way of threads we start to wait for subprocesses. See also new_child below. */ itimer->timer_thread = CreateThread (NULL, 64 * 1024, timer_loop, (void *)itimer, 0x00010000, NULL); if (!itimer->timer_thread) { CloseHandle (itimer->caller_thread); itimer->caller_thread = NULL; errno = EAGAIN; return -1; } /* This is needed to make sure that the timer thread running for profiling gets CPU as soon as the Sleep call terminates. */ if (which == ITIMER_PROF) SetThreadPriority (itimer->timer_thread, THREAD_PRIORITY_TIME_CRITICAL); return 0; } /* Most of the code of getitimer and setitimer (but not of their subroutines) was shamelessly stolen from itimer.c in the DJGPP library, see www.delorie.com/djgpp. */ int getitimer (int which, struct itimerval *value) { volatile ULONGLONG *t_expire; volatile ULONGLONG *t_reload; ULONGLONG expire, reload; __int64 usecs; CRITICAL_SECTION *crit; struct itimer_data *itimer; if (disable_itimers) return -1; if (!value) { errno = EFAULT; return -1; } if (which != ITIMER_REAL && which != ITIMER_PROF) { errno = EINVAL; return -1; } itimer = (which == ITIMER_REAL) ? &real_itimer : &prof_itimer; ticks_now = w32_get_timer_time ((which == ITIMER_REAL) ? NULL : GetCurrentThread ()); t_expire = &itimer->expire; t_reload = &itimer->reload; crit = (which == ITIMER_REAL) ? &crit_real : &crit_prof; EnterCriticalSection (crit); reload = *t_reload; expire = *t_expire; LeaveCriticalSection (crit); if (expire) expire -= ticks_now; value->it_value.tv_sec = expire / TIMER_TICKS_PER_SEC; usecs = (expire % TIMER_TICKS_PER_SEC) * (__int64)1000000 / TIMER_TICKS_PER_SEC; value->it_value.tv_usec = usecs; value->it_interval.tv_sec = reload / TIMER_TICKS_PER_SEC; usecs = (reload % TIMER_TICKS_PER_SEC) * (__int64)1000000 / TIMER_TICKS_PER_SEC; value->it_interval.tv_usec= usecs; return 0; } int setitimer(int which, struct itimerval *value, struct itimerval *ovalue) { volatile ULONGLONG *t_expire, *t_reload; ULONGLONG expire, reload, expire_old, reload_old; __int64 usecs; CRITICAL_SECTION *crit; struct itimerval tem, *ptem; if (disable_itimers) return -1; /* Posix systems expect timer values smaller than the resolution of the system clock be rounded up to the clock resolution. First time we are called, measure the clock tick resolution. */ if (!clocks_min) { ULONGLONG t1, t2; for (t1 = w32_get_timer_time (NULL); (t2 = w32_get_timer_time (NULL)) == t1; ) ; clocks_min = t2 - t1; } if (ovalue) ptem = ovalue; else ptem = &tem; if (getitimer (which, ptem)) /* also sets ticks_now */ return -1; /* errno already set */ t_expire = (which == ITIMER_REAL) ? &real_itimer.expire : &prof_itimer.expire; t_reload = (which == ITIMER_REAL) ? &real_itimer.reload : &prof_itimer.reload; crit = (which == ITIMER_REAL) ? &crit_real : &crit_prof; if (!value || (value->it_value.tv_sec == 0 && value->it_value.tv_usec == 0)) { EnterCriticalSection (crit); /* Disable the timer. */ *t_expire = 0; *t_reload = 0; LeaveCriticalSection (crit); return 0; } reload = value->it_interval.tv_sec * TIMER_TICKS_PER_SEC; usecs = value->it_interval.tv_usec; if (value->it_interval.tv_sec == 0 && usecs && usecs * TIMER_TICKS_PER_SEC < clocks_min * 1000000) reload = clocks_min; else { usecs *= TIMER_TICKS_PER_SEC; reload += usecs / 1000000; } expire = value->it_value.tv_sec * TIMER_TICKS_PER_SEC; usecs = value->it_value.tv_usec; if (value->it_value.tv_sec == 0 && usecs * TIMER_TICKS_PER_SEC < clocks_min * 1000000) expire = clocks_min; else { usecs *= TIMER_TICKS_PER_SEC; expire += usecs / 1000000; } expire += ticks_now; EnterCriticalSection (crit); expire_old = *t_expire; reload_old = *t_reload; if (!(expire == expire_old && reload == reload_old)) { *t_reload = reload; *t_expire = expire; } LeaveCriticalSection (crit); return start_timer_thread (which); } int alarm (int seconds) { #ifdef HAVE_SETITIMER struct itimerval new_values, old_values; new_values.it_value.tv_sec = seconds; new_values.it_value.tv_usec = 0; new_values.it_interval.tv_sec = new_values.it_interval.tv_usec = 0; if (setitimer (ITIMER_REAL, &new_values, &old_values) < 0) return 0; return old_values.it_value.tv_sec; #else return seconds; #endif } /* Defined in which conflicts with the local copy */ #define _P_NOWAIT 1 /* Child process management list. */ int child_proc_count = 0; child_process child_procs[ MAX_CHILDREN ]; static DWORD WINAPI reader_thread (void *arg); /* Find an unused process slot. */ child_process * new_child (void) { child_process *cp; DWORD id; for (cp = child_procs + (child_proc_count-1); cp >= child_procs; cp--) if (!CHILD_ACTIVE (cp)) goto Initialize; if (child_proc_count == MAX_CHILDREN) return NULL; cp = &child_procs[child_proc_count++]; Initialize: memset (cp, 0, sizeof (*cp)); cp->fd = -1; cp->pid = -1; cp->procinfo.hProcess = NULL; cp->status = STATUS_READ_ERROR; /* use manual reset event so that select() will function properly */ cp->char_avail = CreateEvent (NULL, TRUE, FALSE, NULL); if (cp->char_avail) { cp->char_consumed = CreateEvent (NULL, FALSE, FALSE, NULL); if (cp->char_consumed) { /* The 0x00010000 flag is STACK_SIZE_PARAM_IS_A_RESERVATION. It means that the 64K stack we are requesting in the 2nd argument is how much memory should be reserved for the stack. If we don't use this flag, the memory requested by the 2nd argument is the amount actually _committed_, but Windows reserves 8MB of memory for each thread's stack. (The 8MB figure comes from the -stack command-line argument we pass to the linker when building Emacs, but that's because we need a large stack for Emacs's main thread.) Since we request 2GB of reserved memory at startup (see w32heap.c), which is close to the maximum memory available for a 32-bit process on Windows, the 8MB reservation for each thread causes failures in starting subprocesses, because we create a thread running reader_thread for each subprocess. As 8MB of stack is way too much for reader_thread, forcing Windows to reserve less wins the day. */ cp->thrd = CreateThread (NULL, 64 * 1024, reader_thread, cp, 0x00010000, &id); if (cp->thrd) return cp; } } delete_child (cp); return NULL; } void delete_child (child_process *cp) { int i; /* Should not be deleting a child that is still needed. */ for (i = 0; i < MAXDESC; i++) if (fd_info[i].cp == cp) emacs_abort (); if (!CHILD_ACTIVE (cp)) return; /* reap thread if necessary */ if (cp->thrd) { DWORD rc; if (GetExitCodeThread (cp->thrd, &rc) && rc == STILL_ACTIVE) { /* let the thread exit cleanly if possible */ cp->status = STATUS_READ_ERROR; SetEvent (cp->char_consumed); #if 0 /* We used to forcibly terminate the thread here, but it is normally unnecessary, and in abnormal cases, the worst that will happen is we have an extra idle thread hanging around waiting for the zombie process. */ if (WaitForSingleObject (cp->thrd, 1000) != WAIT_OBJECT_0) { DebPrint (("delete_child.WaitForSingleObject (thread) failed " "with %lu for fd %ld\n", GetLastError (), cp->fd)); TerminateThread (cp->thrd, 0); } #endif } CloseHandle (cp->thrd); cp->thrd = NULL; } if (cp->char_avail) { CloseHandle (cp->char_avail); cp->char_avail = NULL; } if (cp->char_consumed) { CloseHandle (cp->char_consumed); cp->char_consumed = NULL; } /* update child_proc_count (highest numbered slot in use plus one) */ if (cp == child_procs + child_proc_count - 1) { for (i = child_proc_count-1; i >= 0; i--) if (CHILD_ACTIVE (&child_procs[i])) { child_proc_count = i + 1; break; } } if (i < 0) child_proc_count = 0; } /* Find a child by pid. */ static child_process * find_child_pid (DWORD pid) { child_process *cp; for (cp = child_procs + (child_proc_count-1); cp >= child_procs; cp--) if (CHILD_ACTIVE (cp) && pid == cp->pid) return cp; return NULL; } /* Thread proc for child process and socket reader threads. Each thread is normally blocked until woken by select() to check for input by reading one char. When the read completes, char_avail is signaled to wake up the select emulator and the thread blocks itself again. */ static DWORD WINAPI reader_thread (void *arg) { child_process *cp; /* Our identity */ cp = (child_process *)arg; /* We have to wait for the go-ahead before we can start */ if (cp == NULL || WaitForSingleObject (cp->char_consumed, INFINITE) != WAIT_OBJECT_0 || cp->fd < 0) return 1; for (;;) { int rc; if (fd_info[cp->fd].flags & FILE_LISTEN) rc = _sys_wait_accept (cp->fd); else rc = _sys_read_ahead (cp->fd); /* The name char_avail is a misnomer - it really just means the read-ahead has completed, whether successfully or not. */ if (!SetEvent (cp->char_avail)) { DebPrint (("reader_thread.SetEvent failed with %lu for fd %ld\n", GetLastError (), cp->fd)); return 1; } if (rc == STATUS_READ_ERROR) return 1; /* If the read died, the child has died so let the thread die */ if (rc == STATUS_READ_FAILED) break; /* Wait until our input is acknowledged before reading again */ if (WaitForSingleObject (cp->char_consumed, INFINITE) != WAIT_OBJECT_0) { DebPrint (("reader_thread.WaitForSingleObject failed with " "%lu for fd %ld\n", GetLastError (), cp->fd)); break; } } return 0; } /* To avoid Emacs changing directory, we just record here the directory the new process should start in. This is set just before calling sys_spawnve, and is not generally valid at any other time. */ static char * process_dir; static BOOL create_child (char *exe, char *cmdline, char *env, int is_gui_app, int * pPid, child_process *cp) { STARTUPINFO start; SECURITY_ATTRIBUTES sec_attrs; #if 0 SECURITY_DESCRIPTOR sec_desc; #endif DWORD flags; char dir[ MAXPATHLEN ]; if (cp == NULL) emacs_abort (); memset (&start, 0, sizeof (start)); start.cb = sizeof (start); #ifdef HAVE_NTGUI if (NILP (Vw32_start_process_show_window) && !is_gui_app) start.dwFlags = STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW; else start.dwFlags = STARTF_USESTDHANDLES; start.wShowWindow = SW_HIDE; start.hStdInput = GetStdHandle (STD_INPUT_HANDLE); start.hStdOutput = GetStdHandle (STD_OUTPUT_HANDLE); start.hStdError = GetStdHandle (STD_ERROR_HANDLE); #endif /* HAVE_NTGUI */ #if 0 /* Explicitly specify no security */ if (!InitializeSecurityDescriptor (&sec_desc, SECURITY_DESCRIPTOR_REVISION)) goto EH_Fail; if (!SetSecurityDescriptorDacl (&sec_desc, TRUE, NULL, FALSE)) goto EH_Fail; #endif sec_attrs.nLength = sizeof (sec_attrs); sec_attrs.lpSecurityDescriptor = NULL /* &sec_desc */; sec_attrs.bInheritHandle = FALSE; strcpy (dir, process_dir); unixtodos_filename (dir); flags = (!NILP (Vw32_start_process_share_console) ? CREATE_NEW_PROCESS_GROUP : CREATE_NEW_CONSOLE); if (NILP (Vw32_start_process_inherit_error_mode)) flags |= CREATE_DEFAULT_ERROR_MODE; if (!CreateProcess (exe, cmdline, &sec_attrs, NULL, TRUE, flags, env, dir, &start, &cp->procinfo)) goto EH_Fail; cp->pid = (int) cp->procinfo.dwProcessId; /* Hack for Windows 95, which assigns large (ie negative) pids */ if (cp->pid < 0) cp->pid = -cp->pid; *pPid = cp->pid; return TRUE; EH_Fail: DebPrint (("create_child.CreateProcess failed: %ld\n", GetLastError ());); return FALSE; } /* create_child doesn't know what emacs' file handle will be for waiting on output from the child, so we need to make this additional call to register the handle with the process This way the select emulator knows how to match file handles with entries in child_procs. */ void register_child (int pid, int fd) { child_process *cp; cp = find_child_pid (pid); if (cp == NULL) { DebPrint (("register_child unable to find pid %lu\n", pid)); return; } #ifdef FULL_DEBUG DebPrint (("register_child registered fd %d with pid %lu\n", fd, pid)); #endif cp->fd = fd; /* thread is initially blocked until select is called; set status so that select will release thread */ cp->status = STATUS_READ_ACKNOWLEDGED; /* attach child_process to fd_info */ if (fd_info[fd].cp != NULL) { DebPrint (("register_child: fd_info[%d] apparently in use!\n", fd)); emacs_abort (); } fd_info[fd].cp = cp; } /* When a process dies its pipe will break so the reader thread will signal failure to the select emulator. The select emulator then calls this routine to clean up. Since the thread signaled failure we can assume it is exiting. */ static void reap_subprocess (child_process *cp) { if (cp->procinfo.hProcess) { /* Reap the process */ #ifdef FULL_DEBUG /* Process should have already died before we are called. */ if (WaitForSingleObject (cp->procinfo.hProcess, 0) != WAIT_OBJECT_0) DebPrint (("reap_subprocess: child fpr fd %d has not died yet!", cp->fd)); #endif CloseHandle (cp->procinfo.hProcess); cp->procinfo.hProcess = NULL; CloseHandle (cp->procinfo.hThread); cp->procinfo.hThread = NULL; } /* For asynchronous children, the child_proc resources will be freed when the last pipe read descriptor is closed; for synchronous children, we must explicitly free the resources now because register_child has not been called. */ if (cp->fd == -1) delete_child (cp); } /* Wait for a child process specified by PID, or for any of our existing child processes (if PID is nonpositive) to die. When it does, close its handle. Return the pid of the process that died and fill in STATUS if non-NULL. */ pid_t waitpid (pid_t pid, int *status, int options) { DWORD active, retval; int nh; child_process *cp, *cps[MAX_CHILDREN]; HANDLE wait_hnd[MAX_CHILDREN]; DWORD timeout_ms; int dont_wait = (options & WNOHANG) != 0; nh = 0; /* According to Posix: PID = -1 means status is requested for any child process. PID > 0 means status is requested for a single child process whose pid is PID. PID = 0 means status is requested for any child process whose process group ID is equal to that of the calling process. But since Windows has only a limited support for process groups (only for console processes and only for the purposes of passing Ctrl-BREAK signal to them), and since we have no documented way of determining whether a given process belongs to our group, we treat 0 as -1. PID < -1 means status is requested for any child process whose process group ID is equal to the absolute value of PID. Again, since we don't support process groups, we treat that as -1. */ if (pid > 0) { int our_child = 0; /* We are requested to wait for a specific child. */ for (cp = child_procs + (child_proc_count-1); cp >= child_procs; cp--) { /* Some child_procs might be sockets; ignore them. Also ignore subprocesses whose output is not yet completely read. */ if (CHILD_ACTIVE (cp) && cp->procinfo.hProcess && cp->pid == pid) { our_child = 1; break; } } if (our_child) { if (cp->fd < 0 || (fd_info[cp->fd].flags & FILE_AT_EOF) != 0) { wait_hnd[nh] = cp->procinfo.hProcess; cps[nh] = cp; nh++; } else if (dont_wait) { /* PID specifies our subprocess, but its status is not yet available. */ return 0; } } if (nh == 0) { /* No such child process, or nothing to wait for, so fail. */ errno = ECHILD; return -1; } } else { for (cp = child_procs + (child_proc_count-1); cp >= child_procs; cp--) { if (CHILD_ACTIVE (cp) && cp->procinfo.hProcess && (cp->fd < 0 || (fd_info[cp->fd].flags & FILE_AT_EOF) != 0)) { wait_hnd[nh] = cp->procinfo.hProcess; cps[nh] = cp; nh++; } } if (nh == 0) { /* Nothing to wait on, so fail. */ errno = ECHILD; return -1; } } if (dont_wait) timeout_ms = 0; else timeout_ms = 1000; /* check for quit about once a second. */ do { QUIT; active = WaitForMultipleObjects (nh, wait_hnd, FALSE, timeout_ms); } while (active == WAIT_TIMEOUT); if (active == WAIT_FAILED) { errno = EBADF; return -1; } else if (active >= WAIT_OBJECT_0 && active < WAIT_OBJECT_0+MAXIMUM_WAIT_OBJECTS) { active -= WAIT_OBJECT_0; } else if (active >= WAIT_ABANDONED_0 && active < WAIT_ABANDONED_0+MAXIMUM_WAIT_OBJECTS) { active -= WAIT_ABANDONED_0; } else emacs_abort (); if (!GetExitCodeProcess (wait_hnd[active], &retval)) { DebPrint (("Wait.GetExitCodeProcess failed with %lu\n", GetLastError ())); retval = 1; } if (retval == STILL_ACTIVE) { /* Should never happen. */ DebPrint (("Wait.WaitForMultipleObjects returned an active process\n")); if (pid > 0 && dont_wait) return 0; errno = EINVAL; return -1; } /* Massage the exit code from the process to match the format expected by the WIFSTOPPED et al macros in syswait.h. Only WIFSIGNALED and WIFEXITED are supported; WIFSTOPPED doesn't make sense under NT. */ if (retval == STATUS_CONTROL_C_EXIT) retval = SIGINT; else retval <<= 8; if (pid > 0 && active != 0) emacs_abort (); cp = cps[active]; pid = cp->pid; #ifdef FULL_DEBUG DebPrint (("Wait signaled with process pid %d\n", cp->pid)); #endif if (status) { *status = retval; } else if (synch_process_alive) { synch_process_alive = 0; /* Report the status of the synchronous process. */ if (WIFEXITED (retval)) synch_process_retcode = WEXITSTATUS (retval); else if (WIFSIGNALED (retval)) { int code = WTERMSIG (retval); const char *signame; synchronize_system_messages_locale (); signame = strsignal (code); if (signame == 0) signame = "unknown"; synch_process_death = signame; } reap_subprocess (cp); } reap_subprocess (cp); return pid; } /* Old versions of w32api headers don't have separate 32-bit and 64-bit defines, but the one they have matches the 32-bit variety. */ #ifndef IMAGE_NT_OPTIONAL_HDR32_MAGIC # define IMAGE_NT_OPTIONAL_HDR32_MAGIC IMAGE_NT_OPTIONAL_HDR_MAGIC # define IMAGE_OPTIONAL_HEADER32 IMAGE_OPTIONAL_HEADER #endif static void w32_executable_type (char * filename, int * is_dos_app, int * is_cygnus_app, int * is_gui_app) { file_data executable; char * p; /* Default values in case we can't tell for sure. */ *is_dos_app = FALSE; *is_cygnus_app = FALSE; *is_gui_app = FALSE; if (!open_input_file (&executable, filename)) return; p = strrchr (filename, '.'); /* We can only identify DOS .com programs from the extension. */ if (p && xstrcasecmp (p, ".com") == 0) *is_dos_app = TRUE; else if (p && (xstrcasecmp (p, ".bat") == 0 || xstrcasecmp (p, ".cmd") == 0)) { /* A DOS shell script - it appears that CreateProcess is happy to accept this (somewhat surprisingly); presumably it looks at COMSPEC to determine what executable to actually invoke. Therefore, we have to do the same here as well. */ /* Actually, I think it uses the program association for that extension, which is defined in the registry. */ p = egetenv ("COMSPEC"); if (p) w32_executable_type (p, is_dos_app, is_cygnus_app, is_gui_app); } else { /* Look for DOS .exe signature - if found, we must also check that it isn't really a 16- or 32-bit Windows exe, since both formats start with a DOS program stub. Note that 16-bit Windows executables use the OS/2 1.x format. */ IMAGE_DOS_HEADER * dos_header; IMAGE_NT_HEADERS * nt_header; dos_header = (PIMAGE_DOS_HEADER) executable.file_base; if (dos_header->e_magic != IMAGE_DOS_SIGNATURE) goto unwind; nt_header = (PIMAGE_NT_HEADERS) ((unsigned char *) dos_header + dos_header->e_lfanew); if ((char *) nt_header > (char *) dos_header + executable.size) { /* Some dos headers (pkunzip) have bogus e_lfanew fields. */ *is_dos_app = TRUE; } else if (nt_header->Signature != IMAGE_NT_SIGNATURE && LOWORD (nt_header->Signature) != IMAGE_OS2_SIGNATURE) { *is_dos_app = TRUE; } else if (nt_header->Signature == IMAGE_NT_SIGNATURE) { IMAGE_DATA_DIRECTORY *data_dir = NULL; if (nt_header->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) { /* Ensure we are using the 32 bit structure. */ IMAGE_OPTIONAL_HEADER32 *opt = (IMAGE_OPTIONAL_HEADER32*) &(nt_header->OptionalHeader); data_dir = opt->DataDirectory; *is_gui_app = (opt->Subsystem == IMAGE_SUBSYSTEM_WINDOWS_GUI); } /* MingW 3.12 has the required 64 bit structs, but in case older versions don't, only check 64 bit exes if we know how. */ #ifdef IMAGE_NT_OPTIONAL_HDR64_MAGIC else if (nt_header->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) { IMAGE_OPTIONAL_HEADER64 *opt = (IMAGE_OPTIONAL_HEADER64*) &(nt_header->OptionalHeader); data_dir = opt->DataDirectory; *is_gui_app = (opt->Subsystem == IMAGE_SUBSYSTEM_WINDOWS_GUI); } #endif if (data_dir) { /* Look for cygwin.dll in DLL import list. */ IMAGE_DATA_DIRECTORY import_dir = data_dir[IMAGE_DIRECTORY_ENTRY_IMPORT]; IMAGE_IMPORT_DESCRIPTOR * imports; IMAGE_SECTION_HEADER * section; section = rva_to_section (import_dir.VirtualAddress, nt_header); imports = RVA_TO_PTR (import_dir.VirtualAddress, section, executable); for ( ; imports->Name; imports++) { char * dllname = RVA_TO_PTR (imports->Name, section, executable); /* The exact name of the cygwin dll has changed with various releases, but hopefully this will be reasonably future proof. */ if (strncmp (dllname, "cygwin", 6) == 0) { *is_cygnus_app = TRUE; break; } } } } } unwind: close_file_data (&executable); } static int compare_env (const void *strp1, const void *strp2) { const char *str1 = *(const char **)strp1, *str2 = *(const char **)strp2; while (*str1 && *str2 && *str1 != '=' && *str2 != '=') { /* Sort order in command.com/cmd.exe is based on uppercasing names, so do the same here. */ if (toupper (*str1) > toupper (*str2)) return 1; else if (toupper (*str1) < toupper (*str2)) return -1; str1++, str2++; } if (*str1 == '=' && *str2 == '=') return 0; else if (*str1 == '=') return -1; else return 1; } static void merge_and_sort_env (char **envp1, char **envp2, char **new_envp) { char **optr, **nptr; int num; nptr = new_envp; optr = envp1; while (*optr) *nptr++ = *optr++; num = optr - envp1; optr = envp2; while (*optr) *nptr++ = *optr++; num += optr - envp2; qsort (new_envp, num, sizeof (char *), compare_env); *nptr = NULL; } /* When a new child process is created we need to register it in our list, so intercept spawn requests. */ int sys_spawnve (int mode, char *cmdname, char **argv, char **envp) { Lisp_Object program, full; char *cmdline, *env, *parg, **targ; int arglen, numenv; int pid; child_process *cp; int is_dos_app, is_cygnus_app, is_gui_app; int do_quoting = 0; char escape_char; /* We pass our process ID to our children by setting up an environment variable in their environment. */ char ppid_env_var_buffer[64]; char *extra_env[] = {ppid_env_var_buffer, NULL}; /* These are the characters that cause an argument to need quoting. Arguments with whitespace characters need quoting to prevent the argument being split into two or more. Arguments with wildcards are also quoted, for consistency with posix platforms, where wildcards are not expanded if we run the program directly without a shell. Some extra whitespace characters need quoting in Cygwin programs, so this list is conditionally modified below. */ char *sepchars = " \t*?"; /* We don't care about the other modes */ if (mode != _P_NOWAIT) { errno = EINVAL; return -1; } /* Handle executable names without an executable suffix. */ program = build_string (cmdname); if (NILP (Ffile_executable_p (program))) { struct gcpro gcpro1; full = Qnil; GCPRO1 (program); openp (Vexec_path, program, Vexec_suffixes, &full, make_number (X_OK)); UNGCPRO; if (NILP (full)) { errno = EINVAL; return -1; } program = full; } /* make sure argv[0] and cmdname are both in DOS format */ cmdname = SDATA (program); unixtodos_filename (cmdname); argv[0] = cmdname; /* Determine whether program is a 16-bit DOS executable, or a 32-bit Windows executable that is implicitly linked to the Cygnus dll (implying it was compiled with the Cygnus GNU toolchain and hence relies on cygwin.dll to parse the command line - we use this to decide how to escape quote chars in command line args that must be quoted). Also determine whether it is a GUI app, so that we don't hide its initial window unless specifically requested. */ w32_executable_type (cmdname, &is_dos_app, &is_cygnus_app, &is_gui_app); /* On Windows 95, if cmdname is a DOS app, we invoke a helper application to start it by specifying the helper app as cmdname, while leaving the real app name as argv[0]. */ if (is_dos_app) { cmdname = alloca (MAXPATHLEN); if (egetenv ("CMDPROXY")) strcpy (cmdname, egetenv ("CMDPROXY")); else { strcpy (cmdname, SDATA (Vinvocation_directory)); strcat (cmdname, "cmdproxy.exe"); } unixtodos_filename (cmdname); } /* we have to do some conjuring here to put argv and envp into the form CreateProcess wants... argv needs to be a space separated/null terminated list of parameters, and envp is a null separated/double-null terminated list of parameters. Additionally, zero-length args and args containing whitespace or quote chars need to be wrapped in double quotes - for this to work, embedded quotes need to be escaped as well. The aim is to ensure the child process reconstructs the argv array we start with exactly, so we treat quotes at the beginning and end of arguments as embedded quotes. The w32 GNU-based library from Cygnus doubles quotes to escape them, while MSVC uses backslash for escaping. (Actually the MSVC startup code does attempt to recognize doubled quotes and accept them, but gets it wrong and ends up requiring three quotes to get a single embedded quote!) So by default we decide whether to use quote or backslash as the escape character based on whether the binary is apparently a Cygnus compiled app. Note that using backslash to escape embedded quotes requires additional special handling if an embedded quote is already preceded by backslash, or if an arg requiring quoting ends with backslash. In such cases, the run of escape characters needs to be doubled. For consistency, we apply this special handling as long as the escape character is not quote. Since we have no idea how large argv and envp are likely to be we figure out list lengths on the fly and allocate them. */ if (!NILP (Vw32_quote_process_args)) { do_quoting = 1; /* Override escape char by binding w32-quote-process-args to desired character, or use t for auto-selection. */ if (INTEGERP (Vw32_quote_process_args)) escape_char = XINT (Vw32_quote_process_args); else escape_char = is_cygnus_app ? '"' : '\\'; } /* Cygwin apps needs quoting a bit more often. */ if (escape_char == '"') sepchars = "\r\n\t\f '"; /* do argv... */ arglen = 0; targ = argv; while (*targ) { char * p = *targ; int need_quotes = 0; int escape_char_run = 0; if (*p == 0) need_quotes = 1; for ( ; *p; p++) { if (escape_char == '"' && *p == '\\') /* If it's a Cygwin app, \ needs to be escaped. */ arglen++; else if (*p == '"') { /* allow for embedded quotes to be escaped */ arglen++; need_quotes = 1; /* handle the case where the embedded quote is already escaped */ if (escape_char_run > 0) { /* To preserve the arg exactly, we need to double the preceding escape characters (plus adding one to escape the quote character itself). */ arglen += escape_char_run; } } else if (strchr (sepchars, *p) != NULL) { need_quotes = 1; } if (*p == escape_char && escape_char != '"') escape_char_run++; else escape_char_run = 0; } if (need_quotes) { arglen += 2; /* handle the case where the arg ends with an escape char - we must not let the enclosing quote be escaped. */ if (escape_char_run > 0) arglen += escape_char_run; } arglen += strlen (*targ++) + 1; } cmdline = alloca (arglen); targ = argv; parg = cmdline; while (*targ) { char * p = *targ; int need_quotes = 0; if (*p == 0) need_quotes = 1; if (do_quoting) { for ( ; *p; p++) if ((strchr (sepchars, *p) != NULL) || *p == '"') need_quotes = 1; } if (need_quotes) { int escape_char_run = 0; char * first; char * last; p = *targ; first = p; last = p + strlen (p) - 1; *parg++ = '"'; #if 0 /* This version does not escape quotes if they occur at the beginning or end of the arg - this could lead to incorrect behavior when the arg itself represents a command line containing quoted args. I believe this was originally done as a hack to make some things work, before `w32-quote-process-args' was added. */ while (*p) { if (*p == '"' && p > first && p < last) *parg++ = escape_char; /* escape embedded quotes */ *parg++ = *p++; } #else for ( ; *p; p++) { if (*p == '"') { /* double preceding escape chars if any */ while (escape_char_run > 0) { *parg++ = escape_char; escape_char_run--; } /* escape all quote chars, even at beginning or end */ *parg++ = escape_char; } else if (escape_char == '"' && *p == '\\') *parg++ = '\\'; *parg++ = *p; if (*p == escape_char && escape_char != '"') escape_char_run++; else escape_char_run = 0; } /* double escape chars before enclosing quote */ while (escape_char_run > 0) { *parg++ = escape_char; escape_char_run--; } #endif *parg++ = '"'; } else { strcpy (parg, *targ); parg += strlen (*targ); } *parg++ = ' '; targ++; } *--parg = '\0'; /* and envp... */ arglen = 1; targ = envp; numenv = 1; /* for end null */ while (*targ) { arglen += strlen (*targ++) + 1; numenv++; } /* extra env vars... */ sprintf (ppid_env_var_buffer, "EM_PARENT_PROCESS_ID=%lu", GetCurrentProcessId ()); arglen += strlen (ppid_env_var_buffer) + 1; numenv++; /* merge env passed in and extra env into one, and sort it. */ targ = (char **) alloca (numenv * sizeof (char *)); merge_and_sort_env (envp, extra_env, targ); /* concatenate env entries. */ env = alloca (arglen); parg = env; while (*targ) { strcpy (parg, *targ); parg += strlen (*targ++); *parg++ = '\0'; } *parg++ = '\0'; *parg = '\0'; cp = new_child (); if (cp == NULL) { errno = EAGAIN; return -1; } /* Now create the process. */ if (!create_child (cmdname, cmdline, env, is_gui_app, &pid, cp)) { delete_child (cp); errno = ENOEXEC; return -1; } return pid; } /* Emulate the select call Wait for available input on any of the given rfds, or timeout if a timeout is given and no input is detected wfds and efds are not supported and must be NULL. For simplicity, we detect the death of child processes here and synchronously call the SIGCHLD handler. Since it is possible for children to be created without a corresponding pipe handle from which to read output, we wait separately on the process handles as well as the char_avail events for each process pipe. We only call wait/reap_process when the process actually terminates. To reduce the number of places in which Emacs can be hung such that C-g is not able to interrupt it, we always wait on interrupt_handle (which is signaled by the input thread when C-g is detected). If we detect that we were woken up by C-g, we return -1 with errno set to EINTR as on Unix. */ /* From w32console.c */ extern HANDLE keyboard_handle; /* From w32xfns.c */ extern HANDLE interrupt_handle; /* From process.c */ extern int proc_buffered_char[]; int sys_select (int nfds, SELECT_TYPE *rfds, SELECT_TYPE *wfds, SELECT_TYPE *efds, EMACS_TIME *timeout, void *ignored) { SELECT_TYPE orfds; DWORD timeout_ms, start_time; int i, nh, nc, nr; DWORD active; child_process *cp, *cps[MAX_CHILDREN]; HANDLE wait_hnd[MAXDESC + MAX_CHILDREN]; int fdindex[MAXDESC]; /* mapping from wait handles back to descriptors */ timeout_ms = timeout ? (timeout->tv_sec * 1000 + timeout->tv_nsec / 1000000) : INFINITE; /* If the descriptor sets are NULL but timeout isn't, then just Sleep. */ if (rfds == NULL && wfds == NULL && efds == NULL && timeout != NULL) { Sleep (timeout_ms); return 0; } /* Otherwise, we only handle rfds, so fail otherwise. */ if (rfds == NULL || wfds != NULL || efds != NULL) { errno = EINVAL; return -1; } orfds = *rfds; FD_ZERO (rfds); nr = 0; /* Always wait on interrupt_handle, to detect C-g (quit). */ wait_hnd[0] = interrupt_handle; fdindex[0] = -1; /* Build a list of pipe handles to wait on. */ nh = 1; for (i = 0; i < nfds; i++) if (FD_ISSET (i, &orfds)) { if (i == 0) { if (keyboard_handle) { /* Handle stdin specially */ wait_hnd[nh] = keyboard_handle; fdindex[nh] = i; nh++; } /* Check for any emacs-generated input in the queue since it won't be detected in the wait */ if (detect_input_pending ()) { FD_SET (i, rfds); return 1; } } else { /* Child process and socket input */ cp = fd_info[i].cp; if (cp) { int current_status = cp->status; if (current_status == STATUS_READ_ACKNOWLEDGED) { /* Tell reader thread which file handle to use. */ cp->fd = i; /* Wake up the reader thread for this process */ cp->status = STATUS_READ_READY; if (!SetEvent (cp->char_consumed)) DebPrint (("nt_select.SetEvent failed with " "%lu for fd %ld\n", GetLastError (), i)); } #ifdef CHECK_INTERLOCK /* slightly crude cross-checking of interlock between threads */ current_status = cp->status; if (WaitForSingleObject (cp->char_avail, 0) == WAIT_OBJECT_0) { /* char_avail has been signaled, so status (which may have changed) should indicate read has completed but has not been acknowledged. */ current_status = cp->status; if (current_status != STATUS_READ_SUCCEEDED && current_status != STATUS_READ_FAILED) DebPrint (("char_avail set, but read not completed: status %d\n", current_status)); } else { /* char_avail has not been signaled, so status should indicate that read is in progress; small possibility that read has completed but event wasn't yet signaled when we tested it (because a context switch occurred or if running on separate CPUs). */ if (current_status != STATUS_READ_READY && current_status != STATUS_READ_IN_PROGRESS && current_status != STATUS_READ_SUCCEEDED && current_status != STATUS_READ_FAILED) DebPrint (("char_avail reset, but read status is bad: %d\n", current_status)); } #endif wait_hnd[nh] = cp->char_avail; fdindex[nh] = i; if (!wait_hnd[nh]) emacs_abort (); nh++; #ifdef FULL_DEBUG DebPrint (("select waiting on child %d fd %d\n", cp-child_procs, i)); #endif } else { /* Unable to find something to wait on for this fd, skip */ /* Note that this is not a fatal error, and can in fact happen in unusual circumstances. Specifically, if sys_spawnve fails, eg. because the program doesn't exist, and debug-on-error is t so Fsignal invokes a nested input loop, then the process output pipe is still included in input_wait_mask with no child_proc associated with it. (It is removed when the debugger exits the nested input loop and the error is thrown.) */ DebPrint (("sys_select: fd %ld is invalid! ignoring\n", i)); } } } count_children: /* Add handles of child processes. */ nc = 0; for (cp = child_procs + (child_proc_count-1); cp >= child_procs; cp--) /* Some child_procs might be sockets; ignore them. Also some children may have died already, but we haven't finished reading the process output; ignore them too. */ if (CHILD_ACTIVE (cp) && cp->procinfo.hProcess && (cp->fd < 0 || (fd_info[cp->fd].flags & FILE_SEND_SIGCHLD) == 0 || (fd_info[cp->fd].flags & FILE_AT_EOF) != 0) ) { wait_hnd[nh + nc] = cp->procinfo.hProcess; cps[nc] = cp; nc++; } /* Nothing to look for, so we didn't find anything */ if (nh + nc == 0) { if (timeout) Sleep (timeout_ms); return 0; } start_time = GetTickCount (); /* Wait for input or child death to be signaled. If user input is allowed, then also accept window messages. */ if (FD_ISSET (0, &orfds)) active = MsgWaitForMultipleObjects (nh + nc, wait_hnd, FALSE, timeout_ms, QS_ALLINPUT); else active = WaitForMultipleObjects (nh + nc, wait_hnd, FALSE, timeout_ms); if (active == WAIT_FAILED) { DebPrint (("select.WaitForMultipleObjects (%d, %lu) failed with %lu\n", nh + nc, timeout_ms, GetLastError ())); /* don't return EBADF - this causes wait_reading_process_output to abort; WAIT_FAILED is returned when single-stepping under Windows 95 after switching thread focus in debugger, and possibly at other times. */ errno = EINTR; return -1; } else if (active == WAIT_TIMEOUT) { return 0; } else if (active >= WAIT_OBJECT_0 && active < WAIT_OBJECT_0+MAXIMUM_WAIT_OBJECTS) { active -= WAIT_OBJECT_0; } else if (active >= WAIT_ABANDONED_0 && active < WAIT_ABANDONED_0+MAXIMUM_WAIT_OBJECTS) { active -= WAIT_ABANDONED_0; } else emacs_abort (); /* Loop over all handles after active (now officially documented as being the first signaled handle in the array). We do this to ensure fairness, so that all channels with data available will be processed - otherwise higher numbered channels could be starved. */ do { if (active == nh + nc) { /* There are messages in the lisp thread's queue; we must drain the queue now to ensure they are processed promptly, because if we don't do so, we will not be woken again until further messages arrive. NB. If ever we allow window message procedures to callback into lisp, we will need to ensure messages are dispatched at a safe time for lisp code to be run (*), and we may also want to provide some hooks in the dispatch loop to cater for modeless dialogs created by lisp (ie. to register window handles to pass to IsDialogMessage). (*) Note that MsgWaitForMultipleObjects above is an internal dispatch point for messages that are sent to windows created by this thread. */ drain_message_queue (); } else if (active >= nh) { cp = cps[active - nh]; /* We cannot always signal SIGCHLD immediately; if we have not finished reading the process output, we must delay sending SIGCHLD until we do. */ if (cp->fd >= 0 && (fd_info[cp->fd].flags & FILE_AT_EOF) == 0) fd_info[cp->fd].flags |= FILE_SEND_SIGCHLD; /* SIG_DFL for SIGCHLD is ignore */ else if (sig_handlers[SIGCHLD] != SIG_DFL && sig_handlers[SIGCHLD] != SIG_IGN) { #ifdef FULL_DEBUG DebPrint (("select calling SIGCHLD handler for pid %d\n", cp->pid)); #endif sig_handlers[SIGCHLD] (SIGCHLD); } } else if (fdindex[active] == -1) { /* Quit (C-g) was detected. */ errno = EINTR; return -1; } else if (fdindex[active] == 0) { /* Keyboard input available */ FD_SET (0, rfds); nr++; } else { /* must be a socket or pipe - read ahead should have completed, either succeeding or failing. */ FD_SET (fdindex[active], rfds); nr++; } /* Even though wait_reading_process_output only reads from at most one channel, we must process all channels here so that we reap all children that have died. */ while (++active < nh + nc) if (WaitForSingleObject (wait_hnd[active], 0) == WAIT_OBJECT_0) break; } while (active < nh + nc); /* If no input has arrived and timeout hasn't expired, wait again. */ if (nr == 0) { DWORD elapsed = GetTickCount () - start_time; if (timeout_ms > elapsed) /* INFINITE is MAX_UINT */ { if (timeout_ms != INFINITE) timeout_ms -= elapsed; goto count_children; } } return nr; } /* Substitute for certain kill () operations */ static BOOL CALLBACK find_child_console (HWND hwnd, LPARAM arg) { child_process * cp = (child_process *) arg; DWORD thread_id; DWORD process_id; thread_id = GetWindowThreadProcessId (hwnd, &process_id); if (process_id == cp->procinfo.dwProcessId) { char window_class[32]; GetClassName (hwnd, window_class, sizeof (window_class)); if (strcmp (window_class, (os_subtype == OS_9X) ? "tty" : "ConsoleWindowClass") == 0) { cp->hwnd = hwnd; return FALSE; } } /* keep looking */ return TRUE; } /* Emulate 'kill', but only for other processes. */ int sys_kill (int pid, int sig) { child_process *cp; HANDLE proc_hand; int need_to_free = 0; int rc = 0; /* Only handle signals that will result in the process dying */ if (sig != SIGINT && sig != SIGKILL && sig != SIGQUIT && sig != SIGHUP) { errno = EINVAL; return -1; } cp = find_child_pid (pid); if (cp == NULL) { /* We were passed a PID of something other than our subprocess. If that is our own PID, we will send to ourself a message to close the selected frame, which does not necessarily terminates Emacs. But then we are not supposed to call sys_kill with our own PID. */ proc_hand = OpenProcess (PROCESS_TERMINATE, 0, pid); if (proc_hand == NULL) { errno = EPERM; return -1; } need_to_free = 1; } else { proc_hand = cp->procinfo.hProcess; pid = cp->procinfo.dwProcessId; /* Try to locate console window for process. */ EnumWindows (find_child_console, (LPARAM) cp); } if (sig == SIGINT || sig == SIGQUIT) { if (NILP (Vw32_start_process_share_console) && cp && cp->hwnd) { BYTE control_scan_code = (BYTE) MapVirtualKey (VK_CONTROL, 0); /* Fake Ctrl-C for SIGINT, and Ctrl-Break for SIGQUIT. */ BYTE vk_break_code = (sig == SIGINT) ? 'C' : VK_CANCEL; BYTE break_scan_code = (BYTE) MapVirtualKey (vk_break_code, 0); HWND foreground_window; if (break_scan_code == 0) { /* Fake Ctrl-C for SIGQUIT if we can't manage Ctrl-Break. */ vk_break_code = 'C'; break_scan_code = (BYTE) MapVirtualKey (vk_break_code, 0); } foreground_window = GetForegroundWindow (); if (foreground_window) { /* NT 5.0, and apparently also Windows 98, will not allow a Window to be set to foreground directly without the user's involvement. The workaround is to attach ourselves to the thread that owns the foreground window, since that is the only thread that can set the foreground window. */ DWORD foreground_thread, child_thread; foreground_thread = GetWindowThreadProcessId (foreground_window, NULL); if (foreground_thread == GetCurrentThreadId () || !AttachThreadInput (GetCurrentThreadId (), foreground_thread, TRUE)) foreground_thread = 0; child_thread = GetWindowThreadProcessId (cp->hwnd, NULL); if (child_thread == GetCurrentThreadId () || !AttachThreadInput (GetCurrentThreadId (), child_thread, TRUE)) child_thread = 0; /* Set the foreground window to the child. */ if (SetForegroundWindow (cp->hwnd)) { /* Generate keystrokes as if user had typed Ctrl-Break or Ctrl-C. */ keybd_event (VK_CONTROL, control_scan_code, 0, 0); keybd_event (vk_break_code, break_scan_code, (vk_break_code == 'C' ? 0 : KEYEVENTF_EXTENDEDKEY), 0); keybd_event (vk_break_code, break_scan_code, (vk_break_code == 'C' ? 0 : KEYEVENTF_EXTENDEDKEY) | KEYEVENTF_KEYUP, 0); keybd_event (VK_CONTROL, control_scan_code, KEYEVENTF_KEYUP, 0); /* Sleep for a bit to give time for Emacs frame to respond to focus change events (if Emacs was active app). */ Sleep (100); SetForegroundWindow (foreground_window); } /* Detach from the foreground and child threads now that the foreground switching is over. */ if (foreground_thread) AttachThreadInput (GetCurrentThreadId (), foreground_thread, FALSE); if (child_thread) AttachThreadInput (GetCurrentThreadId (), child_thread, FALSE); } } /* Ctrl-Break is NT equivalent of SIGINT. */ else if (!GenerateConsoleCtrlEvent (CTRL_BREAK_EVENT, pid)) { DebPrint (("sys_kill.GenerateConsoleCtrlEvent return %d " "for pid %lu\n", GetLastError (), pid)); errno = EINVAL; rc = -1; } } else { if (NILP (Vw32_start_process_share_console) && cp && cp->hwnd) { #if 1 if (os_subtype == OS_9X) { /* Another possibility is to try terminating the VDM out-right by calling the Shell VxD (id 0x17) V86 interface, function #4 "SHELL_Destroy_VM", ie. mov edx,4 mov ebx,vm_handle call shellapi First need to determine the current VM handle, and then arrange for the shellapi call to be made from the system vm (by using Switch_VM_and_callback). Could try to invoke DestroyVM through CallVxD. */ #if 0 /* On Windows 95, posting WM_QUIT causes the 16-bit subsystem to hang when cmdproxy is used in conjunction with command.com for an interactive shell. Posting WM_CLOSE pops up a dialog that, when Yes is selected, does the same thing. TerminateProcess is also less than ideal in that subprocesses tend to stick around until the machine is shutdown, but at least it doesn't freeze the 16-bit subsystem. */ PostMessage (cp->hwnd, WM_QUIT, 0xff, 0); #endif if (!TerminateProcess (proc_hand, 0xff)) { DebPrint (("sys_kill.TerminateProcess returned %d " "for pid %lu\n", GetLastError (), pid)); errno = EINVAL; rc = -1; } } else #endif PostMessage (cp->hwnd, WM_CLOSE, 0, 0); } /* Kill the process. On W32 this doesn't kill child processes so it doesn't work very well for shells which is why it's not used in every case. */ else if (!TerminateProcess (proc_hand, 0xff)) { DebPrint (("sys_kill.TerminateProcess returned %d " "for pid %lu\n", GetLastError (), pid)); errno = EINVAL; rc = -1; } } if (need_to_free) CloseHandle (proc_hand); return rc; } /* The following two routines are used to manipulate stdin, stdout, and stderr of our child processes. Assuming that in, out, and err are *not* inheritable, we make them stdin, stdout, and stderr of the child as follows: - Save the parent's current standard handles. - Set the std handles to inheritable duplicates of the ones being passed in. (Note that _get_osfhandle() is an io.h procedure that retrieves the NT file handle for a crt file descriptor.) - Spawn the child, which inherits in, out, and err as stdin, stdout, and stderr. (see Spawnve) - Close the std handles passed to the child. - Reset the parent's standard handles to the saved handles. (see reset_standard_handles) We assume that the caller closes in, out, and err after calling us. */ void prepare_standard_handles (int in, int out, int err, HANDLE handles[3]) { HANDLE parent; HANDLE newstdin, newstdout, newstderr; parent = GetCurrentProcess (); handles[0] = GetStdHandle (STD_INPUT_HANDLE); handles[1] = GetStdHandle (STD_OUTPUT_HANDLE); handles[2] = GetStdHandle (STD_ERROR_HANDLE); /* make inheritable copies of the new handles */ if (!DuplicateHandle (parent, (HANDLE) _get_osfhandle (in), parent, &newstdin, 0, TRUE, DUPLICATE_SAME_ACCESS)) report_file_error ("Duplicating input handle for child", Qnil); if (!DuplicateHandle (parent, (HANDLE) _get_osfhandle (out), parent, &newstdout, 0, TRUE, DUPLICATE_SAME_ACCESS)) report_file_error ("Duplicating output handle for child", Qnil); if (!DuplicateHandle (parent, (HANDLE) _get_osfhandle (err), parent, &newstderr, 0, TRUE, DUPLICATE_SAME_ACCESS)) report_file_error ("Duplicating error handle for child", Qnil); /* and store them as our std handles */ if (!SetStdHandle (STD_INPUT_HANDLE, newstdin)) report_file_error ("Changing stdin handle", Qnil); if (!SetStdHandle (STD_OUTPUT_HANDLE, newstdout)) report_file_error ("Changing stdout handle", Qnil); if (!SetStdHandle (STD_ERROR_HANDLE, newstderr)) report_file_error ("Changing stderr handle", Qnil); } void reset_standard_handles (int in, int out, int err, HANDLE handles[3]) { /* close the duplicated handles passed to the child */ CloseHandle (GetStdHandle (STD_INPUT_HANDLE)); CloseHandle (GetStdHandle (STD_OUTPUT_HANDLE)); CloseHandle (GetStdHandle (STD_ERROR_HANDLE)); /* now restore parent's saved std handles */ SetStdHandle (STD_INPUT_HANDLE, handles[0]); SetStdHandle (STD_OUTPUT_HANDLE, handles[1]); SetStdHandle (STD_ERROR_HANDLE, handles[2]); } void set_process_dir (char * dir) { process_dir = dir; } /* To avoid problems with winsock implementations that work over dial-up connections causing or requiring a connection to exist while Emacs is running, Emacs no longer automatically loads winsock on startup if it is present. Instead, it will be loaded when open-network-stream is first called. To allow full control over when winsock is loaded, we provide these two functions to dynamically load and unload winsock. This allows dial-up users to only be connected when they actually need to use socket services. */ /* From w32.c */ extern HANDLE winsock_lib; extern BOOL term_winsock (void); extern BOOL init_winsock (int load_now); DEFUN ("w32-has-winsock", Fw32_has_winsock, Sw32_has_winsock, 0, 1, 0, doc: /* Test for presence of the Windows socket library `winsock'. Returns non-nil if winsock support is present, nil otherwise. If the optional argument LOAD-NOW is non-nil, the winsock library is also loaded immediately if not already loaded. If winsock is loaded, the winsock local hostname is returned (since this may be different from the value of `system-name' and should supplant it), otherwise t is returned to indicate winsock support is present. */) (Lisp_Object load_now) { int have_winsock; have_winsock = init_winsock (!NILP (load_now)); if (have_winsock) { if (winsock_lib != NULL) { /* Return new value for system-name. The best way to do this is to call init_system_name, saving and restoring the original value to avoid side-effects. */ Lisp_Object orig_hostname = Vsystem_name; Lisp_Object hostname; init_system_name (); hostname = Vsystem_name; Vsystem_name = orig_hostname; return hostname; } return Qt; } return Qnil; } DEFUN ("w32-unload-winsock", Fw32_unload_winsock, Sw32_unload_winsock, 0, 0, 0, doc: /* Unload the Windows socket library `winsock' if loaded. This is provided to allow dial-up socket connections to be disconnected when no longer needed. Returns nil without unloading winsock if any socket connections still exist. */) (void) { return term_winsock () ? Qt : Qnil; } /* Some miscellaneous functions that are Windows specific, but not GUI specific (ie. are applicable in terminal or batch mode as well). */ DEFUN ("w32-short-file-name", Fw32_short_file_name, Sw32_short_file_name, 1, 1, 0, doc: /* Return the short file name version (8.3) of the full path of FILENAME. If FILENAME does not exist, return nil. All path elements in FILENAME are converted to their short names. */) (Lisp_Object filename) { char shortname[MAX_PATH]; CHECK_STRING (filename); /* first expand it. */ filename = Fexpand_file_name (filename, Qnil); /* luckily, this returns the short version of each element in the path. */ if (GetShortPathName (SDATA (ENCODE_FILE (filename)), shortname, MAX_PATH) == 0) return Qnil; dostounix_filename (shortname); return build_string (shortname); } DEFUN ("w32-long-file-name", Fw32_long_file_name, Sw32_long_file_name, 1, 1, 0, doc: /* Return the long file name version of the full path of FILENAME. If FILENAME does not exist, return nil. All path elements in FILENAME are converted to their long names. */) (Lisp_Object filename) { char longname[ MAX_PATH ]; int drive_only = 0; CHECK_STRING (filename); if (SBYTES (filename) == 2 && *(SDATA (filename) + 1) == ':') drive_only = 1; /* first expand it. */ filename = Fexpand_file_name (filename, Qnil); if (!w32_get_long_filename (SDATA (ENCODE_FILE (filename)), longname, MAX_PATH)) return Qnil; dostounix_filename (longname); /* If we were passed only a drive, make sure that a slash is not appended for consistency with directories. Allow for drive mapping via SUBST in case expand-file-name is ever changed to expand those. */ if (drive_only && longname[1] == ':' && longname[2] == '/' && !longname[3]) longname[2] = '\0'; return DECODE_FILE (build_string (longname)); } DEFUN ("w32-set-process-priority", Fw32_set_process_priority, Sw32_set_process_priority, 2, 2, 0, doc: /* Set the priority of PROCESS to PRIORITY. If PROCESS is nil, the priority of Emacs is changed, otherwise the priority of the process whose pid is PROCESS is changed. PRIORITY should be one of the symbols high, normal, or low; any other symbol will be interpreted as normal. If successful, the return value is t, otherwise nil. */) (Lisp_Object process, Lisp_Object priority) { HANDLE proc_handle = GetCurrentProcess (); DWORD priority_class = NORMAL_PRIORITY_CLASS; Lisp_Object result = Qnil; CHECK_SYMBOL (priority); if (!NILP (process)) { DWORD pid; child_process *cp; CHECK_NUMBER (process); /* Allow pid to be an internally generated one, or one obtained externally. This is necessary because real pids on Windows 95 are negative. */ pid = XINT (process); cp = find_child_pid (pid); if (cp != NULL) pid = cp->procinfo.dwProcessId; proc_handle = OpenProcess (PROCESS_SET_INFORMATION, FALSE, pid); } if (EQ (priority, Qhigh)) priority_class = HIGH_PRIORITY_CLASS; else if (EQ (priority, Qlow)) priority_class = IDLE_PRIORITY_CLASS; if (proc_handle != NULL) { if (SetPriorityClass (proc_handle, priority_class)) result = Qt; if (!NILP (process)) CloseHandle (proc_handle); } return result; } #ifdef HAVE_LANGINFO_CODESET /* Emulation of nl_langinfo. Used in fns.c:Flocale_info. */ char * nl_langinfo (nl_item item) { /* Conversion of Posix item numbers to their Windows equivalents. */ static const LCTYPE w32item[] = { LOCALE_IDEFAULTANSICODEPAGE, LOCALE_SDAYNAME1, LOCALE_SDAYNAME2, LOCALE_SDAYNAME3, LOCALE_SDAYNAME4, LOCALE_SDAYNAME5, LOCALE_SDAYNAME6, LOCALE_SDAYNAME7, LOCALE_SMONTHNAME1, LOCALE_SMONTHNAME2, LOCALE_SMONTHNAME3, LOCALE_SMONTHNAME4, LOCALE_SMONTHNAME5, LOCALE_SMONTHNAME6, LOCALE_SMONTHNAME7, LOCALE_SMONTHNAME8, LOCALE_SMONTHNAME9, LOCALE_SMONTHNAME10, LOCALE_SMONTHNAME11, LOCALE_SMONTHNAME12 }; static char *nl_langinfo_buf = NULL; static int nl_langinfo_len = 0; if (nl_langinfo_len <= 0) nl_langinfo_buf = xmalloc (nl_langinfo_len = 1); if (item < 0 || item >= _NL_NUM) nl_langinfo_buf[0] = 0; else { LCID cloc = GetThreadLocale (); int need_len = GetLocaleInfo (cloc, w32item[item] | LOCALE_USE_CP_ACP, NULL, 0); if (need_len <= 0) nl_langinfo_buf[0] = 0; else { if (item == CODESET) { need_len += 2; /* for the "cp" prefix */ if (need_len < 8) /* for the case we call GetACP */ need_len = 8; } if (nl_langinfo_len <= need_len) nl_langinfo_buf = xrealloc (nl_langinfo_buf, nl_langinfo_len = need_len); if (!GetLocaleInfo (cloc, w32item[item] | LOCALE_USE_CP_ACP, nl_langinfo_buf, nl_langinfo_len)) nl_langinfo_buf[0] = 0; else if (item == CODESET) { if (strcmp (nl_langinfo_buf, "0") == 0 /* CP_ACP */ || strcmp (nl_langinfo_buf, "1") == 0) /* CP_OEMCP */ sprintf (nl_langinfo_buf, "cp%u", GetACP ()); else { memmove (nl_langinfo_buf + 2, nl_langinfo_buf, strlen (nl_langinfo_buf) + 1); nl_langinfo_buf[0] = 'c'; nl_langinfo_buf[1] = 'p'; } } } } return nl_langinfo_buf; } #endif /* HAVE_LANGINFO_CODESET */ DEFUN ("w32-get-locale-info", Fw32_get_locale_info, Sw32_get_locale_info, 1, 2, 0, doc: /* Return information about the Windows locale LCID. By default, return a three letter locale code which encodes the default language as the first two characters, and the country or regional variant as the third letter. For example, ENU refers to `English (United States)', while ENC means `English (Canadian)'. If the optional argument LONGFORM is t, the long form of the locale name is returned, e.g. `English (United States)' instead; if LONGFORM is a number, it is interpreted as an LCTYPE constant and the corresponding locale information is returned. If LCID (a 16-bit number) is not a valid locale, the result is nil. */) (Lisp_Object lcid, Lisp_Object longform) { int got_abbrev; int got_full; char abbrev_name[32] = { 0 }; char full_name[256] = { 0 }; CHECK_NUMBER (lcid); if (!IsValidLocale (XINT (lcid), LCID_SUPPORTED)) return Qnil; if (NILP (longform)) { got_abbrev = GetLocaleInfo (XINT (lcid), LOCALE_SABBREVLANGNAME | LOCALE_USE_CP_ACP, abbrev_name, sizeof (abbrev_name)); if (got_abbrev) return build_string (abbrev_name); } else if (EQ (longform, Qt)) { got_full = GetLocaleInfo (XINT (lcid), LOCALE_SLANGUAGE | LOCALE_USE_CP_ACP, full_name, sizeof (full_name)); if (got_full) return DECODE_SYSTEM (build_string (full_name)); } else if (NUMBERP (longform)) { got_full = GetLocaleInfo (XINT (lcid), XINT (longform), full_name, sizeof (full_name)); /* GetLocaleInfo's return value includes the terminating null character, when the returned information is a string, whereas make_unibyte_string needs the string length without the terminating null. */ if (got_full) return make_unibyte_string (full_name, got_full - 1); } return Qnil; } DEFUN ("w32-get-current-locale-id", Fw32_get_current_locale_id, Sw32_get_current_locale_id, 0, 0, 0, doc: /* Return Windows locale id for current locale setting. This is a numerical value; use `w32-get-locale-info' to convert to a human-readable form. */) (void) { return make_number (GetThreadLocale ()); } static DWORD int_from_hex (char * s) { DWORD val = 0; static char hex[] = "0123456789abcdefABCDEF"; char * p; while (*s && (p = strchr (hex, *s)) != NULL) { unsigned digit = p - hex; if (digit > 15) digit -= 6; val = val * 16 + digit; s++; } return val; } /* We need to build a global list, since the EnumSystemLocale callback function isn't given a context pointer. */ Lisp_Object Vw32_valid_locale_ids; static BOOL CALLBACK enum_locale_fn (LPTSTR localeNum) { DWORD id = int_from_hex (localeNum); Vw32_valid_locale_ids = Fcons (make_number (id), Vw32_valid_locale_ids); return TRUE; } DEFUN ("w32-get-valid-locale-ids", Fw32_get_valid_locale_ids, Sw32_get_valid_locale_ids, 0, 0, 0, doc: /* Return list of all valid Windows locale ids. Each id is a numerical value; use `w32-get-locale-info' to convert to a human-readable form. */) (void) { Vw32_valid_locale_ids = Qnil; EnumSystemLocales (enum_locale_fn, LCID_SUPPORTED); Vw32_valid_locale_ids = Fnreverse (Vw32_valid_locale_ids); return Vw32_valid_locale_ids; } DEFUN ("w32-get-default-locale-id", Fw32_get_default_locale_id, Sw32_get_default_locale_id, 0, 1, 0, doc: /* Return Windows locale id for default locale setting. By default, the system default locale setting is returned; if the optional parameter USERP is non-nil, the user default locale setting is returned. This is a numerical value; use `w32-get-locale-info' to convert to a human-readable form. */) (Lisp_Object userp) { if (NILP (userp)) return make_number (GetSystemDefaultLCID ()); return make_number (GetUserDefaultLCID ()); } DEFUN ("w32-set-current-locale", Fw32_set_current_locale, Sw32_set_current_locale, 1, 1, 0, doc: /* Make Windows locale LCID be the current locale setting for Emacs. If successful, the new locale id is returned, otherwise nil. */) (Lisp_Object lcid) { CHECK_NUMBER (lcid); if (!IsValidLocale (XINT (lcid), LCID_SUPPORTED)) return Qnil; if (!SetThreadLocale (XINT (lcid))) return Qnil; /* Need to set input thread locale if present. */ if (dwWindowsThreadId) /* Reply is not needed. */ PostThreadMessage (dwWindowsThreadId, WM_EMACS_SETLOCALE, XINT (lcid), 0); return make_number (GetThreadLocale ()); } /* We need to build a global list, since the EnumCodePages callback function isn't given a context pointer. */ Lisp_Object Vw32_valid_codepages; static BOOL CALLBACK enum_codepage_fn (LPTSTR codepageNum) { DWORD id = atoi (codepageNum); Vw32_valid_codepages = Fcons (make_number (id), Vw32_valid_codepages); return TRUE; } DEFUN ("w32-get-valid-codepages", Fw32_get_valid_codepages, Sw32_get_valid_codepages, 0, 0, 0, doc: /* Return list of all valid Windows codepages. */) (void) { Vw32_valid_codepages = Qnil; EnumSystemCodePages (enum_codepage_fn, CP_SUPPORTED); Vw32_valid_codepages = Fnreverse (Vw32_valid_codepages); return Vw32_valid_codepages; } DEFUN ("w32-get-console-codepage", Fw32_get_console_codepage, Sw32_get_console_codepage, 0, 0, 0, doc: /* Return current Windows codepage for console input. */) (void) { return make_number (GetConsoleCP ()); } DEFUN ("w32-set-console-codepage", Fw32_set_console_codepage, Sw32_set_console_codepage, 1, 1, 0, doc: /* Make Windows codepage CP be the codepage for Emacs tty keyboard input. This codepage setting affects keyboard input in tty mode. If successful, the new CP is returned, otherwise nil. */) (Lisp_Object cp) { CHECK_NUMBER (cp); if (!IsValidCodePage (XINT (cp))) return Qnil; if (!SetConsoleCP (XINT (cp))) return Qnil; return make_number (GetConsoleCP ()); } DEFUN ("w32-get-console-output-codepage", Fw32_get_console_output_codepage, Sw32_get_console_output_codepage, 0, 0, 0, doc: /* Return current Windows codepage for console output. */) (void) { return make_number (GetConsoleOutputCP ()); } DEFUN ("w32-set-console-output-codepage", Fw32_set_console_output_codepage, Sw32_set_console_output_codepage, 1, 1, 0, doc: /* Make Windows codepage CP be the codepage for Emacs console output. This codepage setting affects display in tty mode. If successful, the new CP is returned, otherwise nil. */) (Lisp_Object cp) { CHECK_NUMBER (cp); if (!IsValidCodePage (XINT (cp))) return Qnil; if (!SetConsoleOutputCP (XINT (cp))) return Qnil; return make_number (GetConsoleOutputCP ()); } DEFUN ("w32-get-codepage-charset", Fw32_get_codepage_charset, Sw32_get_codepage_charset, 1, 1, 0, doc: /* Return charset ID corresponding to codepage CP. Returns nil if the codepage is not valid. */) (Lisp_Object cp) { CHARSETINFO info; CHECK_NUMBER (cp); if (!IsValidCodePage (XINT (cp))) return Qnil; if (TranslateCharsetInfo ((DWORD *) XINT (cp), &info, TCI_SRCCODEPAGE)) return make_number (info.ciCharset); return Qnil; } DEFUN ("w32-get-valid-keyboard-layouts", Fw32_get_valid_keyboard_layouts, Sw32_get_valid_keyboard_layouts, 0, 0, 0, doc: /* Return list of Windows keyboard languages and layouts. The return value is a list of pairs of language id and layout id. */) (void) { int num_layouts = GetKeyboardLayoutList (0, NULL); HKL * layouts = (HKL *) alloca (num_layouts * sizeof (HKL)); Lisp_Object obj = Qnil; if (GetKeyboardLayoutList (num_layouts, layouts) == num_layouts) { while (--num_layouts >= 0) { DWORD kl = (DWORD) layouts[num_layouts]; obj = Fcons (Fcons (make_number (kl & 0xffff), make_number ((kl >> 16) & 0xffff)), obj); } } return obj; } DEFUN ("w32-get-keyboard-layout", Fw32_get_keyboard_layout, Sw32_get_keyboard_layout, 0, 0, 0, doc: /* Return current Windows keyboard language and layout. The return value is the cons of the language id and the layout id. */) (void) { DWORD kl = (DWORD) GetKeyboardLayout (dwWindowsThreadId); return Fcons (make_number (kl & 0xffff), make_number ((kl >> 16) & 0xffff)); } DEFUN ("w32-set-keyboard-layout", Fw32_set_keyboard_layout, Sw32_set_keyboard_layout, 1, 1, 0, doc: /* Make LAYOUT be the current keyboard layout for Emacs. The keyboard layout setting affects interpretation of keyboard input. If successful, the new layout id is returned, otherwise nil. */) (Lisp_Object layout) { DWORD kl; CHECK_CONS (layout); CHECK_NUMBER_CAR (layout); CHECK_NUMBER_CDR (layout); kl = (XINT (XCAR (layout)) & 0xffff) | (XINT (XCDR (layout)) << 16); /* Synchronize layout with input thread. */ if (dwWindowsThreadId) { if (PostThreadMessage (dwWindowsThreadId, WM_EMACS_SETKEYBOARDLAYOUT, (WPARAM) kl, 0)) { MSG msg; GetMessage (&msg, NULL, WM_EMACS_DONE, WM_EMACS_DONE); if (msg.wParam == 0) return Qnil; } } else if (!ActivateKeyboardLayout ((HKL) kl, 0)) return Qnil; return Fw32_get_keyboard_layout (); } void syms_of_ntproc (void) { DEFSYM (Qhigh, "high"); DEFSYM (Qlow, "low"); defsubr (&Sw32_has_winsock); defsubr (&Sw32_unload_winsock); defsubr (&Sw32_short_file_name); defsubr (&Sw32_long_file_name); defsubr (&Sw32_set_process_priority); defsubr (&Sw32_get_locale_info); defsubr (&Sw32_get_current_locale_id); defsubr (&Sw32_get_default_locale_id); defsubr (&Sw32_get_valid_locale_ids); defsubr (&Sw32_set_current_locale); defsubr (&Sw32_get_console_codepage); defsubr (&Sw32_set_console_codepage); defsubr (&Sw32_get_console_output_codepage); defsubr (&Sw32_set_console_output_codepage); defsubr (&Sw32_get_valid_codepages); defsubr (&Sw32_get_codepage_charset); defsubr (&Sw32_get_valid_keyboard_layouts); defsubr (&Sw32_get_keyboard_layout); defsubr (&Sw32_set_keyboard_layout); DEFVAR_LISP ("w32-quote-process-args", Vw32_quote_process_args, doc: /* Non-nil enables quoting of process arguments to ensure correct parsing. Because Windows does not directly pass argv arrays to child processes, programs have to reconstruct the argv array by parsing the command line string. For an argument to contain a space, it must be enclosed in double quotes or it will be parsed as multiple arguments. If the value is a character, that character will be used to escape any quote characters that appear, otherwise a suitable escape character will be chosen based on the type of the program. */); Vw32_quote_process_args = Qt; DEFVAR_LISP ("w32-start-process-show-window", Vw32_start_process_show_window, doc: /* When nil, new child processes hide their windows. When non-nil, they show their window in the method of their choice. This variable doesn't affect GUI applications, which will never be hidden. */); Vw32_start_process_show_window = Qnil; DEFVAR_LISP ("w32-start-process-share-console", Vw32_start_process_share_console, doc: /* When nil, new child processes are given a new console. When non-nil, they share the Emacs console; this has the limitation of allowing only one DOS subprocess to run at a time (whether started directly or indirectly by Emacs), and preventing Emacs from cleanly terminating the subprocess group, but may allow Emacs to interrupt a subprocess that doesn't otherwise respond to interrupts from Emacs. */); Vw32_start_process_share_console = Qnil; DEFVAR_LISP ("w32-start-process-inherit-error-mode", Vw32_start_process_inherit_error_mode, doc: /* When nil, new child processes revert to the default error mode. When non-nil, they inherit their error mode setting from Emacs, which stops them blocking when trying to access unmounted drives etc. */); Vw32_start_process_inherit_error_mode = Qt; DEFVAR_INT ("w32-pipe-read-delay", w32_pipe_read_delay, doc: /* Forced delay before reading subprocess output. This is done to improve the buffering of subprocess output, by avoiding the inefficiency of frequently reading small amounts of data. If positive, the value is the number of milliseconds to sleep before reading the subprocess output. If negative, the magnitude is the number of time slices to wait (effectively boosting the priority of the child process temporarily). A value of zero disables waiting entirely. */); w32_pipe_read_delay = 50; DEFVAR_LISP ("w32-downcase-file-names", Vw32_downcase_file_names, doc: /* Non-nil means convert all-upper case file names to lower case. This applies when performing completions and file name expansion. Note that the value of this setting also affects remote file names, so you probably don't want to set to non-nil if you use case-sensitive filesystems via ange-ftp. */); Vw32_downcase_file_names = Qnil; #if 0 DEFVAR_LISP ("w32-generate-fake-inodes", Vw32_generate_fake_inodes, doc: /* Non-nil means attempt to fake realistic inode values. This works by hashing the truename of files, and should detect aliasing between long and short (8.3 DOS) names, but can have false positives because of hash collisions. Note that determining the truename of a file can be slow. */); Vw32_generate_fake_inodes = Qnil; #endif DEFVAR_LISP ("w32-get-true-file-attributes", Vw32_get_true_file_attributes, doc: /* Non-nil means determine accurate file attributes in `file-attributes'. This option controls whether to issue additional system calls to determine accurate link counts, file type, and ownership information. It is more useful for files on NTFS volumes, where hard links and file security are supported, than on volumes of the FAT family. Without these system calls, link count will always be reported as 1 and file ownership will be attributed to the current user. The default value `local' means only issue these system calls for files on local fixed drives. A value of nil means never issue them. Any other non-nil value means do this even on remote and removable drives where the performance impact may be noticeable even on modern hardware. */); Vw32_get_true_file_attributes = Qlocal; staticpro (&Vw32_valid_locale_ids); staticpro (&Vw32_valid_codepages); } /* end of w32proc.c */