1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
|
;;; calc-poly.el --- polynomial functions for Calc
;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
;; 2005, 2006, 2007 Free Software Foundation, Inc.
;; Author: David Gillespie <daveg@synaptics.com>
;; Maintainer: Jay Belanger <belanger@truman.edu>
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;;; Commentary:
;;; Code:
;; This file is autoloaded from calc-ext.el.
(require 'calc-ext)
(require 'calc-macs)
(defun calcFunc-pcont (expr &optional var)
(cond ((Math-primp expr)
(cond ((Math-zerop expr) 1)
((Math-messy-integerp expr) (math-trunc expr))
((Math-objectp expr) expr)
((or (equal expr var) (not var)) 1)
(t expr)))
((eq (car expr) '*)
(math-mul (calcFunc-pcont (nth 1 expr) var)
(calcFunc-pcont (nth 2 expr) var)))
((eq (car expr) '/)
(math-div (calcFunc-pcont (nth 1 expr) var)
(calcFunc-pcont (nth 2 expr) var)))
((and (eq (car expr) '^) (Math-natnump (nth 2 expr)))
(math-pow (calcFunc-pcont (nth 1 expr) var) (nth 2 expr)))
((memq (car expr) '(neg polar))
(calcFunc-pcont (nth 1 expr) var))
((consp var)
(let ((p (math-is-polynomial expr var)))
(if p
(let ((lead (nth (1- (length p)) p))
(cont (math-poly-gcd-list p)))
(if (math-guess-if-neg lead)
(math-neg cont)
cont))
1)))
((memq (car expr) '(+ - cplx sdev))
(let ((cont (calcFunc-pcont (nth 1 expr) var)))
(if (eq cont 1)
1
(let ((c2 (calcFunc-pcont (nth 2 expr) var)))
(if (and (math-negp cont)
(if (eq (car expr) '-) (math-posp c2) (math-negp c2)))
(math-neg (math-poly-gcd cont c2))
(math-poly-gcd cont c2))))))
(var expr)
(t 1)))
(defun calcFunc-pprim (expr &optional var)
(let ((cont (calcFunc-pcont expr var)))
(if (math-equal-int cont 1)
expr
(math-poly-div-exact expr cont var))))
(defun math-div-poly-const (expr c)
(cond ((memq (car-safe expr) '(+ -))
(list (car expr)
(math-div-poly-const (nth 1 expr) c)
(math-div-poly-const (nth 2 expr) c)))
(t (math-div expr c))))
(defun calcFunc-pdeg (expr &optional var)
(if (Math-zerop expr)
'(neg (var inf var-inf))
(if var
(or (math-polynomial-p expr var)
(math-reject-arg expr "Expected a polynomial"))
(math-poly-degree expr))))
(defun math-poly-degree (expr)
(cond ((Math-primp expr)
(if (eq (car-safe expr) 'var) 1 0))
((eq (car expr) 'neg)
(math-poly-degree (nth 1 expr)))
((eq (car expr) '*)
(+ (math-poly-degree (nth 1 expr))
(math-poly-degree (nth 2 expr))))
((eq (car expr) '/)
(- (math-poly-degree (nth 1 expr))
(math-poly-degree (nth 2 expr))))
((and (eq (car expr) '^) (natnump (nth 2 expr)))
(* (math-poly-degree (nth 1 expr)) (nth 2 expr)))
((memq (car expr) '(+ -))
(max (math-poly-degree (nth 1 expr))
(math-poly-degree (nth 2 expr))))
(t 1)))
(defun calcFunc-plead (expr var)
(cond ((eq (car-safe expr) '*)
(math-mul (calcFunc-plead (nth 1 expr) var)
(calcFunc-plead (nth 2 expr) var)))
((eq (car-safe expr) '/)
(math-div (calcFunc-plead (nth 1 expr) var)
(calcFunc-plead (nth 2 expr) var)))
((and (eq (car-safe expr) '^) (math-natnump (nth 2 expr)))
(math-pow (calcFunc-plead (nth 1 expr) var) (nth 2 expr)))
((Math-primp expr)
(if (equal expr var)
1
expr))
(t
(let ((p (math-is-polynomial expr var)))
(if (cdr p)
(nth (1- (length p)) p)
1)))))
;;; Polynomial quotient, remainder, and GCD.
;;; Originally by Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).
;;; Modifications and simplifications by daveg.
(defvar math-poly-modulus 1)
;;; Return gcd of two polynomials
(defun calcFunc-pgcd (pn pd)
(if (math-any-floats pn)
(math-reject-arg pn "Coefficients must be rational"))
(if (math-any-floats pd)
(math-reject-arg pd "Coefficients must be rational"))
(let ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd)))
(math-poly-gcd pn pd)))
;;; Return only quotient to top of stack (nil if zero)
;; calc-poly-div-remainder is a local variable for
;; calc-poly-div (in calc-alg.el), but is used by
;; calcFunc-pdiv, which is called by calc-poly-div.
(defvar calc-poly-div-remainder)
(defun calcFunc-pdiv (pn pd &optional base)
(let* ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd))
(res (math-poly-div pn pd base)))
(setq calc-poly-div-remainder (cdr res))
(car res)))
;;; Return only remainder to top of stack
(defun calcFunc-prem (pn pd &optional base)
(let ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd)))
(cdr (math-poly-div pn pd base))))
(defun calcFunc-pdivrem (pn pd &optional base)
(let* ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd))
(res (math-poly-div pn pd base)))
(list 'vec (car res) (cdr res))))
(defun calcFunc-pdivide (pn pd &optional base)
(let* ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd))
(res (math-poly-div pn pd base)))
(math-add (car res) (math-div (cdr res) pd))))
;;; Multiply two terms, expanding out products of sums.
(defun math-mul-thru (lhs rhs)
(if (memq (car-safe lhs) '(+ -))
(list (car lhs)
(math-mul-thru (nth 1 lhs) rhs)
(math-mul-thru (nth 2 lhs) rhs))
(if (memq (car-safe rhs) '(+ -))
(list (car rhs)
(math-mul-thru lhs (nth 1 rhs))
(math-mul-thru lhs (nth 2 rhs)))
(math-mul lhs rhs))))
(defun math-div-thru (num den)
(if (memq (car-safe num) '(+ -))
(list (car num)
(math-div-thru (nth 1 num) den)
(math-div-thru (nth 2 num) den))
(math-div num den)))
;;; Sort the terms of a sum into canonical order.
(defun math-sort-terms (expr)
(if (memq (car-safe expr) '(+ -))
(math-list-to-sum
(sort (math-sum-to-list expr)
(function (lambda (a b) (math-beforep (car a) (car b))))))
expr))
(defun math-list-to-sum (lst)
(if (cdr lst)
(list (if (cdr (car lst)) '- '+)
(math-list-to-sum (cdr lst))
(car (car lst)))
(if (cdr (car lst))
(math-neg (car (car lst)))
(car (car lst)))))
(defun math-sum-to-list (tree &optional neg)
(cond ((eq (car-safe tree) '+)
(nconc (math-sum-to-list (nth 1 tree) neg)
(math-sum-to-list (nth 2 tree) neg)))
((eq (car-safe tree) '-)
(nconc (math-sum-to-list (nth 1 tree) neg)
(math-sum-to-list (nth 2 tree) (not neg))))
(t (list (cons tree neg)))))
;;; Check if the polynomial coefficients are modulo forms.
(defun math-poly-modulus (expr &optional expr2)
(or (math-poly-modulus-rec expr)
(and expr2 (math-poly-modulus-rec expr2))
1))
(defun math-poly-modulus-rec (expr)
(if (and (eq (car-safe expr) 'mod) (Math-natnump (nth 2 expr)))
(list 'mod 1 (nth 2 expr))
(and (memq (car-safe expr) '(+ - * /))
(or (math-poly-modulus-rec (nth 1 expr))
(math-poly-modulus-rec (nth 2 expr))))))
;;; Divide two polynomials. Return (quotient . remainder).
(defvar math-poly-div-base nil)
(defun math-poly-div (u v &optional math-poly-div-base)
(if math-poly-div-base
(math-do-poly-div u v)
(math-do-poly-div (calcFunc-expand u) (calcFunc-expand v))))
(defun math-poly-div-exact (u v &optional base)
(let ((res (math-poly-div u v base)))
(if (eq (cdr res) 0)
(car res)
(math-reject-arg (list 'vec u v) "Argument is not a polynomial"))))
(defun math-do-poly-div (u v)
(cond ((math-constp u)
(if (math-constp v)
(cons (math-div u v) 0)
(cons 0 u)))
((math-constp v)
(cons (if (eq v 1)
u
(if (memq (car-safe u) '(+ -))
(math-add-or-sub (math-poly-div-exact (nth 1 u) v)
(math-poly-div-exact (nth 2 u) v)
nil (eq (car u) '-))
(math-div u v)))
0))
((Math-equal u v)
(cons math-poly-modulus 0))
((and (math-atomic-factorp u) (math-atomic-factorp v))
(cons (math-simplify (math-div u v)) 0))
(t
(let ((base (or math-poly-div-base
(math-poly-div-base u v)))
vp up res)
(if (or (null base)
(null (setq vp (math-is-polynomial v base nil 'gen))))
(cons 0 u)
(setq up (math-is-polynomial u base nil 'gen)
res (math-poly-div-coefs up vp))
(cons (math-build-polynomial-expr (car res) base)
(math-build-polynomial-expr (cdr res) base)))))))
(defun math-poly-div-rec (u v)
(cond ((math-constp u)
(math-div u v))
((math-constp v)
(if (eq v 1)
u
(if (memq (car-safe u) '(+ -))
(math-add-or-sub (math-poly-div-rec (nth 1 u) v)
(math-poly-div-rec (nth 2 u) v)
nil (eq (car u) '-))
(math-div u v))))
((Math-equal u v) math-poly-modulus)
((and (math-atomic-factorp u) (math-atomic-factorp v))
(math-simplify (math-div u v)))
(math-poly-div-base
(math-div u v))
(t
(let ((base (math-poly-div-base u v))
vp up res)
(if (or (null base)
(null (setq vp (math-is-polynomial v base nil 'gen))))
(math-div u v)
(setq up (math-is-polynomial u base nil 'gen)
res (math-poly-div-coefs up vp))
(math-add (math-build-polynomial-expr (car res) base)
(math-div (math-build-polynomial-expr (cdr res) base)
v)))))))
;;; Divide two polynomials in coefficient-list form. Return (quot . rem).
(defun math-poly-div-coefs (u v)
(cond ((null v) (math-reject-arg nil "Division by zero"))
((< (length u) (length v)) (cons nil u))
((cdr u)
(let ((q nil)
(urev (reverse u))
(vrev (reverse v)))
(while
(let ((qk (math-poly-div-rec (math-simplify (car urev))
(car vrev)))
(up urev)
(vp vrev))
(if (or q (not (math-zerop qk)))
(setq q (cons qk q)))
(while (setq up (cdr up) vp (cdr vp))
(setcar up (math-sub (car up) (math-mul-thru qk (car vp)))))
(setq urev (cdr urev))
up))
(while (and urev (Math-zerop (car urev)))
(setq urev (cdr urev)))
(cons q (nreverse (mapcar 'math-simplify urev)))))
(t
(cons (list (math-poly-div-rec (car u) (car v)))
nil))))
;;; Perform a pseudo-division of polynomials. (See Knuth section 4.6.1.)
;;; This returns only the remainder from the pseudo-division.
(defun math-poly-pseudo-div (u v)
(cond ((null v) nil)
((< (length u) (length v)) u)
((or (cdr u) (cdr v))
(let ((urev (reverse u))
(vrev (reverse v))
up)
(while
(let ((vp vrev))
(setq up urev)
(while (setq up (cdr up) vp (cdr vp))
(setcar up (math-sub (math-mul-thru (car vrev) (car up))
(math-mul-thru (car urev) (car vp)))))
(setq urev (cdr urev))
up)
(while up
(setcar up (math-mul-thru (car vrev) (car up)))
(setq up (cdr up))))
(while (and urev (Math-zerop (car urev)))
(setq urev (cdr urev)))
(nreverse (mapcar 'math-simplify urev))))
(t nil)))
;;; Compute the GCD of two multivariate polynomials.
(defun math-poly-gcd (u v)
(cond ((Math-equal u v) u)
((math-constp u)
(if (Math-zerop u)
v
(calcFunc-gcd u (calcFunc-pcont v))))
((math-constp v)
(if (Math-zerop v)
v
(calcFunc-gcd v (calcFunc-pcont u))))
(t
(let ((base (math-poly-gcd-base u v)))
(if base
(math-simplify
(calcFunc-expand
(math-build-polynomial-expr
(math-poly-gcd-coefs (math-is-polynomial u base nil 'gen)
(math-is-polynomial v base nil 'gen))
base)))
(calcFunc-gcd (calcFunc-pcont u) (calcFunc-pcont u)))))))
(defun math-poly-div-list (lst a)
(if (eq a 1)
lst
(if (eq a -1)
(math-mul-list lst a)
(mapcar (function (lambda (x) (math-poly-div-exact x a))) lst))))
(defun math-mul-list (lst a)
(if (eq a 1)
lst
(if (eq a -1)
(mapcar 'math-neg lst)
(and (not (eq a 0))
(mapcar (function (lambda (x) (math-mul x a))) lst)))))
;;; Run GCD on all elements in a list.
(defun math-poly-gcd-list (lst)
(if (or (memq 1 lst) (memq -1 lst))
(math-poly-gcd-frac-list lst)
(let ((gcd (car lst)))
(while (and (setq lst (cdr lst)) (not (eq gcd 1)))
(or (eq (car lst) 0)
(setq gcd (math-poly-gcd gcd (car lst)))))
(if lst (setq lst (math-poly-gcd-frac-list lst)))
gcd)))
(defun math-poly-gcd-frac-list (lst)
(while (and lst (not (eq (car-safe (car lst)) 'frac)))
(setq lst (cdr lst)))
(if lst
(let ((denom (nth 2 (car lst))))
(while (setq lst (cdr lst))
(if (eq (car-safe (car lst)) 'frac)
(setq denom (calcFunc-lcm denom (nth 2 (car lst))))))
(list 'frac 1 denom))
1))
;;; Compute the GCD of two monovariate polynomial lists.
;;; Knuth section 4.6.1, algorithm C.
(defun math-poly-gcd-coefs (u v)
(let ((d (math-poly-gcd (math-poly-gcd-list u)
(math-poly-gcd-list v)))
(g 1) (h 1) (z 0) hh r delta ghd)
(while (and u v (Math-zerop (car u)) (Math-zerop (car v)))
(setq u (cdr u) v (cdr v) z (1+ z)))
(or (eq d 1)
(setq u (math-poly-div-list u d)
v (math-poly-div-list v d)))
(while (progn
(setq delta (- (length u) (length v)))
(if (< delta 0)
(setq r u u v v r delta (- delta)))
(setq r (math-poly-pseudo-div u v))
(cdr r))
(setq u v
v (math-poly-div-list r (math-mul g (math-pow h delta)))
g (nth (1- (length u)) u)
h (if (<= delta 1)
(math-mul (math-pow g delta) (math-pow h (- 1 delta)))
(math-poly-div-exact (math-pow g delta)
(math-pow h (1- delta))))))
(setq v (if r
(list d)
(math-mul-list (math-poly-div-list v (math-poly-gcd-list v)) d)))
(if (math-guess-if-neg (nth (1- (length v)) v))
(setq v (math-mul-list v -1)))
(while (>= (setq z (1- z)) 0)
(setq v (cons 0 v)))
v))
;;; Return true if is a factor containing no sums or quotients.
(defun math-atomic-factorp (expr)
(cond ((eq (car-safe expr) '*)
(and (math-atomic-factorp (nth 1 expr))
(math-atomic-factorp (nth 2 expr))))
((memq (car-safe expr) '(+ - /))
nil)
((memq (car-safe expr) '(^ neg))
(math-atomic-factorp (nth 1 expr)))
(t t)))
;;; Find a suitable base for dividing a by b.
;;; The base must exist in both expressions.
;;; The degree in the numerator must be higher or equal than the
;;; degree in the denominator.
;;; If the above conditions are not met the quotient is just a remainder.
;;; Return nil if this is the case.
(defun math-poly-div-base (a b)
(let (a-base b-base)
(and (setq a-base (math-total-polynomial-base a))
(setq b-base (math-total-polynomial-base b))
(catch 'return
(while a-base
(let ((maybe (assoc (car (car a-base)) b-base)))
(if maybe
(if (>= (nth 1 (car a-base)) (nth 1 maybe))
(throw 'return (car (car a-base))))))
(setq a-base (cdr a-base)))))))
;;; Same as above but for gcd algorithm.
;;; Here there is no requirement that degree(a) > degree(b).
;;; Take the base that has the highest degree considering both a and b.
;;; ("a^20+b^21+x^3+a+b", "a+b^2+x^5+a^22+b^10") --> (a 22)
(defun math-poly-gcd-base (a b)
(let (a-base b-base)
(and (setq a-base (math-total-polynomial-base a))
(setq b-base (math-total-polynomial-base b))
(catch 'return
(while (and a-base b-base)
(if (> (nth 1 (car a-base)) (nth 1 (car b-base)))
(if (assoc (car (car a-base)) b-base)
(throw 'return (car (car a-base)))
(setq a-base (cdr a-base)))
(if (assoc (car (car b-base)) a-base)
(throw 'return (car (car b-base)))
(setq b-base (cdr b-base)))))))))
;;; Sort a list of polynomial bases.
(defun math-sort-poly-base-list (lst)
(sort lst (function (lambda (a b)
(or (> (nth 1 a) (nth 1 b))
(and (= (nth 1 a) (nth 1 b))
(math-beforep (car a) (car b))))))))
;;; Given an expression find all variables that are polynomial bases.
;;; Return list in the form '( (var1 degree1) (var2 degree2) ... ).
;; The variable math-poly-base-total-base is local to
;; math-total-polynomial-base, but is used by math-polynomial-p1,
;; which is called by math-total-polynomial-base.
(defvar math-poly-base-total-base)
(defun math-total-polynomial-base (expr)
(let ((math-poly-base-total-base nil))
(math-polynomial-base expr 'math-polynomial-p1)
(math-sort-poly-base-list math-poly-base-total-base)))
;; The variable math-poly-base-top-expr is local to math-polynomial-base
;; in calc-alg.el, but is used by math-polynomial-p1 which is called
;; by math-polynomial-base.
(defvar math-poly-base-top-expr)
(defun math-polynomial-p1 (subexpr)
(or (assoc subexpr math-poly-base-total-base)
(memq (car subexpr) '(+ - * / neg))
(and (eq (car subexpr) '^) (natnump (nth 2 subexpr)))
(let* ((math-poly-base-variable subexpr)
(exponent (math-polynomial-p math-poly-base-top-expr subexpr)))
(if exponent
(setq math-poly-base-total-base (cons (list subexpr exponent)
math-poly-base-total-base)))))
nil)
;; The variable math-factored-vars is local to calcFunc-factors and
;; calcFunc-factor, but is used by math-factor-expr and
;; math-factor-expr-part, which are called (directly and indirectly) by
;; calcFunc-factor and calcFunc-factors.
(defvar math-factored-vars)
;; The variable math-fact-expr is local to calcFunc-factors,
;; calcFunc-factor and math-factor-expr, but is used by math-factor-expr-try
;; and math-factor-expr-part, which are called (directly and indirectly) by
;; calcFunc-factor, calcFunc-factors and math-factor-expr.
(defvar math-fact-expr)
;; The variable math-to-list is local to calcFunc-factors and
;; calcFunc-factor, but is used by math-accum-factors, which is
;; called (indirectly) by calcFunc-factors and calcFunc-factor.
(defvar math-to-list)
(defun calcFunc-factors (math-fact-expr &optional var)
(let ((math-factored-vars (if var t nil))
(math-to-list t)
(calc-prefer-frac t))
(or var
(setq var (math-polynomial-base math-fact-expr)))
(let ((res (math-factor-finish
(or (catch 'factor (math-factor-expr-try var))
math-fact-expr))))
(math-simplify (if (math-vectorp res)
res
(list 'vec (list 'vec res 1)))))))
(defun calcFunc-factor (math-fact-expr &optional var)
(let ((math-factored-vars nil)
(math-to-list nil)
(calc-prefer-frac t))
(math-simplify (math-factor-finish
(if var
(let ((math-factored-vars t))
(or (catch 'factor (math-factor-expr-try var)) math-fact-expr))
(math-factor-expr math-fact-expr))))))
(defun math-factor-finish (x)
(if (Math-primp x)
x
(if (eq (car x) 'calcFunc-Fac-Prot)
(math-factor-finish (nth 1 x))
(cons (car x) (mapcar 'math-factor-finish (cdr x))))))
(defun math-factor-protect (x)
(if (memq (car-safe x) '(+ -))
(list 'calcFunc-Fac-Prot x)
x))
(defun math-factor-expr (math-fact-expr)
(cond ((eq math-factored-vars t) math-fact-expr)
((or (memq (car-safe math-fact-expr) '(* / ^ neg))
(assq (car-safe math-fact-expr) calc-tweak-eqn-table))
(cons (car math-fact-expr) (mapcar 'math-factor-expr (cdr math-fact-expr))))
((memq (car-safe math-fact-expr) '(+ -))
(let* ((math-factored-vars math-factored-vars)
(y (catch 'factor (math-factor-expr-part math-fact-expr))))
(if y
(math-factor-expr y)
math-fact-expr)))
(t math-fact-expr)))
(defun math-factor-expr-part (x) ; uses "expr"
(if (memq (car-safe x) '(+ - * / ^ neg))
(while (setq x (cdr x))
(math-factor-expr-part (car x)))
(and (not (Math-objvecp x))
(not (assoc x math-factored-vars))
(> (math-factor-contains math-fact-expr x) 1)
(setq math-factored-vars (cons (list x) math-factored-vars))
(math-factor-expr-try x))))
;; The variable math-fet-x is local to math-factor-expr-try, but is
;; used by math-factor-poly-coefs, which is called by math-factor-expr-try.
(defvar math-fet-x)
(defun math-factor-expr-try (math-fet-x)
(if (eq (car-safe math-fact-expr) '*)
(let ((res1 (catch 'factor (let ((math-fact-expr (nth 1 math-fact-expr)))
(math-factor-expr-try math-fet-x))))
(res2 (catch 'factor (let ((math-fact-expr (nth 2 math-fact-expr)))
(math-factor-expr-try math-fet-x)))))
(and (or res1 res2)
(throw 'factor (math-accum-factors (or res1 (nth 1 math-fact-expr)) 1
(or res2 (nth 2 math-fact-expr))))))
(let* ((p (math-is-polynomial math-fact-expr math-fet-x 30 'gen))
(math-poly-modulus (math-poly-modulus math-fact-expr))
res)
(and (cdr p)
(setq res (math-factor-poly-coefs p))
(throw 'factor res)))))
(defun math-accum-factors (fac pow facs)
(if math-to-list
(if (math-vectorp fac)
(progn
(while (setq fac (cdr fac))
(setq facs (math-accum-factors (nth 1 (car fac))
(* pow (nth 2 (car fac)))
facs)))
facs)
(if (and (eq (car-safe fac) '^) (natnump (nth 2 fac)))
(setq pow (* pow (nth 2 fac))
fac (nth 1 fac)))
(if (eq fac 1)
facs
(or (math-vectorp facs)
(setq facs (if (eq facs 1) '(vec)
(list 'vec (list 'vec facs 1)))))
(let ((found facs))
(while (and (setq found (cdr found))
(not (equal fac (nth 1 (car found))))))
(if found
(progn
(setcar (cdr (cdr (car found))) (+ pow (nth 2 (car found))))
facs)
;; Put constant term first.
(if (and (cdr facs) (Math-ratp (nth 1 (nth 1 facs))))
(cons 'vec (cons (nth 1 facs) (cons (list 'vec fac pow)
(cdr (cdr facs)))))
(cons 'vec (cons (list 'vec fac pow) (cdr facs))))))))
(math-mul (math-pow fac pow) facs)))
(defun math-factor-poly-coefs (p &optional square-free) ; uses "x"
(let (t1 t2 temp)
(cond ((not (cdr p))
(or (car p) 0))
;; Strip off multiples of math-fet-x.
((Math-zerop (car p))
(let ((z 0))
(while (and p (Math-zerop (car p)))
(setq z (1+ z) p (cdr p)))
(if (cdr p)
(setq p (math-factor-poly-coefs p square-free))
(setq p (math-sort-terms (math-factor-expr (car p)))))
(math-accum-factors math-fet-x z (math-factor-protect p))))
;; Factor out content.
((and (not square-free)
(not (eq 1 (setq t1 (math-mul (math-poly-gcd-list p)
(if (math-guess-if-neg
(nth (1- (length p)) p))
-1 1))))))
(math-accum-factors t1 1 (math-factor-poly-coefs
(math-poly-div-list p t1) 'cont)))
;; Check if linear in math-fet-x.
((not (cdr (cdr p)))
(math-sort-terms
(math-add (math-factor-protect
(math-sort-terms
(math-factor-expr (car p))))
(math-mul math-fet-x (math-factor-protect
(math-sort-terms
(math-factor-expr (nth 1 p))))))))
;; If symbolic coefficients, use FactorRules.
((let ((pp p))
(while (and pp (or (Math-ratp (car pp))
(and (eq (car (car pp)) 'mod)
(Math-integerp (nth 1 (car pp)))
(Math-integerp (nth 2 (car pp))))))
(setq pp (cdr pp)))
pp)
(let ((res (math-rewrite
(list 'calcFunc-thecoefs math-fet-x (cons 'vec p))
'(var FactorRules var-FactorRules))))
(or (and (eq (car-safe res) 'calcFunc-thefactors)
(= (length res) 3)
(math-vectorp (nth 2 res))
(let ((facs 1)
(vec (nth 2 res)))
(while (setq vec (cdr vec))
(setq facs (math-accum-factors (car vec) 1 facs)))
facs))
(math-build-polynomial-expr p math-fet-x))))
;; Check if rational coefficients (i.e., not modulo a prime).
((eq math-poly-modulus 1)
;; Check if there are any squared terms, or a content not = 1.
(if (or (eq square-free t)
(equal (setq t1 (math-poly-gcd-coefs
p (setq t2 (math-poly-deriv-coefs p))))
'(1)))
;; We now have a square-free polynomial with integer coefs.
;; For now, we use a kludgey method that finds linear and
;; quadratic terms using floating-point root-finding.
(if (setq t1 (let ((calc-symbolic-mode nil))
(math-poly-all-roots nil p t)))
(let ((roots (car t1))
(csign (if (math-negp (nth (1- (length p)) p)) -1 1))
(expr 1)
(unfac (nth 1 t1))
(scale (nth 2 t1)))
(while roots
(let ((coef0 (car (car roots)))
(coef1 (cdr (car roots))))
(setq expr (math-accum-factors
(if coef1
(let ((den (math-lcm-denoms
coef0 coef1)))
(setq scale (math-div scale den))
(math-add
(math-add
(math-mul den (math-pow math-fet-x 2))
(math-mul (math-mul coef1 den)
math-fet-x))
(math-mul coef0 den)))
(let ((den (math-lcm-denoms coef0)))
(setq scale (math-div scale den))
(math-add (math-mul den math-fet-x)
(math-mul coef0 den))))
1 expr)
roots (cdr roots))))
(setq expr (math-accum-factors
expr 1
(math-mul csign
(math-build-polynomial-expr
(math-mul-list (nth 1 t1) scale)
math-fet-x)))))
(math-build-polynomial-expr p math-fet-x)) ; can't factor it.
;; Separate out the squared terms (Knuth exercise 4.6.2-34).
;; This step also divides out the content of the polynomial.
(let* ((cabs (math-poly-gcd-list p))
(csign (if (math-negp (nth (1- (length p)) p)) -1 1))
(t1s (math-mul-list t1 csign))
(uu nil)
(v (car (math-poly-div-coefs p t1s)))
(w (car (math-poly-div-coefs t2 t1s))))
(while
(not (math-poly-zerop
(setq t2 (math-poly-simplify
(math-poly-mix
w 1 (math-poly-deriv-coefs v) -1)))))
(setq t1 (math-poly-gcd-coefs v t2)
uu (cons t1 uu)
v (car (math-poly-div-coefs v t1))
w (car (math-poly-div-coefs t2 t1))))
(setq t1 (length uu)
t2 (math-accum-factors (math-factor-poly-coefs v t)
(1+ t1) 1))
(while uu
(setq t2 (math-accum-factors (math-factor-poly-coefs
(car uu) t)
t1 t2)
t1 (1- t1)
uu (cdr uu)))
(math-accum-factors (math-mul cabs csign) 1 t2))))
;; Factoring modulo a prime.
((and (= (length (setq temp (math-poly-gcd-coefs
p (math-poly-deriv-coefs p))))
(length p)))
(setq p (car temp))
(while (cdr temp)
(setq temp (nthcdr (nth 2 math-poly-modulus) temp)
p (cons (car temp) p)))
(and (setq temp (math-factor-poly-coefs p))
(math-pow temp (nth 2 math-poly-modulus))))
(t
(math-reject-arg nil "*Modulo factorization not yet implemented")))))
(defun math-poly-deriv-coefs (p)
(let ((n 1)
(dp nil))
(while (setq p (cdr p))
(setq dp (cons (math-mul (car p) n) dp)
n (1+ n)))
(nreverse dp)))
(defun math-factor-contains (x a)
(if (equal x a)
1
(if (memq (car-safe x) '(+ - * / neg))
(let ((sum 0))
(while (setq x (cdr x))
(setq sum (+ sum (math-factor-contains (car x) a))))
sum)
(if (and (eq (car-safe x) '^)
(natnump (nth 2 x)))
(* (math-factor-contains (nth 1 x) a) (nth 2 x))
0))))
;;; Merge all quotients and expand/simplify the numerator
(defun calcFunc-nrat (expr)
(if (math-any-floats expr)
(setq expr (calcFunc-pfrac expr)))
(if (or (math-vectorp expr)
(assq (car-safe expr) calc-tweak-eqn-table))
(cons (car expr) (mapcar 'calcFunc-nrat (cdr expr)))
(let* ((calc-prefer-frac t)
(res (math-to-ratpoly expr))
(num (math-simplify (math-sort-terms (calcFunc-expand (car res)))))
(den (math-simplify (math-sort-terms (calcFunc-expand (cdr res)))))
(g (math-poly-gcd num den)))
(or (eq g 1)
(let ((num2 (math-poly-div num g))
(den2 (math-poly-div den g)))
(and (eq (cdr num2) 0) (eq (cdr den2) 0)
(setq num (car num2) den (car den2)))))
(math-simplify (math-div num den)))))
;;; Returns expressions (num . denom).
(defun math-to-ratpoly (expr)
(let ((res (math-to-ratpoly-rec expr)))
(cons (math-simplify (car res)) (math-simplify (cdr res)))))
(defun math-to-ratpoly-rec (expr)
(cond ((Math-primp expr)
(cons expr 1))
((memq (car expr) '(+ -))
(let ((r1 (math-to-ratpoly-rec (nth 1 expr)))
(r2 (math-to-ratpoly-rec (nth 2 expr))))
(if (equal (cdr r1) (cdr r2))
(cons (list (car expr) (car r1) (car r2)) (cdr r1))
(if (eq (cdr r1) 1)
(cons (list (car expr)
(math-mul (car r1) (cdr r2))
(car r2))
(cdr r2))
(if (eq (cdr r2) 1)
(cons (list (car expr)
(car r1)
(math-mul (car r2) (cdr r1)))
(cdr r1))
(let ((g (math-poly-gcd (cdr r1) (cdr r2))))
(let ((d1 (and (not (eq g 1)) (math-poly-div (cdr r1) g)))
(d2 (and (not (eq g 1)) (math-poly-div
(math-mul (car r1) (cdr r2))
g))))
(if (and (eq (cdr d1) 0) (eq (cdr d2) 0))
(cons (list (car expr) (car d2)
(math-mul (car r2) (car d1)))
(math-mul (car d1) (cdr r2)))
(cons (list (car expr)
(math-mul (car r1) (cdr r2))
(math-mul (car r2) (cdr r1)))
(math-mul (cdr r1) (cdr r2)))))))))))
((eq (car expr) '*)
(let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
(r2 (math-to-ratpoly-rec (nth 2 expr)))
(g (math-mul (math-poly-gcd (car r1) (cdr r2))
(math-poly-gcd (cdr r1) (car r2)))))
(if (eq g 1)
(cons (math-mul (car r1) (car r2))
(math-mul (cdr r1) (cdr r2)))
(cons (math-poly-div-exact (math-mul (car r1) (car r2)) g)
(math-poly-div-exact (math-mul (cdr r1) (cdr r2)) g)))))
((eq (car expr) '/)
(let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
(r2 (math-to-ratpoly-rec (nth 2 expr))))
(if (and (eq (cdr r1) 1) (eq (cdr r2) 1))
(cons (car r1) (car r2))
(let ((g (math-mul (math-poly-gcd (car r1) (car r2))
(math-poly-gcd (cdr r1) (cdr r2)))))
(if (eq g 1)
(cons (math-mul (car r1) (cdr r2))
(math-mul (cdr r1) (car r2)))
(cons (math-poly-div-exact (math-mul (car r1) (cdr r2)) g)
(math-poly-div-exact (math-mul (cdr r1) (car r2))
g)))))))
((and (eq (car expr) '^) (integerp (nth 2 expr)))
(let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
(if (> (nth 2 expr) 0)
(cons (math-pow (car r1) (nth 2 expr))
(math-pow (cdr r1) (nth 2 expr)))
(cons (math-pow (cdr r1) (- (nth 2 expr)))
(math-pow (car r1) (- (nth 2 expr)))))))
((eq (car expr) 'neg)
(let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
(cons (math-neg (car r1)) (cdr r1))))
(t (cons expr 1))))
(defun math-ratpoly-p (expr &optional var)
(cond ((equal expr var) 1)
((Math-primp expr) 0)
((memq (car expr) '(+ -))
(let ((p1 (math-ratpoly-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
(max p1 p2))))
((eq (car expr) '*)
(let ((p1 (math-ratpoly-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
(+ p1 p2))))
((eq (car expr) 'neg)
(math-ratpoly-p (nth 1 expr) var))
((eq (car expr) '/)
(let ((p1 (math-ratpoly-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
(- p1 p2))))
((and (eq (car expr) '^)
(integerp (nth 2 expr)))
(let ((p1 (math-ratpoly-p (nth 1 expr) var)))
(and p1 (* p1 (nth 2 expr)))))
((not var) 1)
((math-poly-depends expr var) nil)
(t 0)))
(defun calcFunc-apart (expr &optional var)
(cond ((Math-primp expr) expr)
((eq (car expr) '+)
(math-add (calcFunc-apart (nth 1 expr) var)
(calcFunc-apart (nth 2 expr) var)))
((eq (car expr) '-)
(math-sub (calcFunc-apart (nth 1 expr) var)
(calcFunc-apart (nth 2 expr) var)))
((not (math-ratpoly-p expr var))
(math-reject-arg expr "Expected a rational function"))
(t
(let* ((calc-prefer-frac t)
(rat (math-to-ratpoly expr))
(num (car rat))
(den (cdr rat))
(qr (math-poly-div num den))
(q (car qr))
(r (cdr qr)))
(or var
(setq var (math-polynomial-base den)))
(math-add q (or (and var
(math-expr-contains den var)
(math-partial-fractions r den var))
(math-div r den)))))))
(defun math-padded-polynomial (expr var deg)
(let ((p (math-is-polynomial expr var deg)))
(append p (make-list (- deg (length p)) 0))))
(defun math-partial-fractions (r den var)
(let* ((fden (calcFunc-factors den var))
(tdeg (math-polynomial-p den var))
(fp fden)
(dlist nil)
(eqns 0)
(lz nil)
(tz (make-list (1- tdeg) 0))
(calc-matrix-mode 'scalar))
(and (not (and (= (length fden) 2) (eq (nth 2 (nth 1 fden)) 1)))
(progn
(while (setq fp (cdr fp))
(let ((rpt (nth 2 (car fp)))
(deg (math-polynomial-p (nth 1 (car fp)) var))
dnum dvar deg2)
(while (> rpt 0)
(setq deg2 deg
dnum 0)
(while (> deg2 0)
(setq dvar (append '(vec) lz '(1) tz)
lz (cons 0 lz)
tz (cdr tz)
deg2 (1- deg2)
dnum (math-add dnum (math-mul dvar
(math-pow var deg2)))
dlist (cons (and (= deg2 (1- deg))
(math-pow (nth 1 (car fp)) rpt))
dlist)))
(let ((fpp fden)
(mult 1))
(while (setq fpp (cdr fpp))
(or (eq fpp fp)
(setq mult (math-mul mult
(math-pow (nth 1 (car fpp))
(nth 2 (car fpp)))))))
(setq dnum (math-mul dnum mult)))
(setq eqns (math-add eqns (math-mul dnum
(math-pow
(nth 1 (car fp))
(- (nth 2 (car fp))
rpt))))
rpt (1- rpt)))))
(setq eqns (math-div (cons 'vec (math-padded-polynomial r var tdeg))
(math-transpose
(cons 'vec
(mapcar
(function
(lambda (x)
(cons 'vec (math-padded-polynomial
x var tdeg))))
(cdr eqns))))))
(and (math-vectorp eqns)
(let ((res 0)
(num nil))
(setq eqns (nreverse eqns))
(while eqns
(setq num (cons (car eqns) num)
eqns (cdr eqns))
(if (car dlist)
(setq num (math-build-polynomial-expr
(nreverse num) var)
res (math-add res (math-div num (car dlist)))
num nil))
(setq dlist (cdr dlist)))
(math-normalize res)))))))
(defun math-expand-term (expr)
(cond ((and (eq (car-safe expr) '*)
(memq (car-safe (nth 1 expr)) '(+ -)))
(math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 2 expr))
(list '* (nth 2 (nth 1 expr)) (nth 2 expr))
nil (eq (car (nth 1 expr)) '-)))
((and (eq (car-safe expr) '*)
(memq (car-safe (nth 2 expr)) '(+ -)))
(math-add-or-sub (list '* (nth 1 expr) (nth 1 (nth 2 expr)))
(list '* (nth 1 expr) (nth 2 (nth 2 expr)))
nil (eq (car (nth 2 expr)) '-)))
((and (eq (car-safe expr) '/)
(memq (car-safe (nth 1 expr)) '(+ -)))
(math-add-or-sub (list '/ (nth 1 (nth 1 expr)) (nth 2 expr))
(list '/ (nth 2 (nth 1 expr)) (nth 2 expr))
nil (eq (car (nth 1 expr)) '-)))
((and (eq (car-safe expr) '^)
(memq (car-safe (nth 1 expr)) '(+ -))
(integerp (nth 2 expr))
(if (and
(or (math-known-matrixp (nth 1 (nth 1 expr)))
(math-known-matrixp (nth 2 (nth 1 expr)))
(and
calc-matrix-mode
(not (eq calc-matrix-mode 'scalar))
(not (and (math-known-scalarp (nth 1 (nth 1 expr)))
(math-known-scalarp (nth 2 (nth 1 expr)))))))
(> (nth 2 expr) 1))
(if (= (nth 2 expr) 2)
(math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 1 expr))
(list '* (nth 2 (nth 1 expr)) (nth 1 expr))
nil (eq (car (nth 1 expr)) '-))
(math-add-or-sub (list '* (nth 1 (nth 1 expr))
(list '^ (nth 1 expr)
(1- (nth 2 expr))))
(list '* (nth 2 (nth 1 expr))
(list '^ (nth 1 expr)
(1- (nth 2 expr))))
nil (eq (car (nth 1 expr)) '-)))
(if (> (nth 2 expr) 0)
(or (and (or (> math-mt-many 500000) (< math-mt-many -500000))
(math-expand-power (nth 1 expr) (nth 2 expr)
nil t))
(list '*
(nth 1 expr)
(list '^ (nth 1 expr) (1- (nth 2 expr)))))
(if (< (nth 2 expr) 0)
(list '/ 1 (list '^ (nth 1 expr) (- (nth 2 expr)))))))))
(t expr)))
(defun calcFunc-expand (expr &optional many)
(math-normalize (math-map-tree 'math-expand-term expr many)))
(defun math-expand-power (x n &optional var else-nil)
(or (and (natnump n)
(memq (car-safe x) '(+ -))
(let ((terms nil)
(cterms nil))
(while (memq (car-safe x) '(+ -))
(setq terms (cons (if (eq (car x) '-)
(math-neg (nth 2 x))
(nth 2 x))
terms)
x (nth 1 x)))
(setq terms (cons x terms))
(if var
(let ((p terms))
(while p
(or (math-expr-contains (car p) var)
(setq terms (delq (car p) terms)
cterms (cons (car p) cterms)))
(setq p (cdr p)))
(if cterms
(setq terms (cons (apply 'calcFunc-add cterms)
terms)))))
(if (= (length terms) 2)
(let ((i 0)
(accum 0))
(while (<= i n)
(setq accum (list '+ accum
(list '* (calcFunc-choose n i)
(list '*
(list '^ (nth 1 terms) i)
(list '^ (car terms)
(- n i)))))
i (1+ i)))
accum)
(if (= n 2)
(let ((accum 0)
(p1 terms)
p2)
(while p1
(setq accum (list '+ accum
(list '^ (car p1) 2))
p2 p1)
(while (setq p2 (cdr p2))
(setq accum (list '+ accum
(list '* 2 (list '*
(car p1)
(car p2))))))
(setq p1 (cdr p1)))
accum)
(if (= n 3)
(let ((accum 0)
(p1 terms)
p2 p3)
(while p1
(setq accum (list '+ accum (list '^ (car p1) 3))
p2 p1)
(while (setq p2 (cdr p2))
(setq accum (list '+
(list '+
accum
(list '* 3
(list
'*
(list '^ (car p1) 2)
(car p2))))
(list '* 3
(list
'* (car p1)
(list '^ (car p2) 2))))
p3 p2)
(while (setq p3 (cdr p3))
(setq accum (list '+ accum
(list '* 6
(list '*
(car p1)
(list
'* (car p2)
(car p3))))))))
(setq p1 (cdr p1)))
accum))))))
(and (not else-nil)
(list '^ x n))))
(defun calcFunc-expandpow (x n)
(math-normalize (math-expand-power x n)))
(provide 'calc-poly)
;;; arch-tag: d2566c51-2ccc-45f1-8c50-f3462c2953ff
;;; calc-poly.el ends here
|