summaryrefslogtreecommitdiff
path: root/lisp/calc/calc-cplx.el
blob: fdc9372ddc3afbbcf40abb5461325e7d69da9842 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
;;; calc-cplx.el --- Complex number functions for Calc

;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
;;   2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.

;; Author: David Gillespie <daveg@synaptics.com>
;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>

;; This file is part of GNU Emacs.

;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.

;;; Commentary:

;;; Code:

;; This file is autoloaded from calc-ext.el.

(require 'calc-ext)
(require 'calc-macs)

(defun calc-argument (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-unary-op "arg" 'calcFunc-arg arg)))

(defun calc-re (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-unary-op "re" 'calcFunc-re arg)))

(defun calc-im (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-unary-op "im" 'calcFunc-im arg)))


(defun calc-polar ()
  (interactive)
  (calc-slow-wrapper
   (let ((arg (calc-top-n 1)))
     (if (or (calc-is-inverse)
	     (eq (car-safe arg) 'polar))
	 (calc-enter-result 1 "p-r" (list 'calcFunc-rect arg))
       (calc-enter-result 1 "r-p" (list 'calcFunc-polar arg))))))




(defun calc-complex-notation ()
  (interactive)
  (calc-wrapper
   (calc-change-mode 'calc-complex-format nil t)
   (message "Displaying complex numbers in (X,Y) format")))

(defun calc-i-notation ()
  (interactive)
  (calc-wrapper
   (calc-change-mode 'calc-complex-format 'i t)
   (message "Displaying complex numbers in X+Yi format")))

(defun calc-j-notation ()
  (interactive)
  (calc-wrapper
   (calc-change-mode 'calc-complex-format 'j t)
   (message "Displaying complex numbers in X+Yj format")))


(defun calc-polar-mode (n)
  (interactive "P")
  (calc-wrapper
   (if (if n
	   (> (prefix-numeric-value n) 0)
	 (eq calc-complex-mode 'cplx))
       (progn
	 (calc-change-mode 'calc-complex-mode 'polar)
	 (message "Preferred complex form is polar"))
     (calc-change-mode 'calc-complex-mode 'cplx)
     (message "Preferred complex form is rectangular"))))


;;;; Complex numbers.

(defun math-normalize-polar (a)
  (let ((r (math-normalize (nth 1 a)))
	(th (math-normalize (nth 2 a))))
    (cond ((math-zerop r)
	   '(polar 0 0))
	  ((or (math-zerop th))
	   r)
	  ((and (not (eq calc-angle-mode 'rad))
		(or (equal th '(float 18 1))
		    (equal th 180)))
	   (math-neg r))
	  ((math-negp r)
	   (math-neg (list 'polar (math-neg r) th)))
	  (t
	   (list 'polar r th)))))


;;; Coerce A to be complex (rectangular form).  [c N]
(defun math-complex (a)
  (cond ((eq (car-safe a) 'cplx) a)
	((eq (car-safe a) 'polar)
	 (if (math-zerop (nth 1 a))
	     (nth 1 a)
	   (let ((sc (calcFunc-sincos (nth 2 a))))
	     (list 'cplx
		   (math-mul (nth 1 a) (nth 1 sc))
		   (math-mul (nth 1 a) (nth 2 sc))))))
	(t (list 'cplx a 0))))

;;; Coerce A to be complex (polar form).  [c N]
(defun math-polar (a)
  (cond ((eq (car-safe a) 'polar) a)
	((math-zerop a) '(polar 0 0))
	(t
	 (list 'polar
	       (math-abs a)
	       (calcFunc-arg a)))))

;;; Multiply A by the imaginary constant i.  [N N] [Public]
(defun math-imaginary (a)
  (if (and (or (Math-objvecp a) (math-infinitep a))
	   (not calc-symbolic-mode))
      (math-mul a
		(if (or (eq (car-safe a) 'polar)
			(and (not (eq (car-safe a) 'cplx))
			     (eq calc-complex-mode 'polar)))
		    (list 'polar 1 (math-quarter-circle nil))
		  '(cplx 0 1)))
    (math-mul a '(var i var-i))))




(defun math-want-polar (a b)
  (cond ((eq (car-safe a) 'polar)
	 (if (eq (car-safe b) 'cplx)
	     (eq calc-complex-mode 'polar)
	   t))
	((eq (car-safe a) 'cplx)
	 (if (eq (car-safe b) 'polar)
	     (eq calc-complex-mode 'polar)
	   nil))
	((eq (car-safe b) 'polar)
	 t)
	((eq (car-safe b) 'cplx)
	 nil)
	(t (eq calc-complex-mode 'polar))))

;;; Force A to be in the (-pi,pi] or (-180,180] range.
(defun math-fix-circular (a &optional dir)   ; [R R]
  (cond ((eq (car-safe a) 'hms)
	 (cond ((and (Math-lessp 180 (nth 1 a)) (not (eq dir 1)))
		(math-fix-circular (math-add a '(float -36 1)) -1))
	       ((or (Math-lessp -180 (nth 1 a)) (eq dir -1))
		a)
	       (t
		(math-fix-circular (math-add a '(float 36 1)) 1))))
	((eq calc-angle-mode 'rad)
	 (cond ((and (Math-lessp (math-pi) a) (not (eq dir 1)))
		(math-fix-circular (math-sub a (math-two-pi)) -1))
	       ((or (Math-lessp (math-neg (math-pi)) a) (eq dir -1))
		a)
	       (t
		(math-fix-circular (math-add a (math-two-pi)) 1))))
	(t
	 (cond ((and (Math-lessp '(float 18 1) a) (not (eq dir 1)))
		(math-fix-circular (math-add a '(float -36 1)) -1))
	       ((or (Math-lessp '(float -18 1) a) (eq dir -1))
		a)
	       (t
		(math-fix-circular (math-add a '(float 36 1)) 1))))))


;;;; Complex numbers.

(defun calcFunc-polar (a)   ; [C N] [Public]
  (cond ((Math-vectorp a)
	 (math-map-vec 'calcFunc-polar a))
	((Math-realp a) a)
	((Math-numberp a)
	 (math-normalize (math-polar a)))
	(t (list 'calcFunc-polar a))))

(defun calcFunc-rect (a)   ; [N N] [Public]
  (cond ((Math-vectorp a)
	 (math-map-vec 'calcFunc-rect a))
	((Math-realp a) a)
	((Math-numberp a)
	 (math-normalize (math-complex a)))
	(t (list 'calcFunc-rect a))))

;;; Compute the complex conjugate of A.  [O O] [Public]
(defun calcFunc-conj (a)
  (let (aa bb)
    (cond ((Math-realp a)
	   a)
	  ((eq (car a) 'cplx)
	   (list 'cplx (nth 1 a) (math-neg (nth 2 a))))
	  ((eq (car a) 'polar)
	   (list 'polar (nth 1 a) (math-neg (nth 2 a))))
	  ((eq (car a) 'vec)
	   (math-map-vec 'calcFunc-conj a))
	  ((eq (car a) 'calcFunc-conj)
	   (nth 1 a))
	  ((math-known-realp a)
	   a)
	  ((and (equal a '(var i var-i))
		(math-imaginary-i))
	   (math-neg a))
	  ((and (memq (car a) '(+ - * /))
		(progn
		  (setq aa (calcFunc-conj (nth 1 a))
			bb (calcFunc-conj (nth 2 a)))
		  (or (not (eq (car-safe aa) 'calcFunc-conj))
		      (not (eq (car-safe bb) 'calcFunc-conj)))))
	   (if (eq (car a) '+)
	       (math-add aa bb)
	     (if (eq (car a) '-)
		 (math-sub aa bb)
	       (if (eq (car a) '*)
		   (math-mul aa bb)
		 (math-div aa bb)))))
	  ((eq (car a) 'neg)
	   (math-neg (calcFunc-conj (nth 1 a))))
	  ((let ((inf (math-infinitep a)))
	     (and inf
		  (math-mul (calcFunc-conj (math-infinite-dir a inf)) inf))))
	  (t (calc-record-why 'numberp a)
	     (list 'calcFunc-conj a)))))


;;; Compute the complex argument of A.  [F N] [Public]
(defun calcFunc-arg (a)
  (cond ((Math-anglep a)
	 (if (math-negp a) (math-half-circle nil) 0))
	((eq (car-safe a) 'cplx)
	 (calcFunc-arctan2 (nth 2 a) (nth 1 a)))
	((eq (car-safe a) 'polar)
	 (nth 2 a))
	((eq (car a) 'vec)
	 (math-map-vec 'calcFunc-arg a))
	((and (equal a '(var i var-i))
	      (math-imaginary-i))
	 (math-quarter-circle t))
	((and (equal a '(neg (var i var-i)))
	      (math-imaginary-i))
	 (math-neg (math-quarter-circle t)))
	((let ((signs (math-possible-signs a)))
	   (or (and (memq signs '(2 4 6)) 0)
	       (and (eq signs 1) (math-half-circle nil)))))
	((math-infinitep a)
	 (if (or (equal a '(var uinf var-uinf))
		 (equal a '(var nan var-nan)))
	     '(var nan var-nan)
	   (calcFunc-arg (math-infinite-dir a))))
	(t (calc-record-why 'numvecp a)
	   (list 'calcFunc-arg a))))

(defun math-imaginary-i ()
  (let ((val (calc-var-value 'var-i)))
    (or (eq (car-safe val) 'special-const)
	(equal val '(cplx 0 1))
	(and (eq (car-safe val) 'polar)
	     (eq (nth 1 val) 0)
	     (Math-equal (nth 1 val) (math-quarter-circle nil))))))

;;; Extract the real or complex part of a complex number.  [R N] [Public]
;;; Also extracts the real part of a modulo form.
(defun calcFunc-re (a)
  (let (aa bb)
    (cond ((Math-realp a) a)
	  ((memq (car a) '(mod cplx))
	   (nth 1 a))
	  ((eq (car a) 'polar)
	   (math-mul (nth 1 a) (calcFunc-cos (nth 2 a))))
	  ((eq (car a) 'vec)
	   (math-map-vec 'calcFunc-re a))
	  ((math-known-realp a) a)
	  ((eq (car a) 'calcFunc-conj)
	   (calcFunc-re (nth 1 a)))
	  ((and (equal a '(var i var-i))
		(math-imaginary-i))
	   0)
	  ((and (memq (car a) '(+ - *))
		(progn
		  (setq aa (calcFunc-re (nth 1 a))
			bb (calcFunc-re (nth 2 a)))
		  (or (not (eq (car-safe aa) 'calcFunc-re))
		      (not (eq (car-safe bb) 'calcFunc-re)))))
	   (if (eq (car a) '+)
	       (math-add aa bb)
	     (if (eq (car a) '-)
		 (math-sub aa bb)
	       (math-sub (math-mul aa bb)
			 (math-mul (calcFunc-im (nth 1 a))
				   (calcFunc-im (nth 2 a)))))))
	  ((and (eq (car a) '/)
		(math-known-realp (nth 2 a)))
	   (math-div (calcFunc-re (nth 1 a)) (nth 2 a)))
	  ((eq (car a) 'neg)
	   (math-neg (calcFunc-re (nth 1 a))))
	  (t (calc-record-why 'numberp a)
	     (list 'calcFunc-re a)))))

(defun calcFunc-im (a)
  (let (aa bb)
    (cond ((Math-realp a)
	   (if (math-floatp a) '(float 0 0) 0))
	  ((eq (car a) 'cplx)
	   (nth 2 a))
	  ((eq (car a) 'polar)
	   (math-mul (nth 1 a) (calcFunc-sin (nth 2 a))))
	  ((eq (car a) 'vec)
	   (math-map-vec 'calcFunc-im a))
	  ((math-known-realp a)
	   0)
	  ((eq (car a) 'calcFunc-conj)
	   (math-neg (calcFunc-im (nth 1 a))))
	  ((and (equal a '(var i var-i))
		(math-imaginary-i))
	   1)
	  ((and (memq (car a) '(+ - *))
		(progn
		  (setq aa (calcFunc-im (nth 1 a))
			bb (calcFunc-im (nth 2 a)))
		  (or (not (eq (car-safe aa) 'calcFunc-im))
		      (not (eq (car-safe bb) 'calcFunc-im)))))
	   (if (eq (car a) '+)
	       (math-add aa bb)
	     (if (eq (car a) '-)
		 (math-sub aa bb)
	       (math-add (math-mul (calcFunc-re (nth 1 a)) bb)
			 (math-mul aa (calcFunc-re (nth 2 a)))))))
	  ((and (eq (car a) '/)
		(math-known-realp (nth 2 a)))
	   (math-div (calcFunc-im (nth 1 a)) (nth 2 a)))
	  ((eq (car a) 'neg)
	   (math-neg (calcFunc-im (nth 1 a))))
	  (t (calc-record-why 'numberp a)
	     (list 'calcFunc-im a)))))

(provide 'calc-cplx)

;;; calc-cplx.el ends here