1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
|
;;; semantic/wisent/comp.el --- GNU Bison for Emacs - Grammar compiler
;; Copyright (C) 1984, 1986, 1989, 1992, 1995, 2000-2007, 2009-2015 Free
;; Software Foundation, Inc.
;; Author: David Ponce <david@dponce.com>
;; Maintainer: David Ponce <david@dponce.com>
;; Created: 30 January 2002
;; Keywords: syntax
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;;
;; Grammar compiler that produces Wisent's LALR automatons.
;;
;; Wisent (the European Bison ;-) is an Elisp implementation of the
;; GNU Compiler Compiler Bison. The Elisp code is a port of the C
;; code of GNU Bison 1.28 & 1.31.
;;
;; For more details on the basic concepts for understanding Wisent,
;; read the Bison manual ;)
;;
;; For more details on Wisent itself read the Wisent manual.
;;; History:
;;
;;; Code:
(require 'semantic/wisent)
(eval-when-compile (require 'cl))
;;;; -------------------
;;;; Misc. useful things
;;;; -------------------
;; As much as possible I would like to keep the name of global
;; variables used in Bison without polluting too much the Elisp global
;; name space. Elisp dynamic binding allows that ;-)
;; Here are simple macros to easily define and use set of variables
;; bound locally, without all these "reference to free variable"
;; compiler warnings!
(defmacro wisent-context-name (name)
"Return the context name from NAME."
`(if (and ,name (symbolp ,name))
(intern (format "wisent-context-%s" ,name))
(error "Invalid context name: %S" ,name)))
(defmacro wisent-context-bindings (name)
"Return the variables in context NAME."
`(symbol-value (wisent-context-name ,name)))
(defmacro wisent-defcontext (name &rest vars)
"Define a context NAME that will bind variables VARS."
(declare (indent 1))
(let* ((context (wisent-context-name name))
(declarations (mapcar #'(lambda (v) (list 'defvar v)) vars)))
`(progn
,@declarations
(eval-when-compile
(defvar ,context ',vars)))))
(defmacro wisent-with-context (name &rest body)
"Bind variables in context NAME then eval BODY."
(declare (indent 1))
(let ((bindings (wisent-context-bindings name)))
`(progn
,@(mapcar (lambda (binding) `(defvar ,(or (car-safe binding) binding)))
bindings)
(let* ,bindings
,@body))))
;; A naive implementation of data structures! But it suffice here ;-)
(defmacro wisent-struct (name &rest fields)
"Define a simple data structure called NAME.
Which contains data stored in FIELDS. FIELDS is a list of symbols
which are field names or pairs (FIELD INITIAL-VALUE) where
INITIAL-VALUE is a constant used as the initial value of FIELD when
the data structure is created. INITIAL-VALUE defaults to nil.
This defines a `make-NAME' constructor, get-able `NAME-FIELD' and
set-able `set-NAME-FIELD' accessors."
(let ((size (length fields))
(i 0)
accors field sufx fun ivals)
(while (< i size)
(setq field (car fields)
fields (cdr fields))
(if (consp field)
(setq ivals (cons (cadr field) ivals)
field (car field))
(setq ivals (cons nil ivals)))
(setq sufx (format "%s-%s" name field)
fun (intern (format "%s" sufx))
accors (cons `(defmacro ,fun (s)
(list 'aref s ,i))
accors)
fun (intern (format "set-%s" sufx))
accors (cons `(defmacro ,fun (s v)
(list 'aset s ,i v))
accors)
i (1+ i)))
`(progn
(defmacro ,(intern (format "make-%s" name)) ()
(cons 'vector ',(nreverse ivals)))
,@accors)))
(put 'wisent-struct 'lisp-indent-function 1)
;; Other utilities
(defsubst wisent-pad-string (s n &optional left)
"Fill string S with spaces.
Return a new string of at least N characters. Insert spaces on right.
If optional LEFT is non-nil insert spaces on left."
(let ((i (length s)))
(if (< i n)
(if left
(concat (make-string (- n i) ?\ ) s)
(concat s (make-string (- n i) ?\ )))
s)))
;;;; ------------------------
;;;; Environment dependencies
;;;; ------------------------
(defconst wisent-BITS-PER-WORD
(let ((i 1)
(do-shift (if (boundp 'most-positive-fixnum)
(lambda (i) (lsh most-positive-fixnum (- i)))
(lambda (i) (lsh 1 i)))))
(while (not (zerop (funcall do-shift i)))
(setq i (1+ i)))
i))
(defsubst wisent-WORDSIZE (n)
"(N + BITS-PER-WORD - 1) / BITS-PER-WORD."
(/ (1- (+ n wisent-BITS-PER-WORD)) wisent-BITS-PER-WORD))
(defsubst wisent-SETBIT (x i)
"X[I/BITS-PER-WORD] |= 1 << (I % BITS-PER-WORD)."
(let ((k (/ i wisent-BITS-PER-WORD)))
(aset x k (logior (aref x k)
(lsh 1 (% i wisent-BITS-PER-WORD))))))
(defsubst wisent-RESETBIT (x i)
"X[I/BITS-PER-WORD] &= ~(1 << (I % BITS-PER-WORD))."
(let ((k (/ i wisent-BITS-PER-WORD)))
(aset x k (logand (aref x k)
(lognot (lsh 1 (% i wisent-BITS-PER-WORD)))))))
(defsubst wisent-BITISSET (x i)
"(X[I/BITS-PER-WORD] & (1 << (I % BITS-PER-WORD))) != 0."
(not (zerop (logand (aref x (/ i wisent-BITS-PER-WORD))
(lsh 1 (% i wisent-BITS-PER-WORD))))))
(defsubst wisent-noninteractive ()
"Return non-nil if running without interactive terminal."
(if (featurep 'xemacs)
(noninteractive)
noninteractive))
(defvar wisent-debug-flag nil
"Non-nil means enable some debug stuff.")
;;;; --------------
;;;; Logging/Output
;;;; --------------
(defconst wisent-log-buffer-name "*wisent-log*"
"Name of the log buffer.")
(defvar wisent-new-log-flag nil
"Non-nil means to start a new report.")
(defvar wisent-verbose-flag nil
"*Non-nil means to report verbose information on generated parser.")
(defun wisent-toggle-verbose-flag ()
"Toggle whether to report verbose information on generated parser."
(interactive)
(setq wisent-verbose-flag (not wisent-verbose-flag))
(when (called-interactively-p 'interactive)
(message "Verbose report %sabled"
(if wisent-verbose-flag "en" "dis"))))
(defmacro wisent-log-buffer ()
"Return the log buffer.
Its name is defined in constant `wisent-log-buffer-name'."
`(get-buffer-create wisent-log-buffer-name))
(defmacro wisent-clear-log ()
"Delete the entire contents of the log buffer."
`(with-current-buffer (wisent-log-buffer)
(erase-buffer)))
(defvar byte-compile-current-file)
(defun wisent-source ()
"Return the current source file name or nil."
(let ((source (or (and (boundp 'byte-compile-current-file)
byte-compile-current-file)
load-file-name (buffer-file-name))))
(if source
(file-relative-name source))))
(defun wisent-new-log ()
"Start a new entry into the log buffer."
(setq wisent-new-log-flag nil)
(let ((text (format "\n\n*** Wisent %s - %s\n\n"
(or (wisent-source) (buffer-name))
(format-time-string "%Y-%m-%d %R"))))
(with-current-buffer (wisent-log-buffer)
(goto-char (point-max))
(insert text))))
(defsubst wisent-log (&rest args)
"Insert text into the log buffer.
`format-message' is applied to ARGS and the result string is inserted into the
log buffer returned by the function `wisent-log-buffer'."
(and wisent-new-log-flag (wisent-new-log))
(with-current-buffer (wisent-log-buffer)
(insert (apply #'format-message args))))
(defconst wisent-log-file "wisent.output"
"The log file.
Used when running without interactive terminal.")
(defun wisent-append-to-log-file ()
"Append contents of logging buffer to `wisent-log-file'."
(if (get-buffer wisent-log-buffer-name)
(condition-case err
(with-current-buffer (wisent-log-buffer)
(widen)
(if (> (point-max) (point-min))
(write-region (point-min) (point-max)
wisent-log-file t)))
(error
(message "*** %s" (error-message-string err))))))
;;;; -----------------------------------
;;;; Representation of the grammar rules
;;;; -----------------------------------
;; ntokens is the number of tokens, and nvars is the number of
;; variables (nonterminals). nsyms is the total number, ntokens +
;; nvars.
;; Each symbol (either token or variable) receives a symbol number.
;; Numbers 0 to ntokens-1 are for tokens, and ntokens to nsyms-1 are
;; for variables. Symbol number zero is the end-of-input token. This
;; token is counted in ntokens.
;; The rules receive rule numbers 1 to nrules in the order they are
;; written. Actions and guards are accessed via the rule number.
;; The rules themselves are described by three arrays: rrhs, rlhs and
;; ritem. rlhs[R] is the symbol number of the left hand side of rule
;; R. The right hand side is stored as symbol numbers in a portion of
;; ritem. rrhs[R] contains the index in ritem of the beginning of the
;; portion for rule R.
;; The length of the portion is one greater than the number of symbols
;; in the rule's right hand side. The last element in the portion
;; contains minus R, which identifies it as the end of a portion and
;; says which rule it is for.
;; The portions of ritem come in order of increasing rule number and
;; are followed by an element which is nil to mark the end. nitems is
;; the total length of ritem, not counting the final nil. Each
;; element of ritem is called an "item" and its index in ritem is an
;; item number.
;; Item numbers are used in the finite state machine to represent
;; places that parsing can get to.
;; The vector rprec contains for each rule, the item number of the
;; symbol giving its precedence level to this rule. The precedence
;; level and associativity of each symbol is recorded in respectively
;; the properties 'wisent--prec and 'wisent--assoc.
;; Precedence levels are assigned in increasing order starting with 1
;; so that numerically higher precedence values mean tighter binding
;; as they ought to. nil as a symbol or rule's precedence means none
;; is assigned.
(defcustom wisent-state-table-size 1009
"The size of the state table."
:type 'integer
:group 'wisent)
;; These variables only exist locally in the function
;; `wisent-compile-grammar' and are shared by all other nested
;; callees.
(wisent-defcontext compile-grammar
F LA LAruleno accessing-symbol conflicts consistent default-prec
derives err-table fderives final-state first-reduction first-shift
first-state firsts from-state goto-map includes itemset nitemset
kernel-base kernel-end kernel-items last-reduction last-shift
last-state lookaheads lookaheadset lookback maxrhs ngotos nitems
nrules nshifts nstates nsyms ntokens nullable nvars rassoc redset
reduction-table ritem rlhs rprec rrc-count rrc-total rrhs ruseful
rcode ruleset rulesetsize shift-symbol shift-table shiftset
src-count src-total start-table state-table tags this-state to-state
tokensetsize ;; nb of words req. to hold a bit for each rule
varsetsize ;; nb of words req. to hold a bit for each variable
error-token-number start-symbol token-list var-list
N P V V1 nuseless-nonterminals nuseless-productions
ptable ;; symbols & characters properties
)
(defmacro wisent-ISTOKEN (s)
"Return non-nil if item number S defines a token (terminal).
That is if S < `ntokens'."
`(< ,s ntokens))
(defmacro wisent-ISVAR(s)
"Return non-nil if item number S defines a nonterminal.
That is if S >= `ntokens'."
`(>= ,s ntokens))
(defsubst wisent-tag (s)
"Return printable form of item number S."
(wisent-item-to-string (aref tags s)))
;; Symbol and character properties
(defsubst wisent-put (object propname value)
"Store OBJECT's PROPNAME property with value VALUE.
Use `eq' to locate OBJECT."
(let ((entry (assq object ptable)))
(or entry (setq entry (list object) ptable (cons entry ptable)))
(setcdr entry (plist-put (cdr entry) propname value))))
(defsubst wisent-get (object propname)
"Return the value of OBJECT's PROPNAME property.
Use `eq' to locate OBJECT."
(plist-get (cdr (assq object ptable)) propname))
(defsubst wisent-item-number (x)
"Return the item number of symbol X."
(wisent-get x 'wisent--item-no))
(defsubst wisent-set-item-number (x n)
"Set the item number of symbol X to N."
(wisent-put x 'wisent--item-no n))
(defsubst wisent-assoc (x)
"Return the associativity of symbol X."
(wisent-get x 'wisent--assoc))
(defsubst wisent-set-assoc (x a)
"Set the associativity of symbol X to A."
(wisent-put x 'wisent--assoc a))
(defsubst wisent-prec (x)
"Return the precedence level of symbol X."
(wisent-get x 'wisent--prec))
(defsubst wisent-set-prec (x p)
"Set the precedence level of symbol X to P."
(wisent-put x 'wisent--prec p))
;;;; ----------------------------------------------------------
;;;; Type definitions for nondeterministic finite state machine
;;;; ----------------------------------------------------------
;; These type definitions are used to represent a nondeterministic
;; finite state machine that parses the specified grammar. This
;; information is generated by the function `wisent-generate-states'.
;; Each state of the machine is described by a set of items --
;; particular positions in particular rules -- that are the possible
;; places where parsing could continue when the machine is in this
;; state. These symbols at these items are the allowable inputs that
;; can follow now.
;; A core represents one state. States are numbered in the number
;; field. When `wisent-generate-states' is finished, the starting
;; state is state 0 and `nstates' is the number of states. (A
;; transition to a state whose state number is `nstates' indicates
;; termination.) All the cores are chained together and `first-state'
;; points to the first one (state 0).
;; For each state there is a particular symbol which must have been
;; the last thing accepted to reach that state. It is the
;; accessing-symbol of the core.
;; Each core contains a vector of `nitems' items which are the indices
;; in the `ritems' vector of the items that are selected in this
;; state.
;; The link field is used for chaining buckets that hash states by
;; their itemsets. This is for recognizing equivalent states and
;; combining them when the states are generated.
;; The two types of transitions are shifts (push the lookahead token
;; and read another) and reductions (combine the last n things on the
;; stack via a rule, replace them with the symbol that the rule
;; derives, and leave the lookahead token alone). When the states are
;; generated, these transitions are represented in two other lists.
;; Each shifts structure describes the possible shift transitions out
;; of one state, the state whose number is in the number field. The
;; shifts structures are linked through next and first-shift points to
;; them. Each contains a vector of numbers of the states that shift
;; transitions can go to. The accessing-symbol fields of those
;; states' cores say what kind of input leads to them.
;; A shift to state zero should be ignored. Conflict resolution
;; deletes shifts by changing them to zero.
;; Each reductions structure describes the possible reductions at the
;; state whose number is in the number field. The data is a list of
;; nreds rules, represented by their rule numbers. `first-reduction'
;; points to the list of these structures.
;; Conflict resolution can decide that certain tokens in certain
;; states should explicitly be errors (for implementing %nonassoc).
;; For each state, the tokens that are errors for this reason are
;; recorded in an errs structure, which has the state number in its
;; number field. The rest of the errs structure is full of token
;; numbers.
;; There is at least one shift transition present in state zero. It
;; leads to a next-to-final state whose accessing-symbol is the
;; grammar's start symbol. The next-to-final state has one shift to
;; the final state, whose accessing-symbol is zero (end of input).
;; The final state has one shift, which goes to the termination state
;; (whose number is `nstates'-1).
;; The reason for the extra state at the end is to placate the
;; parser's strategy of making all decisions one token ahead of its
;; actions.
(wisent-struct core
next ; -> core
link ; -> core
(number 0)
(accessing-symbol 0)
(nitems 0)
(items [0]))
(wisent-struct shifts
next ; -> shifts
(number 0)
(nshifts 0)
(shifts [0]))
(wisent-struct reductions
next ; -> reductions
(number 0)
(nreds 0)
(rules [0]))
(wisent-struct errs
(nerrs 0)
(errs [0]))
;;;; --------------------------------------------------------
;;;; Find unreachable terminals, nonterminals and productions
;;;; --------------------------------------------------------
(defun wisent-bits-equal (L R n)
"Visit L and R and return non-nil if their first N elements are `='.
L and R must be vectors of integers."
(let* ((i (1- n))
(iseq t))
(while (and iseq (natnump i))
(setq iseq (= (aref L i) (aref R i))
i (1- i)))
iseq))
(defun wisent-nbits (i)
"Return number of bits set in integer I."
(let ((count 0))
(while (not (zerop i))
;; i ^= (i & ((unsigned) (-(int) i)))
(setq i (logxor i (logand i (- i)))
count (1+ count)))
count))
(defun wisent-bits-size (S n)
"In vector S count the total of bits set in first N elements.
S must be a vector of integers."
(let* ((i (1- n))
(count 0))
(while (natnump i)
(setq count (+ count (wisent-nbits (aref S i)))
i (1- i)))
count))
(defun wisent-useful-production (i N0)
"Return non-nil if production I is in useful set N0."
(let* ((useful t)
(r (aref rrhs i))
n)
(while (and useful (> (setq n (aref ritem r)) 0))
(if (wisent-ISVAR n)
(setq useful (wisent-BITISSET N0 (- n ntokens))))
(setq r (1+ r)))
useful))
(defun wisent-useless-nonterminals ()
"Find out which nonterminals are used."
(let (Np Ns i n break)
;; N is set as built. Np is set being built this iteration. P is
;; set of all productions which have a RHS all in N.
(setq n (wisent-WORDSIZE nvars)
Np (make-vector n 0))
;; The set being computed is a set of nonterminals which can
;; derive the empty string or strings consisting of all
;; terminals. At each iteration a nonterminal is added to the set
;; if there is a production with that nonterminal as its LHS for
;; which all the nonterminals in its RHS are already in the set.
;; Iterate until the set being computed remains unchanged. Any
;; nonterminals not in the set at that point are useless in that
;; they will never be used in deriving a sentence of the language.
;; This iteration doesn't use any special traversal over the
;; productions. A set is kept of all productions for which all
;; the nonterminals in the RHS are in useful. Only productions
;; not in this set are scanned on each iteration. At the end,
;; this set is saved to be used when finding useful productions:
;; only productions in this set will appear in the final grammar.
(while (not break)
(setq i (1- n))
(while (natnump i)
;; Np[i] = N[i]
(aset Np i (aref N i))
(setq i (1- i)))
(setq i 1)
(while (<= i nrules)
(if (not (wisent-BITISSET P i))
(when (wisent-useful-production i N)
(wisent-SETBIT Np (- (aref rlhs i) ntokens))
(wisent-SETBIT P i)))
(setq i (1+ i)))
(if (wisent-bits-equal N Np n)
(setq break t)
(setq Ns Np
Np N
N Ns)))
(setq N Np)))
(defun wisent-inaccessible-symbols ()
"Find out which productions are reachable and which symbols are used."
;; Starting with an empty set of productions and a set of symbols
;; which only has the start symbol in it, iterate over all
;; productions until the set of productions remains unchanged for an
;; iteration. For each production which has a LHS in the set of
;; reachable symbols, add the production to the set of reachable
;; productions, and add all of the nonterminals in the RHS of the
;; production to the set of reachable symbols.
;; Consider only the (partially) reduced grammar which has only
;; nonterminals in N and productions in P.
;; The result is the set P of productions in the reduced grammar,
;; and the set V of symbols in the reduced grammar.
;; Although this algorithm also computes the set of terminals which
;; are reachable, no terminal will be deleted from the grammar. Some
;; terminals might not be in the grammar but might be generated by
;; semantic routines, and so the user might want them available with
;; specified numbers. (Is this true?) However, the non reachable
;; terminals are printed (if running in verbose mode) so that the
;; user can know.
(let (Vp Vs Pp i tt r n m break)
(setq n (wisent-WORDSIZE nsyms)
m (wisent-WORDSIZE (1+ nrules))
Vp (make-vector n 0)
Pp (make-vector m 0))
;; If the start symbol isn't useful, then nothing will be useful.
(when (wisent-BITISSET N (- start-symbol ntokens))
(wisent-SETBIT V start-symbol)
(while (not break)
(setq i (1- n))
(while (natnump i)
(aset Vp i (aref V i))
(setq i (1- i)))
(setq i 1)
(while (<= i nrules)
(when (and (not (wisent-BITISSET Pp i))
(wisent-BITISSET P i)
(wisent-BITISSET V (aref rlhs i)))
(setq r (aref rrhs i))
(while (natnump (setq tt (aref ritem r)))
(if (or (wisent-ISTOKEN tt)
(wisent-BITISSET N (- tt ntokens)))
(wisent-SETBIT Vp tt))
(setq r (1+ r)))
(wisent-SETBIT Pp i))
(setq i (1+ i)))
(if (wisent-bits-equal V Vp n)
(setq break t)
(setq Vs Vp
Vp V
V Vs))))
(setq V Vp)
;; Tokens 0, 1 are internal to Wisent. Consider them useful.
(wisent-SETBIT V 0) ;; end-of-input token
(wisent-SETBIT V 1) ;; error token
(setq P Pp)
(setq nuseless-productions (- nrules (wisent-bits-size P m))
nuseless-nonterminals nvars
i ntokens)
(while (< i nsyms)
(if (wisent-BITISSET V i)
(setq nuseless-nonterminals (1- nuseless-nonterminals)))
(setq i (1+ i)))
;; A token that was used in %prec should not be warned about.
(setq i 1)
(while (<= i nrules)
(if (aref rprec i)
(wisent-SETBIT V1 (aref rprec i)))
(setq i (1+ i)))
))
(defun wisent-reduce-grammar-tables ()
"Disable useless productions."
(if (> nuseless-productions 0)
(let ((pn 1))
(while (<= pn nrules)
(aset ruseful pn (wisent-BITISSET P pn))
(setq pn (1+ pn))))))
(defun wisent-nonterminals-reduce ()
"Remove useless nonterminals."
(let (i n r item nontermmap tags-sorted)
;; Map the nonterminals to their new index: useful first, useless
;; afterwards. Kept for later report.
(setq nontermmap (make-vector nvars 0)
n ntokens
i ntokens)
(while (< i nsyms)
(when (wisent-BITISSET V i)
(aset nontermmap (- i ntokens) n)
(setq n (1+ n)))
(setq i (1+ i)))
(setq i ntokens)
(while (< i nsyms)
(unless (wisent-BITISSET V i)
(aset nontermmap (- i ntokens) n)
(setq n (1+ n)))
(setq i (1+ i)))
;; Shuffle elements of tables indexed by symbol number
(setq tags-sorted (make-vector nvars nil)
i ntokens)
(while (< i nsyms)
(setq n (aref nontermmap (- i ntokens)))
(aset tags-sorted (- n ntokens) (aref tags i))
(setq i (1+ i)))
(setq i ntokens)
(while (< i nsyms)
(aset tags i (aref tags-sorted (- i ntokens)))
(setq i (1+ i)))
;; Replace all symbol numbers in valid data structures.
(setq i 1)
(while (<= i nrules)
(aset rlhs i (aref nontermmap (- (aref rlhs i) ntokens)))
(setq i (1+ i)))
(setq r 0)
(while (setq item (aref ritem r))
(if (wisent-ISVAR item)
(aset ritem r (aref nontermmap (- item ntokens))))
(setq r (1+ r)))
(setq start-symbol (aref nontermmap (- start-symbol ntokens))
nsyms (- nsyms nuseless-nonterminals)
nvars (- nvars nuseless-nonterminals))
))
(defun wisent-total-useless ()
"Report number of useless nonterminals and productions."
(let* ((src (wisent-source))
(src (if src (concat " in " src) ""))
(msg (format "Grammar%s contains" src)))
(if (> nuseless-nonterminals 0)
(setq msg (format "%s %d useless nonterminal%s"
msg nuseless-nonterminals
(if (> nuseless-nonterminals 0) "s" ""))))
(if (and (> nuseless-nonterminals 0) (> nuseless-productions 0))
(setq msg (format "%s and" msg)))
(if (> nuseless-productions 0)
(setq msg (format "%s %d useless rule%s"
msg nuseless-productions
(if (> nuseless-productions 0) "s" ""))))
(message msg)))
(defun wisent-reduce-grammar ()
"Find unreachable terminals, nonterminals and productions."
;; Allocate the global sets used to compute the reduced grammar
(setq N (make-vector (wisent-WORDSIZE nvars) 0)
P (make-vector (wisent-WORDSIZE (1+ nrules)) 0)
V (make-vector (wisent-WORDSIZE nsyms) 0)
V1 (make-vector (wisent-WORDSIZE nsyms) 0)
nuseless-nonterminals 0
nuseless-productions 0)
(wisent-useless-nonterminals)
(wisent-inaccessible-symbols)
(when (> (+ nuseless-nonterminals nuseless-productions) 0)
(wisent-total-useless)
(or (wisent-BITISSET N (- start-symbol ntokens))
(error "Start symbol `%s' does not derive any sentence"
(wisent-tag start-symbol)))
(wisent-reduce-grammar-tables)
(if (> nuseless-nonterminals 0)
(wisent-nonterminals-reduce))))
(defun wisent-print-useless ()
"Output the detailed results of the reductions."
(let (i b r)
(when (> nuseless-nonterminals 0)
;; Useless nonterminals have been moved after useful ones.
(wisent-log "\n\nUseless nonterminals:\n\n")
(setq i 0)
(while (< i nuseless-nonterminals)
(wisent-log " %s\n" (wisent-tag (+ nsyms i)))
(setq i (1+ i))))
(setq b nil
i 0)
(while (< i ntokens)
(unless (or (wisent-BITISSET V i) (wisent-BITISSET V1 i))
(or b
(wisent-log "\n\nTerminals which are not used:\n\n"))
(setq b t)
(wisent-log " %s\n" (wisent-tag i)))
(setq i (1+ i)))
(when (> nuseless-productions 0)
(wisent-log "\n\nUseless rules:\n\n")
(setq i 1)
(while (<= i nrules)
(unless (aref ruseful i)
(wisent-log "#%s " (wisent-pad-string (format "%d" i) 4))
(wisent-log "%s:" (wisent-tag (aref rlhs i)))
(setq r (aref rrhs i))
(while (natnump (aref ritem r))
(wisent-log " %s" (wisent-tag (aref ritem r)))
(setq r (1+ r)))
(wisent-log ";\n"))
(setq i (1+ i))))
(if (or b (> nuseless-nonterminals 0) (> nuseless-productions 0))
(wisent-log "\n\n"))
))
;;;; -----------------------------
;;;; Match rules with nonterminals
;;;; -----------------------------
(defun wisent-set-derives ()
"Find, for each variable (nonterminal), which rules can derive it.
It sets up the value of DERIVES so that DERIVES[i - NTOKENS] points to
a list of rule numbers, terminated with -1."
(let (i lhs p q dset delts)
(setq dset (make-vector nvars nil)
delts (make-vector (1+ nrules) 0))
(setq p 0 ;; p = delts
i nrules)
(while (> i 0)
(when (aref ruseful i)
(setq lhs (aref rlhs i))
;; p->next = dset[lhs];
;; p->value = i;
(aset delts p (cons i (aref dset (- lhs ntokens)))) ;; (value . next)
(aset dset (- lhs ntokens) p) ;; dset[lhs] = p
(setq p (1+ p)) ;; p++
)
(setq i (1- i)))
(setq derives (make-vector nvars nil)
i ntokens)
(while (< i nsyms)
(setq q nil
p (aref dset (- i ntokens))) ;; p = dset[i]
(while p
(setq p (aref delts p)
q (cons (car p) q) ;;q++ = p->value
p (cdr p))) ;; p = p->next
(setq q (nreverse (cons -1 q))) ;; *q++ = -1
(aset derives (- i ntokens) q) ;; derives[i] = q
(setq i (1+ i)))
))
;;;; --------------------------------------------------------
;;;; Find which nonterminals can expand into the null string.
;;;; --------------------------------------------------------
(defun wisent-print-nullable ()
"Print NULLABLE."
(let (i)
(wisent-log "NULLABLE\n")
(setq i ntokens)
(while (< i nsyms)
(wisent-log "\t%s: %s\n" (wisent-tag i)
(if (aref nullable (- i ntokens))
"yes" : "no"))
(setq i (1+ i)))
(wisent-log "\n\n")))
(defun wisent-set-nullable ()
"Set up NULLABLE.
A vector saying which nonterminals can expand into the null string.
NULLABLE[i - NTOKENS] is nil if symbol I can do so."
(let (ruleno s1 s2 p r squeue rcount rsets relts item any-tokens)
(setq squeue (make-vector nvars 0)
rcount (make-vector (1+ nrules) 0)
rsets (make-vector nvars nil) ;; - ntokens
relts (make-vector (+ nitems nvars 1) nil)
nullable (make-vector nvars nil)) ;; - ntokens
(setq s1 0 s2 0 ;; s1 = s2 = squeue
p 0 ;; p = relts
ruleno 1)
(while (<= ruleno nrules)
(when (aref ruseful ruleno)
(if (> (aref ritem (aref rrhs ruleno)) 0)
(progn
;; This rule has a non empty RHS.
(setq any-tokens nil
r (aref rrhs ruleno))
(while (> (aref ritem r) 0)
(if (wisent-ISTOKEN (aref ritem r))
(setq any-tokens t))
(setq r (1+ r)))
;; This rule has only nonterminals: schedule it for the
;; second pass.
(unless any-tokens
(setq r (aref rrhs ruleno))
(while (> (setq item (aref ritem r)) 0)
(aset rcount ruleno (1+ (aref rcount ruleno)))
;; p->next = rsets[item];
;; p->value = ruleno;
(aset relts p (cons ruleno (aref rsets (- item ntokens))))
;; rsets[item] = p;
(aset rsets (- item ntokens) p)
(setq p (1+ p)
r (1+ r)))))
;; This rule has an empty RHS.
;; assert (ritem[rrhs[ruleno]] == -ruleno)
(when (and (aref ruseful ruleno)
(setq item (aref rlhs ruleno))
(not (aref nullable (- item ntokens))))
(aset nullable (- item ntokens) t)
(aset squeue s2 item)
(setq s2 (1+ s2)))
)
)
(setq ruleno (1+ ruleno)))
(while (< s1 s2)
;; p = rsets[*s1++]
(setq p (aref rsets (- (aref squeue s1) ntokens))
s1 (1+ s1))
(while p
(setq p (aref relts p)
ruleno (car p)
p (cdr p)) ;; p = p->next
;; if (--rcount[ruleno] == 0)
(when (zerop (aset rcount ruleno (1- (aref rcount ruleno))))
(setq item (aref rlhs ruleno))
(aset nullable (- item ntokens) t)
(aset squeue s2 item)
(setq s2 (1+ s2)))))
(if wisent-debug-flag
(wisent-print-nullable))
))
;;;; -----------
;;;; Subroutines
;;;; -----------
(defun wisent-print-fderives ()
"Print FDERIVES."
(let (i j rp)
(wisent-log "\n\n\nFDERIVES\n")
(setq i ntokens)
(while (< i nsyms)
(wisent-log "\n\n%s derives\n\n" (wisent-tag i))
(setq rp (aref fderives (- i ntokens))
j 0)
(while (<= j nrules)
(if (wisent-BITISSET rp j)
(wisent-log " %d\n" j))
(setq j (1+ j)))
(setq i (1+ i)))))
(defun wisent-set-fderives ()
"Set up FDERIVES.
An NVARS by NRULES matrix of bits indicating which rules can help
derive the beginning of the data for each nonterminal. For example,
if symbol 5 can be derived as the sequence of symbols 8 3 20, and one
of the rules for deriving symbol 8 is rule 4, then the
\[5 - NTOKENS, 4] bit in FDERIVES is set."
(let (i j k)
(setq fderives (make-vector nvars nil))
(setq i 0)
(while (< i nvars)
(aset fderives i (make-vector rulesetsize 0))
(setq i (1+ i)))
(wisent-set-firsts)
(setq i ntokens)
(while (< i nsyms)
(setq j ntokens)
(while (< j nsyms)
;; if (BITISSET (FIRSTS (i), j - ntokens))
(when (wisent-BITISSET (aref firsts (- i ntokens)) (- j ntokens))
(setq k (aref derives (- j ntokens)))
(while (> (car k) 0) ;; derives[j][k] > 0
;; SETBIT (FDERIVES (i), derives[j][k]);
(wisent-SETBIT (aref fderives (- i ntokens)) (car k))
(setq k (cdr k))))
(setq j (1+ j)))
(setq i (1+ i)))
(if wisent-debug-flag
(wisent-print-fderives))
))
(defun wisent-print-firsts ()
"Print FIRSTS."
(let (i j v)
(wisent-log "\n\n\nFIRSTS\n\n")
(setq i ntokens)
(while (< i nsyms)
(wisent-log "\n\n%s firsts\n\n" (wisent-tag i))
(setq v (aref firsts (- i ntokens))
j 0)
(while (< j nvars)
(if (wisent-BITISSET v j)
(wisent-log "\t\t%d (%s)\n"
(+ j ntokens) (wisent-tag (+ j ntokens))))
(setq j (1+ j)))
(setq i (1+ i)))))
(defun wisent-TC (R n)
"Transitive closure.
Given R an N by N matrix of bits, modify its contents to be the
transitive closure of what was given."
(let (i j k)
;; R (J, I) && R (I, K) => R (J, K).
;; I *must* be the outer loop.
(setq i 0)
(while (< i n)
(setq j 0)
(while (< j n)
(when (wisent-BITISSET (aref R j) i)
(setq k 0)
(while (< k n)
(if (wisent-BITISSET (aref R i) k)
(wisent-SETBIT (aref R j) k))
(setq k (1+ k))))
(setq j (1+ j)))
(setq i (1+ i)))))
(defun wisent-RTC (R n)
"Reflexive Transitive Closure.
Same as `wisent-TC' and then set all the bits on the diagonal of R, an
N by N matrix of bits."
(let (i)
(wisent-TC R n)
(setq i 0)
(while (< i n)
(wisent-SETBIT (aref R i) i)
(setq i (1+ i)))))
(defun wisent-set-firsts ()
"Set up FIRSTS.
An NVARS by NVARS bit matrix indicating which items can represent the
beginning of the input corresponding to which other items. For
example, if some rule expands symbol 5 into the sequence of symbols 8
3 20, the symbol 8 can be the beginning of the data for symbol 5, so
the bit [8 - NTOKENS, 5 - NTOKENS] in FIRSTS is set."
(let (row symbol sp rowsize i)
(setq rowsize (wisent-WORDSIZE nvars)
varsetsize rowsize
firsts (make-vector nvars nil)
i 0)
(while (< i nvars)
(aset firsts i (make-vector rowsize 0))
(setq i (1+ i)))
(setq row 0 ;; row = firsts
i ntokens)
(while (< i nsyms)
(setq sp (aref derives (- i ntokens)))
(while (>= (car sp) 0)
(setq symbol (aref ritem (aref rrhs (car sp)))
sp (cdr sp))
(when (wisent-ISVAR symbol)
(setq symbol (- symbol ntokens))
(wisent-SETBIT (aref firsts row) symbol)
))
(setq row (1+ row)
i (1+ i)))
(wisent-RTC firsts nvars)
(if wisent-debug-flag
(wisent-print-firsts))
))
(defun wisent-initialize-closure (n)
"Allocate the ITEMSET and RULESET vectors.
And precompute useful data so that `wisent-closure' can be called.
N is the number of elements to allocate for ITEMSET."
(setq itemset (make-vector n 0)
rulesetsize (wisent-WORDSIZE (1+ nrules))
ruleset (make-vector rulesetsize 0))
(wisent-set-fderives))
(defun wisent-print-closure ()
"Print ITEMSET."
(let (i)
(wisent-log "\n\nclosure n = %d\n\n" nitemset)
(setq i 0) ;; isp = itemset
(while (< i nitemset)
(wisent-log " %d\n" (aref itemset i))
(setq i (1+ i)))))
(defun wisent-closure (core n)
"Set up RULESET and ITEMSET for the transitions out of CORE state.
Given a vector of item numbers items, of length N, set up RULESET and
ITEMSET to indicate what rules could be run and which items could be
accepted when those items are the active ones.
RULESET contains a bit for each rule. `wisent-closure' sets the bits
for all rules which could potentially describe the next input to be
read.
ITEMSET is a vector of item numbers; NITEMSET is the number of items
in ITEMSET. `wisent-closure' places there the indices of all items
which represent units of input that could arrive next."
(let (c r v symbol ruleno itemno)
(if (zerop n)
(progn
(setq r 0
v (aref fderives (- start-symbol ntokens)))
(while (< r rulesetsize)
;; ruleset[r] = FDERIVES (start-symbol)[r];
(aset ruleset r (aref v r))
(setq r (1+ r)))
)
(fillarray ruleset 0)
(setq c 0)
(while (< c n)
(setq symbol (aref ritem (aref core c)))
(when (wisent-ISVAR symbol)
(setq r 0
v (aref fderives (- symbol ntokens)))
(while (< r rulesetsize)
;; ruleset[r] |= FDERIVES (ritem[core[c]])[r];
(aset ruleset r (logior (aref ruleset r) (aref v r)))
(setq r (1+ r))))
(setq c (1+ c)))
)
(setq nitemset 0
c 0
ruleno 0
r (* rulesetsize wisent-BITS-PER-WORD))
(while (< ruleno r)
(when (wisent-BITISSET ruleset ruleno)
(setq itemno (aref rrhs ruleno))
(while (and (< c n) (< (aref core c) itemno))
(aset itemset nitemset (aref core c))
(setq nitemset (1+ nitemset)
c (1+ c)))
(aset itemset nitemset itemno)
(setq nitemset (1+ nitemset)))
(setq ruleno (1+ ruleno)))
(while (< c n)
(aset itemset nitemset (aref core c))
(setq nitemset (1+ nitemset)
c (1+ c)))
(if wisent-debug-flag
(wisent-print-closure))
))
;;;; --------------------------------------------------
;;;; Generate the nondeterministic finite state machine
;;;; --------------------------------------------------
(defun wisent-allocate-itemsets ()
"Allocate storage for itemsets."
(let (symbol i count symbol-count)
;; Count the number of occurrences of all the symbols in RITEMS.
;; Note that useless productions (hence useless nonterminals) are
;; browsed too, hence we need to allocate room for _all_ the
;; symbols.
(setq count 0
symbol-count (make-vector (+ nsyms nuseless-nonterminals) 0)
i 0)
(while (setq symbol (aref ritem i))
(when (> symbol 0)
(setq count (1+ count))
(aset symbol-count symbol (1+ (aref symbol-count symbol))))
(setq i (1+ i)))
;; See comments before `wisent-new-itemsets'. All the vectors of
;; items live inside kernel-items. The number of active items
;; after some symbol cannot be more than the number of times that
;; symbol appears as an item, which is symbol-count[symbol]. We
;; allocate that much space for each symbol.
(setq kernel-base (make-vector nsyms nil)
kernel-items (make-vector count 0)
count 0
i 0)
(while (< i nsyms)
(aset kernel-base i count)
(setq count (+ count (aref symbol-count i))
i (1+ i)))
(setq shift-symbol symbol-count
kernel-end (make-vector nsyms nil))
))
(defun wisent-allocate-storage ()
"Allocate storage for the state machine."
(wisent-allocate-itemsets)
(setq shiftset (make-vector nsyms 0)
redset (make-vector (1+ nrules) 0)
state-table (make-vector wisent-state-table-size nil)))
(defun wisent-new-itemsets ()
"Find which symbols can be shifted in the current state.
And for each one record which items would be active after that shift.
Uses the contents of ITEMSET. SHIFT-SYMBOL is set to a vector of the
symbols that can be shifted. For each symbol in the grammar,
KERNEL-BASE[symbol] points to a vector of item numbers activated if
that symbol is shifted, and KERNEL-END[symbol] points after the end of
that vector."
(let (i shiftcount isp ksp symbol)
(fillarray kernel-end nil)
(setq shiftcount 0
isp 0)
(while (< isp nitemset)
(setq i (aref itemset isp)
isp (1+ isp)
symbol (aref ritem i))
(when (> symbol 0)
(setq ksp (aref kernel-end symbol))
(when (not ksp)
;; shift-symbol[shiftcount++] = symbol;
(aset shift-symbol shiftcount symbol)
(setq shiftcount (1+ shiftcount)
ksp (aref kernel-base symbol)))
;; *ksp++ = i + 1;
(aset kernel-items ksp (1+ i))
(setq ksp (1+ ksp))
(aset kernel-end symbol ksp)))
(setq nshifts shiftcount)))
(defun wisent-new-state (symbol)
"Create a new state for those items, if necessary.
SYMBOL is the core accessing-symbol.
Subroutine of `wisent-get-state'."
(let (n p isp1 isp2 iend items)
(setq isp1 (aref kernel-base symbol)
iend (aref kernel-end symbol)
n (- iend isp1)
p (make-core)
items (make-vector n 0))
(set-core-accessing-symbol p symbol)
(set-core-number p nstates)
(set-core-nitems p n)
(set-core-items p items)
(setq isp2 0) ;; isp2 = p->items
(while (< isp1 iend)
;; *isp2++ = *isp1++;
(aset items isp2 (aref kernel-items isp1))
(setq isp1 (1+ isp1)
isp2 (1+ isp2)))
(set-core-next last-state p)
(setq last-state p
nstates (1+ nstates))
p))
(defun wisent-get-state (symbol)
"Find the state we would get to by shifting SYMBOL.
Return the state number for the state we would get to (from the
current state) by shifting SYMBOL. Create a new state if no
equivalent one exists already. Used by `wisent-append-states'."
(let (key isp1 isp2 iend sp sp2 found n)
(setq isp1 (aref kernel-base symbol)
iend (aref kernel-end symbol)
n (- iend isp1)
key 0)
;; Add up the target state's active item numbers to get a hash key
(while (< isp1 iend)
(setq key (+ key (aref kernel-items isp1))
isp1 (1+ isp1)))
(setq key (% key wisent-state-table-size)
sp (aref state-table key))
(if sp
(progn
(setq found nil)
(while (not found)
(when (= (core-nitems sp) n)
(setq found t
isp1 (aref kernel-base symbol)
;; isp2 = sp->items;
sp2 (core-items sp)
isp2 0)
(while (and found (< isp1 iend))
;; if (*isp1++ != *isp2++)
(if (not (= (aref kernel-items isp1)
(aref sp2 isp2)))
(setq found nil))
(setq isp1 (1+ isp1)
isp2 (1+ isp2))))
(if (not found)
(if (core-link sp)
(setq sp (core-link sp))
;; sp = sp->link = new-state(symbol)
(setq sp (set-core-link sp (wisent-new-state symbol))
found t)))))
;; bucket is empty
;; state-table[key] = sp = new-state(symbol)
(setq sp (wisent-new-state symbol))
(aset state-table key sp))
;; return (sp->number);
(core-number sp)))
(defun wisent-append-states ()
"Find or create the core structures for states.
Use the information computed by `wisent-new-itemsets' to find the
state numbers reached by each shift transition from the current state.
SHIFTSET is set up as a vector of state numbers of those states."
(let (i j symbol)
;; First sort shift-symbol into increasing order
(setq i 1)
(while (< i nshifts)
(setq symbol (aref shift-symbol i)
j i)
(while (and (> j 0) (> (aref shift-symbol (1- j)) symbol))
(aset shift-symbol j (aref shift-symbol (1- j)))
(setq j (1- j)))
(aset shift-symbol j symbol)
(setq i (1+ i)))
(setq i 0)
(while (< i nshifts)
(setq symbol (aref shift-symbol i))
(aset shiftset i (wisent-get-state symbol))
(setq i (1+ i)))
))
(defun wisent-initialize-states ()
"Initialize states."
(let ((p (make-core)))
(setq first-state p
last-state p
this-state p
nstates 1)))
(defun wisent-save-shifts ()
"Save the NSHIFTS of SHIFTSET into the current linked list."
(let (p i shifts)
(setq p (make-shifts)
shifts (make-vector nshifts 0)
i 0)
(set-shifts-number p (core-number this-state))
(set-shifts-nshifts p nshifts)
(set-shifts-shifts p shifts)
(while (< i nshifts)
;; (p->shifts)[i] = shiftset[i];
(aset shifts i (aref shiftset i))
(setq i (1+ i)))
(if last-shift
(set-shifts-next last-shift p)
(setq first-shift p))
(setq last-shift p)))
(defun wisent-insert-start-shift ()
"Create the next-to-final state.
That is the state to which a shift has already been made in the
initial state. Subroutine of `wisent-augment-automaton'."
(let (statep sp)
(setq statep (make-core))
(set-core-number statep nstates)
(set-core-accessing-symbol statep start-symbol)
(set-core-next last-state statep)
(setq last-state statep)
;; Make a shift from this state to (what will be) the final state.
(setq sp (make-shifts))
(set-shifts-number sp nstates)
(setq nstates (1+ nstates))
(set-shifts-nshifts sp 1)
(set-shifts-shifts sp (vector nstates))
(set-shifts-next last-shift sp)
(setq last-shift sp)))
(defun wisent-augment-automaton ()
"Set up initial and final states as parser wants them.
Make sure that the initial state has a shift that accepts the
grammar's start symbol and goes to the next-to-final state, which has
a shift going to the final state, which has a shift to the termination
state. Create such states and shifts if they don't happen to exist
already."
(let (i k statep sp sp2 sp1 shifts)
(setq sp first-shift)
(if sp
(progn
(if (zerop (shifts-number sp))
(progn
(setq k (shifts-nshifts sp)
statep (core-next first-state))
;; The states reached by shifts from first-state are
;; numbered 1...K. Look for one reached by
;; START-SYMBOL.
(while (and (< (core-accessing-symbol statep) start-symbol)
(< (core-number statep) k))
(setq statep (core-next statep)))
(if (= (core-accessing-symbol statep) start-symbol)
(progn
;; We already have a next-to-final state. Make
;; sure it has a shift to what will be the final
;; state.
(setq k (core-number statep))
(while (and sp (< (shifts-number sp) k))
(setq sp1 sp
sp (shifts-next sp)))
(if (and sp (= (shifts-number sp) k))
(progn
(setq i (shifts-nshifts sp)
sp2 (make-shifts)
shifts (make-vector (1+ i) 0))
(set-shifts-number sp2 k)
(set-shifts-nshifts sp2 (1+ i))
(set-shifts-shifts sp2 shifts)
(aset shifts 0 nstates)
(while (> i 0)
;; sp2->shifts[i] = sp->shifts[i - 1];
(aset shifts i (aref (shifts-shifts sp) (1- i)))
(setq i (1- i)))
;; Patch sp2 into the chain of shifts in
;; place of sp, following sp1.
(set-shifts-next sp2 (shifts-next sp))
(set-shifts-next sp1 sp2)
(if (eq sp last-shift)
(setq last-shift sp2))
)
(setq sp2 (make-shifts))
(set-shifts-number sp2 k)
(set-shifts-nshifts sp2 1)
(set-shifts-shifts sp2 (vector nstates))
;; Patch sp2 into the chain of shifts between
;; sp1 and sp.
(set-shifts-next sp2 sp)
(set-shifts-next sp1 sp2)
(if (not sp)
(setq last-shift sp2))
)
)
;; There is no next-to-final state as yet.
;; Add one more shift in FIRST-SHIFT, going to the
;; next-to-final state (yet to be made).
(setq sp first-shift
sp2 (make-shifts)
i (shifts-nshifts sp)
shifts (make-vector (1+ i) 0))
(set-shifts-nshifts sp2 (1+ i))
(set-shifts-shifts sp2 shifts)
;; Stick this shift into the vector at the proper place.
(setq statep (core-next first-state)
k 0
i 0)
(while (< i (shifts-nshifts sp))
(when (and (> (core-accessing-symbol statep) start-symbol)
(= i k))
(aset shifts k nstates)
(setq k (1+ k)))
(aset shifts k (aref (shifts-shifts sp) i))
(setq statep (core-next statep))
(setq i (1+ i)
k (1+ k)))
(when (= i k)
(aset shifts k nstates)
(setq k (1+ k)))
;; Patch sp2 into the chain of shifts in place of
;; sp, at the beginning.
(set-shifts-next sp2 (shifts-next sp))
(setq first-shift sp2)
(if (eq last-shift sp)
(setq last-shift sp2))
;; Create the next-to-final state, with shift to
;; what will be the final state.
(wisent-insert-start-shift)))
;; The initial state didn't even have any shifts. Give it
;; one shift, to the next-to-final state.
(setq sp (make-shifts))
(set-shifts-nshifts sp 1)
(set-shifts-shifts sp (vector nstates))
;; Patch sp into the chain of shifts at the beginning.
(set-shifts-next sp first-shift)
(setq first-shift sp)
;; Create the next-to-final state, with shift to what will
;; be the final state.
(wisent-insert-start-shift)))
;; There are no shifts for any state. Make one shift, from the
;; initial state to the next-to-final state.
(setq sp (make-shifts))
(set-shifts-nshifts sp 1)
(set-shifts-shifts sp (vector nstates))
;; Initialize the chain of shifts with sp.
(setq first-shift sp
last-shift sp)
;; Create the next-to-final state, with shift to what will be
;; the final state.
(wisent-insert-start-shift))
;; Make the final state--the one that follows a shift from the
;; next-to-final state. The symbol for that shift is 0
;; (end-of-file).
(setq statep (make-core))
(set-core-number statep nstates)
(set-core-next last-state statep)
(setq last-state statep)
;; Make the shift from the final state to the termination state.
(setq sp (make-shifts))
(set-shifts-number sp nstates)
(setq nstates (1+ nstates))
(set-shifts-nshifts sp 1)
(set-shifts-shifts sp (vector nstates))
(set-shifts-next last-shift sp)
(setq last-shift sp)
;; Note that the variable FINAL-STATE refers to what we sometimes
;; call the termination state.
(setq final-state nstates)
;; Make the termination state.
(setq statep (make-core))
(set-core-number statep nstates)
(setq nstates (1+ nstates))
(set-core-next last-state statep)
(setq last-state statep)))
(defun wisent-save-reductions ()
"Make a reductions structure.
Find which rules can be used for reduction transitions from the
current state and make a reductions structure for the state to record
their rule numbers."
(let (i item count p rules)
;; Find and count the active items that represent ends of rules.
(setq count 0
i 0)
(while (< i nitemset)
(setq item (aref ritem (aref itemset i)))
(when (< item 0)
(aset redset count (- item))
(setq count (1+ count)))
(setq i (1+ i)))
;; Make a reductions structure and copy the data into it.
(when (> count 0)
(setq p (make-reductions)
rules (make-vector count 0))
(set-reductions-number p (core-number this-state))
(set-reductions-nreds p count)
(set-reductions-rules p rules)
(setq i 0)
(while (< i count)
;; (p->rules)[i] = redset[i]
(aset rules i (aref redset i))
(setq i (1+ i)))
(if last-reduction
(set-reductions-next last-reduction p)
(setq first-reduction p))
(setq last-reduction p))))
(defun wisent-generate-states ()
"Compute the nondeterministic finite state machine from the grammar."
(wisent-allocate-storage)
(wisent-initialize-closure nitems)
(wisent-initialize-states)
(while this-state
;; Set up RULESET and ITEMSET for the transitions out of this
;; state. RULESET gets a 1 bit for each rule that could reduce
;; now. ITEMSET gets a vector of all the items that could be
;; accepted next.
(wisent-closure (core-items this-state) (core-nitems this-state))
;; Record the reductions allowed out of this state.
(wisent-save-reductions)
;; Find the itemsets of the states that shifts can reach.
(wisent-new-itemsets)
;; Find or create the core structures for those states.
(wisent-append-states)
;; Create the shifts structures for the shifts to those states,
;; now that the state numbers transitioning to are known.
(if (> nshifts 0)
(wisent-save-shifts))
;; States are queued when they are created; process them all.
(setq this-state (core-next this-state)))
;; Set up initial and final states as parser wants them.
(wisent-augment-automaton))
;;;; ---------------------------
;;;; Compute look-ahead criteria
;;;; ---------------------------
;; Compute how to make the finite state machine deterministic; find
;; which rules need lookahead in each state, and which lookahead
;; tokens they accept.
;; `wisent-lalr', the entry point, builds these data structures:
;; GOTO-MAP, FROM-STATE and TO-STATE record each shift transition
;; which accepts a variable (a nonterminal). NGOTOS is the number of
;; such transitions.
;; FROM-STATE[t] is the state number which a transition leads from and
;; TO-STATE[t] is the state number it leads to.
;; All the transitions that accept a particular variable are grouped
;; together and GOTO-MAP[i - NTOKENS] is the index in FROM-STATE and
;; TO-STATE of the first of them.
;; CONSISTENT[s] is non-nil if no lookahead is needed to decide what
;; to do in state s.
;; LARULENO is a vector which records the rules that need lookahead in
;; various states. The elements of LARULENO that apply to state s are
;; those from LOOKAHEADS[s] through LOOKAHEADS[s+1]-1. Each element
;; of LARULENO is a rule number.
;; If LR is the length of LARULENO, then a number from 0 to LR-1 can
;; specify both a rule and a state where the rule might be applied.
;; LA is a LR by NTOKENS matrix of bits.
;; LA[l, i] is 1 if the rule LARULENO[l] is applicable in the
;; appropriate state when the next token is symbol i.
;; If LA[l, i] and LA[l, j] are both 1 for i != j, it is a conflict.
(wisent-defcontext digraph
INDEX R VERTICES
infinity top)
(defun wisent-traverse (i)
"Traverse I."
(let (j k height Ri Fi break)
(setq top (1+ top)
height top)
(aset VERTICES top i) ;; VERTICES[++top] = i
(aset INDEX i top) ;; INDEX[i] = height = top
(setq Ri (aref R i))
(when Ri
(setq j 0)
(while (>= (aref Ri j) 0)
(if (zerop (aref INDEX (aref Ri j)))
(wisent-traverse (aref Ri j)))
;; if (INDEX[i] > INDEX[R[i][j]])
(if (> (aref INDEX i) (aref INDEX (aref Ri j)))
;; INDEX[i] = INDEX[R[i][j]];
(aset INDEX i (aref INDEX (aref Ri j))))
(setq Fi (aref F i)
k 0)
(while (< k tokensetsize)
;; F (i)[k] |= F (R[i][j])[k];
(aset Fi k (logior (aref Fi k)
(aref (aref F (aref Ri j)) k)))
(setq k (1+ k)))
(setq j (1+ j))))
(when (= (aref INDEX i) height)
(setq break nil)
(while (not break)
(setq j (aref VERTICES top) ;; j = VERTICES[top--]
top (1- top))
(aset INDEX j infinity)
(if (= i j)
(setq break t)
(setq k 0)
(while (< k tokensetsize)
;; F (j)[k] = F (i)[k];
(aset (aref F j) k (aref (aref F i) k))
(setq k (1+ k))))))
))
(defun wisent-digraph (relation)
"Digraph RELATION."
(wisent-with-context digraph
(setq infinity (+ ngotos 2)
INDEX (make-vector (1+ ngotos) 0)
VERTICES (make-vector (1+ ngotos) 0)
top 0
R relation)
(let ((i 0))
(while (< i ngotos)
(if (and (= (aref INDEX i) 0) (aref R i))
(wisent-traverse i))
(setq i (1+ i))))))
(defun wisent-set-state-table ()
"Build state table."
(let (sp)
(setq state-table (make-vector nstates nil)
sp first-state)
(while sp
(aset state-table (core-number sp) sp)
(setq sp (core-next sp)))))
(defun wisent-set-accessing-symbol ()
"Build accessing symbol table."
(let (sp)
(setq accessing-symbol (make-vector nstates 0)
sp first-state)
(while sp
(aset accessing-symbol (core-number sp) (core-accessing-symbol sp))
(setq sp (core-next sp)))))
(defun wisent-set-shift-table ()
"Build shift table."
(let (sp)
(setq shift-table (make-vector nstates nil)
sp first-shift)
(while sp
(aset shift-table (shifts-number sp) sp)
(setq sp (shifts-next sp)))))
(defun wisent-set-reduction-table ()
"Build reduction table."
(let (rp)
(setq reduction-table (make-vector nstates nil)
rp first-reduction)
(while rp
(aset reduction-table (reductions-number rp) rp)
(setq rp (reductions-next rp)))))
(defun wisent-set-maxrhs ()
"Setup MAXRHS length."
(let (i len max)
(setq len 0
max 0
i 0)
(while (aref ritem i)
(if (> (aref ritem i) 0)
(setq len (1+ len))
(if (> len max)
(setq max len))
(setq len 0))
(setq i (1+ i)))
(setq maxrhs max)))
(defun wisent-initialize-LA ()
"Set up LA."
(let (i j k count rp sp np v)
(setq consistent (make-vector nstates nil)
lookaheads (make-vector (1+ nstates) 0)
count 0
i 0)
(while (< i nstates)
(aset lookaheads i count)
(setq rp (aref reduction-table i)
sp (aref shift-table i))
;; if (rp &&
;; (rp->nreds > 1
;; || (sp && ! ISVAR(accessing-symbol[sp->shifts[0]]))))
(if (and rp
(or (> (reductions-nreds rp) 1)
(and sp
(not (wisent-ISVAR
(aref accessing-symbol
(aref (shifts-shifts sp) 0)))))))
(setq count (+ count (reductions-nreds rp)))
(aset consistent i t))
(when sp
(setq k 0
j (shifts-nshifts sp)
v (shifts-shifts sp))
(while (< k j)
(when (= (aref accessing-symbol (aref v k))
error-token-number)
(aset consistent i nil)
(setq k j)) ;; break
(setq k (1+ k))))
(setq i (1+ i)))
(aset lookaheads nstates count)
(if (zerop count)
(progn
(setq LA (make-vector 1 nil)
LAruleno (make-vector 1 0)
lookback (make-vector 1 nil)))
(setq LA (make-vector count nil)
LAruleno (make-vector count 0)
lookback (make-vector count nil)))
(setq i 0 j (length LA))
(while (< i j)
(aset LA i (make-vector tokensetsize 0))
(setq i (1+ i)))
(setq np 0
i 0)
(while (< i nstates)
(when (not (aref consistent i))
(setq rp (aref reduction-table i))
(when rp
(setq j 0
k (reductions-nreds rp)
v (reductions-rules rp))
(while (< j k)
(aset LAruleno np (aref v j))
(setq np (1+ np)
j (1+ j)))))
(setq i (1+ i)))))
(defun wisent-set-goto-map ()
"Set up GOTO-MAP."
(let (sp i j symbol k temp-map state1 state2 v)
(setq goto-map (make-vector (1+ nvars) 0)
temp-map (make-vector (1+ nvars) 0))
(setq ngotos 0
sp first-shift)
(while sp
(setq i (1- (shifts-nshifts sp))
v (shifts-shifts sp))
(while (>= i 0)
(setq symbol (aref accessing-symbol (aref v i)))
(if (wisent-ISTOKEN symbol)
(setq i 0) ;; break
(setq ngotos (1+ ngotos))
;; goto-map[symbol]++;
(aset goto-map (- symbol ntokens)
(1+ (aref goto-map (- symbol ntokens)))))
(setq i (1- i)))
(setq sp (shifts-next sp)))
(setq k 0
i ntokens
j 0)
(while (< i nsyms)
(aset temp-map j k)
(setq k (+ k (aref goto-map j))
i (1+ i)
j (1+ j)))
(setq i ntokens
j 0)
(while (< i nsyms)
(aset goto-map j (aref temp-map j))
(setq i (1+ i)
j (1+ j)))
;; goto-map[nsyms] = ngotos;
;; temp-map[nsyms] = ngotos;
(aset goto-map j ngotos)
(aset temp-map j ngotos)
(setq from-state (make-vector ngotos 0)
to-state (make-vector ngotos 0)
sp first-shift)
(while sp
(setq state1 (shifts-number sp)
v (shifts-shifts sp)
i (1- (shifts-nshifts sp)))
(while (>= i 0)
(setq state2 (aref v i)
symbol (aref accessing-symbol state2))
(if (wisent-ISTOKEN symbol)
(setq i 0) ;; break
;; k = temp-map[symbol]++;
(setq k (aref temp-map (- symbol ntokens)))
(aset temp-map (- symbol ntokens) (1+ k))
(aset from-state k state1)
(aset to-state k state2))
(setq i (1- i)))
(setq sp (shifts-next sp)))
))
(defun wisent-map-goto (state symbol)
"Map a STATE/SYMBOL pair into its numeric representation."
(let (high low middle s result)
;; low = goto-map[symbol];
;; high = goto-map[symbol + 1] - 1;
(setq low (aref goto-map (- symbol ntokens))
high (1- (aref goto-map (- (1+ symbol) ntokens))))
(while (and (not result) (<= low high))
(setq middle (/ (+ low high) 2)
s (aref from-state middle))
(cond
((= s state)
(setq result middle))
((< s state)
(setq low (1+ middle)))
(t
(setq high (1- middle)))))
(or result
(error "Internal error in `wisent-map-goto'"))
))
(defun wisent-initialize-F ()
"Set up F."
(let (i j k sp edge rowp rp reads nedges stateno symbol v break)
(setq F (make-vector ngotos nil)
i 0)
(while (< i ngotos)
(aset F i (make-vector tokensetsize 0))
(setq i (1+ i)))
(setq reads (make-vector ngotos nil)
edge (make-vector (1+ ngotos) 0)
nedges 0
rowp 0 ;; rowp = F
i 0)
(while (< i ngotos)
(setq stateno (aref to-state i)
sp (aref shift-table stateno))
(when sp
(setq k (shifts-nshifts sp)
v (shifts-shifts sp)
j 0
break nil)
(while (and (not break) (< j k))
;; symbol = accessing-symbol[sp->shifts[j]];
(setq symbol (aref accessing-symbol (aref v j)))
(if (wisent-ISVAR symbol)
(setq break t) ;; break
(wisent-SETBIT (aref F rowp) symbol)
(setq j (1+ j))))
(while (< j k)
;; symbol = accessing-symbol[sp->shifts[j]];
(setq symbol (aref accessing-symbol (aref v j)))
(when (aref nullable (- symbol ntokens))
(aset edge nedges (wisent-map-goto stateno symbol))
(setq nedges (1+ nedges)))
(setq j (1+ j)))
(when (> nedges 0)
;; reads[i] = rp = NEW2(nedges + 1, short);
(setq rp (make-vector (1+ nedges) 0)
j 0)
(aset reads i rp)
(while (< j nedges)
;; rp[j] = edge[j];
(aset rp j (aref edge j))
(setq j (1+ j)))
(aset rp nedges -1)
(setq nedges 0)))
(setq rowp (1+ rowp))
(setq i (1+ i)))
(wisent-digraph reads)
))
(defun wisent-add-lookback-edge (stateno ruleno gotono)
"Add a lookback edge.
STATENO, RULENO, GOTONO are self-explanatory."
(let (i k found)
(setq i (aref lookaheads stateno)
k (aref lookaheads (1+ stateno))
found nil)
(while (and (not found) (< i k))
(if (= (aref LAruleno i) ruleno)
(setq found t)
(setq i (1+ i))))
(or found
(error "Internal error in `wisent-add-lookback-edge'"))
;; value . next
;; lookback[i] = (gotono . lookback[i])
(aset lookback i (cons gotono (aref lookback i)))))
(defun wisent-transpose (R-arg n)
"Return the transpose of R-ARG, of size N.
Destroy R-ARG, as it is replaced with the result. R-ARG[I] is nil or
a -1 terminated list of numbers. RESULT[NUM] is nil or the -1
terminated list of the I such as NUM is in R-ARG[I]."
(let (i j new-R end-R nedges v sp)
(setq new-R (make-vector n nil)
end-R (make-vector n nil)
nedges (make-vector n 0))
;; Count.
(setq i 0)
(while (< i n)
(setq v (aref R-arg i))
(when v
(setq j 0)
(while (>= (aref v j) 0)
(aset nedges (aref v j) (1+ (aref nedges (aref v j))))
(setq j (1+ j))))
(setq i (1+ i)))
;; Allocate.
(setq i 0)
(while (< i n)
(when (> (aref nedges i) 0)
(setq sp (make-vector (1+ (aref nedges i)) 0))
(aset sp (aref nedges i) -1)
(aset new-R i sp)
(aset end-R i 0))
(setq i (1+ i)))
;; Store.
(setq i 0)
(while (< i n)
(setq v (aref R-arg i))
(when v
(setq j 0)
(while (>= (aref v j) 0)
(aset (aref new-R (aref v j)) (aref end-R (aref v j)) i)
(aset end-R (aref v j) (1+ (aref end-R (aref v j))))
(setq j (1+ j))))
(setq i (1+ i)))
new-R))
(defun wisent-build-relations ()
"Build relations."
(let (i j k rulep rp sp length nedges done state1 stateno
symbol1 symbol2 edge states v)
(setq includes (make-vector ngotos nil)
edge (make-vector (1+ ngotos) 0)
states (make-vector (1+ maxrhs) 0)
i 0)
(while (< i ngotos)
(setq nedges 0
state1 (aref from-state i)
symbol1 (aref accessing-symbol (aref to-state i))
rulep (aref derives (- symbol1 ntokens)))
(while (> (car rulep) 0)
(aset states 0 state1)
(setq length 1
stateno state1
rp (aref rrhs (car rulep))) ;; rp = ritem + rrhs[*rulep]
(while (> (aref ritem rp) 0) ;; *rp > 0
(setq symbol2 (aref ritem rp)
sp (aref shift-table stateno)
k (shifts-nshifts sp)
v (shifts-shifts sp)
j 0)
(while (< j k)
(setq stateno (aref v j))
(if (= (aref accessing-symbol stateno) symbol2)
(setq j k) ;; break
(setq j (1+ j))))
;; states[length++] = stateno;
(aset states length stateno)
(setq length (1+ length))
(setq rp (1+ rp)))
(if (not (aref consistent stateno))
(wisent-add-lookback-edge stateno (car rulep) i))
(setq length (1- length)
done nil)
(while (not done)
(setq done t
rp (1- rp))
(when (and (>= rp 0) (wisent-ISVAR (aref ritem rp)))
;; stateno = states[--length];
(setq length (1- length)
stateno (aref states length))
(aset edge nedges (wisent-map-goto stateno (aref ritem rp)))
(setq nedges (1+ nedges))
(if (aref nullable (- (aref ritem rp) ntokens))
(setq done nil))))
(setq rulep (cdr rulep)))
(when (> nedges 0)
(setq v (make-vector (1+ nedges) 0)
j 0)
(aset includes i v)
(while (< j nedges)
(aset v j (aref edge j))
(setq j (1+ j)))
(aset v nedges -1))
(setq i (1+ i)))
(setq includes (wisent-transpose includes ngotos))
))
(defun wisent-compute-FOLLOWS ()
"Compute follows."
(wisent-digraph includes))
(defun wisent-compute-lookaheads ()
"Compute lookaheads."
(let (i j n v1 v2 sp)
(setq n (aref lookaheads nstates)
i 0)
(while (< i n)
(setq sp (aref lookback i))
(while sp
(setq v1 (aref LA i)
v2 (aref F (car sp))
j 0)
(while (< j tokensetsize)
;; LA (i)[j] |= F (sp->value)[j]
(aset v1 j (logior (aref v1 j) (aref v2 j)))
(setq j (1+ j)))
(setq sp (cdr sp)))
(setq i (1+ i)))))
(defun wisent-lalr ()
"Make the nondeterministic finite state machine deterministic."
(setq tokensetsize (wisent-WORDSIZE ntokens))
(wisent-set-state-table)
(wisent-set-accessing-symbol)
(wisent-set-shift-table)
(wisent-set-reduction-table)
(wisent-set-maxrhs)
(wisent-initialize-LA)
(wisent-set-goto-map)
(wisent-initialize-F)
(wisent-build-relations)
(wisent-compute-FOLLOWS)
(wisent-compute-lookaheads))
;;;; -----------------------------------------------
;;;; Find and resolve or report look-ahead conflicts
;;;; -----------------------------------------------
(defsubst wisent-log-resolution (state LAno token resolution)
"Log a shift-reduce conflict resolution.
In specified STATE between rule pointed by lookahead number LANO and
TOKEN, resolved as RESOLUTION."
(if (or wisent-verbose-flag wisent-debug-flag)
(wisent-log
"Conflict in state %d between rule %d and token %s resolved as %s.\n"
state (aref LAruleno LAno) (wisent-tag token) resolution)))
(defun wisent-flush-shift (state token)
"Turn off the shift recorded in the specified STATE for TOKEN.
Used when we resolve a shift-reduce conflict in favor of the reduction."
(let (shiftp i k v)
(when (setq shiftp (aref shift-table state))
(setq k (shifts-nshifts shiftp)
v (shifts-shifts shiftp)
i 0)
(while (< i k)
(if (and (not (zerop (aref v i)))
(= token (aref accessing-symbol (aref v i))))
(aset v i 0))
(setq i (1+ i))))))
(defun wisent-resolve-sr-conflict (state lookaheadnum)
"Attempt to resolve shift-reduce conflict for one rule.
Resolve by means of precedence declarations. The conflict occurred in
specified STATE for the rule pointed by the lookahead symbol
LOOKAHEADNUM. It has already been checked that the rule has a
precedence. A conflict is resolved by modifying the shift or reduce
tables so that there is no longer a conflict."
(let (i redprec errp errs nerrs token sprec sassoc)
;; Find the rule to reduce by to get precedence of reduction
(setq token (aref tags (aref rprec (aref LAruleno lookaheadnum)))
redprec (wisent-prec token)
errp (make-errs)
errs (make-vector ntokens 0)
nerrs 0
i 0)
(set-errs-errs errp errs)
(while (< i ntokens)
(setq token (aref tags i))
(when (and (wisent-BITISSET (aref LA lookaheadnum) i)
(wisent-BITISSET lookaheadset i)
(setq sprec (wisent-prec token)))
;; Shift-reduce conflict occurs for token number I and it has
;; a precedence. The precedence of shifting is that of token
;; I.
(cond
((< sprec redprec)
(wisent-log-resolution state lookaheadnum i "reduce")
;; Flush the shift for this token
(wisent-RESETBIT lookaheadset i)
(wisent-flush-shift state i)
)
((> sprec redprec)
(wisent-log-resolution state lookaheadnum i "shift")
;; Flush the reduce for this token
(wisent-RESETBIT (aref LA lookaheadnum) i)
)
(t
;; Matching precedence levels.
;; For left association, keep only the reduction.
;; For right association, keep only the shift.
;; For nonassociation, keep neither.
(setq sassoc (wisent-assoc token))
(cond
((eq sassoc 'right)
(wisent-log-resolution state lookaheadnum i "shift"))
((eq sassoc 'left)
(wisent-log-resolution state lookaheadnum i "reduce"))
((eq sassoc 'nonassoc)
(wisent-log-resolution state lookaheadnum i "an error"))
)
(when (not (eq sassoc 'right))
;; Flush the shift for this token
(wisent-RESETBIT lookaheadset i)
(wisent-flush-shift state i))
(when (not (eq sassoc 'left))
;; Flush the reduce for this token
(wisent-RESETBIT (aref LA lookaheadnum) i))
(when (eq sassoc 'nonassoc)
;; Record an explicit error for this token
(aset errs nerrs i)
(setq nerrs (1+ nerrs)))
)))
(setq i (1+ i)))
(when (> nerrs 0)
(set-errs-nerrs errp nerrs)
(aset err-table state errp))
))
(defun wisent-set-conflicts (state)
"Find and attempt to resolve conflicts in specified STATE."
(let (i j k v shiftp symbol)
(unless (aref consistent state)
(fillarray lookaheadset 0)
(when (setq shiftp (aref shift-table state))
(setq k (shifts-nshifts shiftp)
v (shifts-shifts shiftp)
i 0)
(while (and (< i k)
(wisent-ISTOKEN
(setq symbol (aref accessing-symbol (aref v i)))))
(or (zerop (aref v i))
(wisent-SETBIT lookaheadset symbol))
(setq i (1+ i))))
;; Loop over all rules which require lookahead in this state
;; first check for shift-reduce conflict, and try to resolve
;; using precedence
(setq i (aref lookaheads state)
k (aref lookaheads (1+ state)))
(while (< i k)
(when (aref rprec (aref LAruleno i))
(setq v (aref LA i)
j 0)
(while (< j tokensetsize)
(if (zerop (logand (aref v j) (aref lookaheadset j)))
(setq j (1+ j))
;; if (LA (i)[j] & lookaheadset[j])
(wisent-resolve-sr-conflict state i)
(setq j tokensetsize)))) ;; break
(setq i (1+ i)))
;; Loop over all rules which require lookahead in this state
;; Check for conflicts not resolved above.
(setq i (aref lookaheads state))
(while (< i k)
(setq v (aref LA i)
j 0)
(while (< j tokensetsize)
;; if (LA (i)[j] & lookaheadset[j])
(if (not (zerop (logand (aref v j) (aref lookaheadset j))))
(aset conflicts state t))
(setq j (1+ j)))
(setq j 0)
(while (< j tokensetsize)
;; lookaheadset[j] |= LA (i)[j];
(aset lookaheadset j (logior (aref lookaheadset j)
(aref v j)))
(setq j (1+ j)))
(setq i (1+ i)))
)))
(defun wisent-resolve-conflicts ()
"Find and resolve conflicts."
(let (i)
(setq conflicts (make-vector nstates nil)
shiftset (make-vector tokensetsize 0)
lookaheadset (make-vector tokensetsize 0)
err-table (make-vector nstates nil)
i 0)
(while (< i nstates)
(wisent-set-conflicts i)
(setq i (1+ i)))))
(defun wisent-count-sr-conflicts (state)
"Count the number of shift/reduce conflicts in specified STATE."
(let (i j k shiftp symbol v)
(setq src-count 0
shiftp (aref shift-table state))
(when shiftp
(fillarray shiftset 0)
(fillarray lookaheadset 0)
(setq k (shifts-nshifts shiftp)
v (shifts-shifts shiftp)
i 0)
(while (< i k)
(when (not (zerop (aref v i)))
(setq symbol (aref accessing-symbol (aref v i)))
(if (wisent-ISVAR symbol)
(setq i k) ;; break
(wisent-SETBIT shiftset symbol)))
(setq i (1+ i)))
(setq k (aref lookaheads (1+ state))
i (aref lookaheads state))
(while (< i k)
(setq v (aref LA i)
j 0)
(while (< j tokensetsize)
;; lookaheadset[j] |= LA (i)[j]
(aset lookaheadset j (logior (aref lookaheadset j)
(aref v j)))
(setq j (1+ j)))
(setq i (1+ i)))
(setq k 0)
(while (< k tokensetsize)
;; lookaheadset[k] &= shiftset[k];
(aset lookaheadset k (logand (aref lookaheadset k)
(aref shiftset k)))
(setq k (1+ k)))
(setq i 0)
(while (< i ntokens)
(if (wisent-BITISSET lookaheadset i)
(setq src-count (1+ src-count)))
(setq i (1+ i))))
src-count))
(defun wisent-count-rr-conflicts (state)
"Count the number of reduce/reduce conflicts in specified STATE."
(let (i j count n m)
(setq rrc-count 0
m (aref lookaheads state)
n (aref lookaheads (1+ state)))
(when (>= (- n m) 2)
(setq i 0)
(while (< i ntokens)
(setq count 0
j m)
(while (< j n)
(if (wisent-BITISSET (aref LA j) i)
(setq count (1+ count)))
(setq j (1+ j)))
(if (>= count 2)
(setq rrc-count (1+ rrc-count)))
(setq i (1+ i))))
rrc-count))
(defvar wisent-expected-conflicts nil
"*If non-nil suppress the warning about shift/reduce conflicts.
It is a decimal integer N that says there should be no warning if
there are N shift/reduce conflicts and no reduce/reduce conflicts. A
warning is given if there are either more or fewer conflicts, or if
there are any reduce/reduce conflicts.")
(defun wisent-total-conflicts ()
"Report the total number of conflicts."
(unless (and (zerop rrc-total)
(or (zerop src-total)
(= src-total (or wisent-expected-conflicts 0))))
(let* ((src (wisent-source))
(src (if src (concat " in " src) ""))
(msg (format "Grammar%s contains" src)))
(if (> src-total 0)
(setq msg (format "%s %d shift/reduce conflict%s"
msg src-total (if (> src-total 1)
"s" ""))))
(if (and (> src-total 0) (> rrc-total 0))
(setq msg (format "%s and" msg)))
(if (> rrc-total 0)
(setq msg (format "%s %d reduce/reduce conflict%s"
msg rrc-total (if (> rrc-total 1)
"s" ""))))
(message msg))))
(defun wisent-print-conflicts ()
"Report conflicts."
(let (i)
(setq src-total 0
rrc-total 0
i 0)
(while (< i nstates)
(when (aref conflicts i)
(wisent-count-sr-conflicts i)
(wisent-count-rr-conflicts i)
(setq src-total (+ src-total src-count)
rrc-total (+ rrc-total rrc-count))
(when (or wisent-verbose-flag wisent-debug-flag)
(wisent-log "State %d contains" i)
(if (> src-count 0)
(wisent-log " %d shift/reduce conflict%s"
src-count (if (> src-count 1) "s" "")))
(if (and (> src-count 0) (> rrc-count 0))
(wisent-log " and"))
(if (> rrc-count 0)
(wisent-log " %d reduce/reduce conflict%s"
rrc-count (if (> rrc-count 1) "s" "")))
(wisent-log ".\n")))
(setq i (1+ i)))
(wisent-total-conflicts)))
;;;; --------------------------------------
;;;; Report information on generated parser
;;;; --------------------------------------
(defun wisent-print-grammar ()
"Print grammar."
(let (i j r break left-count right-count)
(wisent-log "\n\nGrammar\n\n Number, Rule\n")
(setq i 1)
(while (<= i nrules)
;; Don't print rules disabled in `wisent-reduce-grammar-tables'.
(when (aref ruseful i)
(wisent-log " %s %s ->"
(wisent-pad-string (number-to-string i) 6)
(wisent-tag (aref rlhs i)))
(setq r (aref rrhs i))
(if (> (aref ritem r) 0)
(while (> (aref ritem r) 0)
(wisent-log " %s" (wisent-tag (aref ritem r)))
(setq r (1+ r)))
(wisent-log " /* empty */"))
(wisent-log "\n"))
(setq i (1+ i)))
(wisent-log "\n\nTerminals, with rules where they appear\n\n")
(wisent-log "%s (-1)\n" (wisent-tag 0))
(setq i 1)
(while (< i ntokens)
(wisent-log "%s (%d)" (wisent-tag i) i)
(setq j 1)
(while (<= j nrules)
(setq r (aref rrhs j)
break nil)
(while (and (not break) (> (aref ritem r) 0))
(if (setq break (= (aref ritem r) i))
(wisent-log " %d" j)
(setq r (1+ r))))
(setq j (1+ j)))
(wisent-log "\n")
(setq i (1+ i)))
(wisent-log "\n\nNonterminals, with rules where they appear\n\n")
(setq i ntokens)
(while (< i nsyms)
(setq left-count 0
right-count 0
j 1)
(while (<= j nrules)
(if (= (aref rlhs j) i)
(setq left-count (1+ left-count)))
(setq r (aref rrhs j)
break nil)
(while (and (not break) (> (aref ritem r) 0))
(if (= (aref ritem r) i)
(setq right-count (1+ right-count)
break t)
(setq r (1+ r))))
(setq j (1+ j)))
(wisent-log "%s (%d)\n " (wisent-tag i) i)
(when (> left-count 0)
(wisent-log " on left:")
(setq j 1)
(while (<= j nrules)
(if (= (aref rlhs j) i)
(wisent-log " %d" j))
(setq j (1+ j))))
(when (> right-count 0)
(if (> left-count 0)
(wisent-log ","))
(wisent-log " on right:")
(setq j 1)
(while (<= j nrules)
(setq r (aref rrhs j)
break nil)
(while (and (not break) (> (aref ritem r) 0))
(if (setq break (= (aref ritem r) i))
(wisent-log " %d" j)
(setq r (1+ r))))
(setq j (1+ j))))
(wisent-log "\n")
(setq i (1+ i)))
))
(defun wisent-print-reductions (state)
"Print reductions on STATE."
(let (i j k v symbol m n defaulted
default-LA default-rule cmax count shiftp errp nodefault)
(setq nodefault nil
i 0)
(fillarray shiftset 0)
(setq shiftp (aref shift-table state))
(when shiftp
(setq k (shifts-nshifts shiftp)
v (shifts-shifts shiftp)
i 0)
(while (< i k)
(when (not (zerop (aref v i)))
(setq symbol (aref accessing-symbol (aref v i)))
(if (wisent-ISVAR symbol)
(setq i k) ;; break
;; If this state has a shift for the error token, don't
;; use a default rule.
(if (= symbol error-token-number)
(setq nodefault t))
(wisent-SETBIT shiftset symbol)))
(setq i (1+ i))))
(setq errp (aref err-table state))
(when errp
(setq k (errs-nerrs errp)
v (errs-errs errp)
i 0)
(while (< i k)
(if (not (zerop (setq symbol (aref v i))))
(wisent-SETBIT shiftset symbol))
(setq i (1+ i))))
(setq m (aref lookaheads state)
n (aref lookaheads (1+ state)))
(cond
((and (= (- n m) 1) (not nodefault))
(setq default-rule (aref LAruleno m)
v (aref LA m)
k 0)
(while (< k tokensetsize)
(aset lookaheadset k (logand (aref v k)
(aref shiftset k)))
(setq k (1+ k)))
(setq i 0)
(while (< i ntokens)
(if (wisent-BITISSET lookaheadset i)
(wisent-log " %s\t[reduce using rule %d (%s)]\n"
(wisent-tag i) default-rule
(wisent-tag (aref rlhs default-rule))))
(setq i (1+ i)))
(wisent-log " $default\treduce using rule %d (%s)\n\n"
default-rule
(wisent-tag (aref rlhs default-rule)))
)
((>= (- n m) 1)
(setq cmax 0
default-LA -1
default-rule 0)
(when (not nodefault)
(setq i m)
(while (< i n)
(setq v (aref LA i)
count 0
k 0)
(while (< k tokensetsize)
;; lookaheadset[k] = LA (i)[k] & ~shiftset[k]
(aset lookaheadset k
(logand (aref v k)
(lognot (aref shiftset k))))
(setq k (1+ k)))
(setq j 0)
(while (< j ntokens)
(if (wisent-BITISSET lookaheadset j)
(setq count (1+ count)))
(setq j (1+ j)))
(if (> count cmax)
(setq cmax count
default-LA i
default-rule (aref LAruleno i)))
(setq k 0)
(while (< k tokensetsize)
(aset shiftset k (logior (aref shiftset k)
(aref lookaheadset k)))
(setq k (1+ k)))
(setq i (1+ i))))
(fillarray shiftset 0)
(when shiftp
(setq k (shifts-nshifts shiftp)
v (shifts-shifts shiftp)
i 0)
(while (< i k)
(when (not (zerop (aref v i)))
(setq symbol (aref accessing-symbol (aref v i)))
(if (wisent-ISVAR symbol)
(setq i k) ;; break
(wisent-SETBIT shiftset symbol)))
(setq i (1+ i))))
(setq i 0)
(while (< i ntokens)
(setq defaulted nil
count (if (wisent-BITISSET shiftset i) 1 0)
j m)
(while (< j n)
(when (wisent-BITISSET (aref LA j) i)
(if (zerop count)
(progn
(if (not (= j default-LA))
(wisent-log
" %s\treduce using rule %d (%s)\n"
(wisent-tag i) (aref LAruleno j)
(wisent-tag (aref rlhs (aref LAruleno j))))
(setq defaulted t))
(setq count (1+ count)))
(if defaulted
(wisent-log
" %s\treduce using rule %d (%s)\n"
(wisent-tag i) (aref LAruleno default-LA)
(wisent-tag (aref rlhs (aref LAruleno default-LA)))))
(setq defaulted nil)
(wisent-log
" %s\t[reduce using rule %d (%s)]\n"
(wisent-tag i) (aref LAruleno j)
(wisent-tag (aref rlhs (aref LAruleno j))))))
(setq j (1+ j)))
(setq i (1+ i)))
(if (>= default-LA 0)
(wisent-log
" $default\treduce using rule %d (%s)\n"
default-rule
(wisent-tag (aref rlhs default-rule))))
))))
(defun wisent-print-actions (state)
"Print actions on STATE."
(let (i j k v state1 symbol shiftp errp redp rule nerrs break)
(setq shiftp (aref shift-table state)
redp (aref reduction-table state)
errp (aref err-table state))
(if (and (not shiftp) (not redp))
(if (= final-state state)
(wisent-log " $default\taccept\n")
(wisent-log " NO ACTIONS\n"))
(if (not shiftp)
(setq i 0
k 0)
(setq k (shifts-nshifts shiftp)
v (shifts-shifts shiftp)
i 0
break nil)
(while (and (not break) (< i k))
(if (zerop (setq state1 (aref v i)))
(setq i (1+ i))
(setq symbol (aref accessing-symbol state1))
;; The following line used to be turned off.
(if (wisent-ISVAR symbol)
(setq break t) ;; break
(wisent-log " %s\tshift, and go to state %d\n"
(wisent-tag symbol) state1)
(setq i (1+ i)))))
(if (> i 0)
(wisent-log "\n")))
(when errp
(setq nerrs (errs-nerrs errp)
v (errs-errs errp)
j 0)
(while (< j nerrs)
(if (aref v j)
(wisent-log " %s\terror (nonassociative)\n"
(wisent-tag (aref v j))))
(setq j (1+ j)))
(if (> j 0)
(wisent-log "\n")))
(cond
((and (aref consistent state) redp)
(setq rule (aref (reductions-rules redp) 0)
symbol (aref rlhs rule))
(wisent-log " $default\treduce using rule %d (%s)\n\n"
rule (wisent-tag symbol))
)
(redp
(wisent-print-reductions state)
))
(when (< i k)
(setq v (shifts-shifts shiftp))
(while (< i k)
(when (setq state1 (aref v i))
(setq symbol (aref accessing-symbol state1))
(wisent-log " %s\tgo to state %d\n"
(wisent-tag symbol) state1))
(setq i (1+ i)))
(wisent-log "\n"))
)))
(defun wisent-print-core (state)
"Print STATE core."
(let (i k rule statep sp sp1)
(setq statep (aref state-table state)
k (core-nitems statep))
(when (> k 0)
(setq i 0)
(while (< i k)
;; sp1 = sp = ritem + statep->items[i];
(setq sp1 (aref (core-items statep) i)
sp sp1)
(while (> (aref ritem sp) 0)
(setq sp (1+ sp)))
(setq rule (- (aref ritem sp)))
(wisent-log " %s -> " (wisent-tag (aref rlhs rule)))
(setq sp (aref rrhs rule))
(while (< sp sp1)
(wisent-log "%s " (wisent-tag (aref ritem sp)))
(setq sp (1+ sp)))
(wisent-log ".")
(while (> (aref ritem sp) 0)
(wisent-log " %s" (wisent-tag (aref ritem sp)))
(setq sp (1+ sp)))
(wisent-log " (rule %d)\n" rule)
(setq i (1+ i)))
(wisent-log "\n"))))
(defun wisent-print-state (state)
"Print information on STATE."
(wisent-log "\n\nstate %d\n\n" state)
(wisent-print-core state)
(wisent-print-actions state))
(defun wisent-print-states ()
"Print information on states."
(let ((i 0))
(while (< i nstates)
(wisent-print-state i)
(setq i (1+ i)))))
(defun wisent-print-results ()
"Print information on generated parser.
Report detailed information if `wisent-verbose-flag' or
`wisent-debug-flag' are non-nil."
(when (or wisent-verbose-flag wisent-debug-flag)
(wisent-print-useless))
(wisent-print-conflicts)
(when (or wisent-verbose-flag wisent-debug-flag)
(wisent-print-grammar)
(wisent-print-states))
;; Append output to log file when running in batch mode
(when (wisent-noninteractive)
(wisent-append-to-log-file)
(wisent-clear-log)))
;;;; ---------------------------------
;;;; Build the generated parser tables
;;;; ---------------------------------
(defun wisent-action-row (state actrow)
"Figure out the actions for the specified STATE.
Decide what to do for each type of token if seen as the lookahead
token in specified state. The value returned is used as the default
action for the state. In addition, ACTROW is filled with what to do
for each kind of token, index by symbol number, with nil meaning do
the default action. The value 'error, means this situation is an
error. The parser recognizes this value specially.
This is where conflicts are resolved. The loop over lookahead rules
considered lower-numbered rules last, and the last rule considered
that likes a token gets to handle it."
(let (i j k m n v default-rule nreds rule max count
shift-state symbol redp shiftp errp nodefault)
(fillarray actrow nil)
(setq default-rule 0
nodefault nil ;; nil inhibit having any default reduction
nreds 0
m 0
n 0
redp (aref reduction-table state))
(when redp
(setq nreds (reductions-nreds redp))
(when (>= nreds 1)
;; loop over all the rules available here which require
;; lookahead
(setq m (aref lookaheads state)
n (aref lookaheads (1+ state))
i (1- n))
(while (>= i m)
;; and find each token which the rule finds acceptable to
;; come next
(setq j 0)
(while (< j ntokens)
;; and record this rule as the rule to use if that token
;; follows.
(if (wisent-BITISSET (aref LA i) j)
(aset actrow j (- (aref LAruleno i)))
)
(setq j (1+ j)))
(setq i (1- i)))))
;; Now see which tokens are allowed for shifts in this state. For
;; them, record the shift as the thing to do. So shift is
;; preferred to reduce.
(setq shiftp (aref shift-table state))
(when shiftp
(setq k (shifts-nshifts shiftp)
v (shifts-shifts shiftp)
i 0)
(while (< i k)
(setq shift-state (aref v i))
(if (zerop shift-state)
nil ;; continue
(setq symbol (aref accessing-symbol shift-state))
(if (wisent-ISVAR symbol)
(setq i k) ;; break
(aset actrow symbol shift-state)
;; Do not use any default reduction if there is a shift
;; for error
(if (= symbol error-token-number)
(setq nodefault t))))
(setq i (1+ i))))
;; See which tokens are an explicit error in this state (due to
;; %nonassoc). For them, record error as the action.
(setq errp (aref err-table state))
(when errp
(setq k (errs-nerrs errp)
v (errs-errs errp)
i 0)
(while (< i k)
(aset actrow (aref v i) wisent-error-tag)
(setq i (1+ i))))
;; Now find the most common reduction and make it the default
;; action for this state.
(when (and (>= nreds 1) (not nodefault))
(if (aref consistent state)
(setq default-rule (- (aref (reductions-rules redp) 0)))
(setq max 0
i m)
(while (< i n)
(setq count 0
rule (- (aref LAruleno i))
j 0)
(while (< j ntokens)
(if (and (numberp (aref actrow j))
(= (aref actrow j) rule))
(setq count (1+ count)))
(setq j (1+ j)))
(if (> count max)
(setq max count
default-rule rule))
(setq i (1+ i)))
;; actions which match the default are replaced with zero,
;; which means "use the default"
(when (> max 0)
(setq j 0)
(while (< j ntokens)
(if (and (numberp (aref actrow j))
(= (aref actrow j) default-rule))
(aset actrow j nil))
(setq j (1+ j)))
)))
;; If have no default rule, if this is the final state the default
;; is accept else it is an error. So replace any action which
;; says "error" with "use default".
(when (zerop default-rule)
(if (= final-state state)
(setq default-rule wisent-accept-tag)
(setq j 0)
(while (< j ntokens)
(if (eq (aref actrow j) wisent-error-tag)
(aset actrow j nil))
(setq j (1+ j)))
(setq default-rule wisent-error-tag)))
default-rule))
(defconst wisent-default-tag 'default
"Tag used in an action table to indicate a default action.")
;; These variables only exist locally in the function
;; `wisent-state-actions' and are shared by all other nested callees.
(wisent-defcontext semantic-actions
;; Uninterned symbols used in code generation.
stack sp gotos state
;; Name of the current semantic action
NAME)
(defun wisent-state-actions ()
"Figure out the actions for every state.
Return the action table."
;; Store the semantic action obarray in (unused) RCODE[0].
(aset rcode 0 (make-vector 13 0))
(let (i j action-table actrow action)
(setq action-table (make-vector nstates nil)
actrow (make-vector ntokens nil)
i 0)
(wisent-with-context semantic-actions
(setq stack (make-symbol "stack")
sp (make-symbol "sp")
gotos (make-symbol "gotos")
state (make-symbol "state"))
(while (< i nstates)
(setq action (wisent-action-row i actrow))
;; Translate a reduction into semantic action
(and (integerp action) (< action 0)
(setq action (wisent-semantic-action (- action))))
(aset action-table i (list (cons wisent-default-tag action)))
(setq j 0)
(while (< j ntokens)
(when (setq action (aref actrow j))
;; Translate a reduction into semantic action
(and (integerp action) (< action 0)
(setq action (wisent-semantic-action (- action))))
(aset action-table i (cons (cons (aref tags j) action)
(aref action-table i)))
)
(setq j (1+ j)))
(aset action-table i (nreverse (aref action-table i)))
(setq i (1+ i)))
action-table)))
(defun wisent-goto-actions ()
"Figure out what to do after reducing with each rule.
Depending on the saved state from before the beginning of parsing the
data that matched this rule. Return the goto table."
(let (i j m n symbol state goto-table)
(setq goto-table (make-vector nstates nil)
i ntokens)
(while (< i nsyms)
(setq symbol (- i ntokens)
m (aref goto-map symbol)
n (aref goto-map (1+ symbol))
j m)
(while (< j n)
(setq state (aref from-state j))
(aset goto-table state
(cons (cons (aref tags i) (aref to-state j))
(aref goto-table state)))
(setq j (1+ j)))
(setq i (1+ i)))
goto-table))
(defsubst wisent-quote-p (sym)
"Return non-nil if SYM is bound to the `quote' function."
(condition-case nil
(eq (indirect-function sym)
(indirect-function 'quote))
(error nil)))
(defsubst wisent-backquote-p (sym)
"Return non-nil if SYM is bound to the `backquote' function."
(condition-case nil
(eq (indirect-function sym)
(indirect-function 'backquote))
(error nil)))
(defun wisent-check-$N (x m)
"Return non-nil if X is a valid $N or $regionN symbol.
That is if X is a $N or $regionN symbol with N >= 1 and N <= M.
Also warn if X is a $N or $regionN symbol with N < 1 or N > M."
(when (symbolp x)
(let* ((n (symbol-name x))
(i (and (string-match "\\`\\$\\(region\\)?\\([0-9]+\\)\\'" n)
(string-to-number (match-string 2 n)))))
(when i
(if (and (>= i 1) (<= i m))
t
(message
"*** In %s, %s might be a free variable (rule has %s)"
NAME x (format (cond ((< m 1) "no component")
((= m 1) "%d component")
("%d components"))
m))
nil)))))
(defun wisent-semantic-action-expand-body (body n &optional found)
"Parse BODY of semantic action.
N is the maximum number of $N variables that can be referenced in
BODY. Warn on references out of permitted range.
Optional argument FOUND is the accumulated list of '$N' references
encountered so far.
Return a cons (FOUND . XBODY), where FOUND is the list of $N
references found in BODY, and XBODY is BODY expression with
`backquote' forms expanded."
(if (not (listp body))
;; BODY is an atom, no expansion needed
(progn
(if (wisent-check-$N body n)
;; Accumulate $i symbol
(pushnew body found :test #'equal))
(cons found body))
;; BODY is a list, expand inside it
(let (xbody sexpr)
;; If backquote expand it first
(if (wisent-backquote-p (car body))
(setq body (macroexpand body)))
(while body
(setq sexpr (car body)
body (cdr body))
(cond
;; Function call excepted quote expression
((and (consp sexpr)
(not (wisent-quote-p (car sexpr))))
(setq sexpr (wisent-semantic-action-expand-body sexpr n found)
found (car sexpr)
sexpr (cdr sexpr)))
;; $i symbol
((wisent-check-$N sexpr n)
;; Accumulate $i symbol
(pushnew sexpr found :test #'equal))
)
;; Accumulate expanded forms
(setq xbody (nconc xbody (list sexpr))))
(cons found xbody))))
(defun wisent-semantic-action (r)
"Set up the Elisp function for semantic action at rule R.
On entry RCODE[R] contains a vector [BODY N (NTERM I)] where BODY is the
body of the semantic action, N is the maximum number of values
available in the parser's stack, NTERM is the nonterminal the semantic
action belongs to, and I is the index of the semantic action inside
NTERM definition. Return the semantic action symbol.
The semantic action function accepts three arguments:
- the state/value stack
- the top-of-stack index
- the goto table
And returns the updated top-of-stack index."
(if (not (aref ruseful r))
(aset rcode r nil)
(let* ((actn (aref rcode r))
(n (aref actn 1)) ; nb of val avail. in stack
(NAME (apply 'format "%s:%d" (aref actn 2)))
(form (wisent-semantic-action-expand-body (aref actn 0) n))
($l (car form)) ; list of $vars used in body
(form (cdr form)) ; expanded form of body
(nt (aref rlhs r)) ; nonterminal item no.
(bl nil) ; `let*' binding list
$v i j)
;; Compute $N and $regionN bindings
(setq i n)
(while (> i 0)
(setq j (1+ (* 2 (- n i))))
;; Only bind $regionI if used in action
(setq $v (intern (format "$region%d" i)))
(if (memq $v $l)
(setq bl (cons `(,$v (cdr (aref ,stack (- ,sp ,j)))) bl)))
;; Only bind $I if used in action
(setq $v (intern (format "$%d" i)))
(if (memq $v $l)
(setq bl (cons `(,$v (car (aref ,stack (- ,sp ,j)))) bl)))
(setq i (1- i)))
;; Compute J, the length of rule's RHS. It will give the
;; current parser state at STACK[SP - 2*J], and where to push
;; the new semantic value and the next state, respectively at:
;; STACK[SP - 2*J + 1] and STACK[SP - 2*J + 2]. Generally N,
;; the maximum number of values available in the stack, is equal
;; to J. But, for mid-rule actions, N is the number of rule
;; elements before the action and J is always 0 (empty rule).
(setq i (aref rrhs r)
j 0)
(while (> (aref ritem i) 0)
(setq j (1+ j)
i (1+ i)))
;; Create the semantic action symbol.
(setq actn (intern NAME (aref rcode 0)))
;; Store source code in function cell of the semantic action
;; symbol. It will be byte-compiled at automaton's compilation
;; time. Using a byte-compiled automaton can significantly
;; speed up parsing!
(fset actn
`(lambda (,stack ,sp ,gotos)
(let* (,@bl
($region
,(cond
((= n 1)
(if (assq '$region1 bl)
'$region1
`(cdr (aref ,stack (1- ,sp)))))
((> n 1)
`(wisent-production-bounds
,stack (- ,sp ,(1- (* 2 n))) (1- ,sp)))))
($action ,NAME)
($nterm ',(aref tags nt))
,@(and (> j 0) `((,sp (- ,sp ,(* j 2)))))
(,state (cdr (assq $nterm
(aref ,gotos
(aref ,stack ,sp))))))
(setq ,sp (+ ,sp 2))
;; push semantic value
(aset ,stack (1- ,sp) (cons ,form $region))
;; push next state
(aset ,stack ,sp ,state)
;; return new top of stack
,sp)))
;; Return the semantic action symbol
actn)))
;;;; ----------------------------
;;;; Build parser LALR automaton.
;;;; ----------------------------
(defun wisent-parser-automaton ()
"Compute and return LALR(1) automaton from GRAMMAR.
GRAMMAR is in internal format. GRAM/ACTS are grammar rules
in internal format. STARTS defines the start symbols."
;; Check for useless stuff
(wisent-reduce-grammar)
(wisent-set-derives)
(wisent-set-nullable)
;; convert to nondeterministic finite state machine.
(wisent-generate-states)
;; make it deterministic.
(wisent-lalr)
;; Find and record any conflicts: places where one token of
;; lookahead is not enough to disambiguate the parsing. Also
;; resolve s/r conflicts based on precedence declarations.
(wisent-resolve-conflicts)
(wisent-print-results)
(vector (wisent-state-actions) ; action table
(wisent-goto-actions) ; goto table
start-table ; start symbols
(aref rcode 0) ; sem. action symbol obarray
)
)
;;;; -------------------
;;;; Parse input grammar
;;;; -------------------
(defconst wisent-reserved-symbols (list wisent-error-term)
"The list of reserved symbols.
Also all symbols starting with a character defined in
`wisent-reserved-capitals' are reserved for internal use.")
(defconst wisent-reserved-capitals '(?\$ ?\@)
"The list of reserved capital letters.
All symbol starting with one of these letters are reserved for
internal use.")
(defconst wisent-starts-nonterm '$STARTS
"Main start symbol.
It gives the rules for start symbols.")
(defvar wisent-single-start-flag nil
"Non-nil means allows only one start symbol like in Bison.
That is don't add extra start rules to the grammar. This is
useful to compare the Wisent's generated automaton with the Bison's
one.")
(defsubst wisent-ISVALID-VAR (x)
"Return non-nil if X is a character or an allowed symbol."
(and x (symbolp x)
(not (memq (aref (symbol-name x) 0) wisent-reserved-capitals))
(not (memq x wisent-reserved-symbols))))
(defsubst wisent-ISVALID-TOKEN (x)
"Return non-nil if X is a character or an allowed symbol."
(or (wisent-char-p x)
(wisent-ISVALID-VAR x)))
(defun wisent-push-token (symbol &optional nocheck)
"Push a new SYMBOL in the list of tokens.
Bypass checking if NOCHECK is non-nil."
;; Check
(or nocheck (wisent-ISVALID-TOKEN symbol)
(error "Invalid terminal symbol: %S" symbol))
(if (memq symbol token-list)
(message "*** duplicate terminal `%s' ignored" symbol)
;; Set up properties
(wisent-set-prec symbol nil)
(wisent-set-assoc symbol nil)
(wisent-set-item-number symbol ntokens)
;; Add
(setq ntokens (1+ ntokens)
token-list (cons symbol token-list))))
(defun wisent-push-var (symbol &optional nocheck)
"Push a new SYMBOL in the list of nonterminals.
Bypass checking if NOCHECK is non-nil."
;; Check
(unless nocheck
(or (wisent-ISVALID-VAR symbol)
(error "Invalid nonterminal symbol: %S" symbol))
(if (memq symbol var-list)
(error "Nonterminal `%s' already defined" symbol)))
;; Set up properties
(wisent-set-item-number symbol nvars)
;; Add
(setq nvars (1+ nvars)
var-list (cons symbol var-list)))
(defun wisent-parse-nonterminals (defs)
"Parse nonterminal definitions in DEFS.
Fill in each element of the global arrays RPREC, RCODE, RUSEFUL with
respectively rule precedence level, semantic action code and
usefulness flag. Return a list of rules of the form (LHS . RHS) where
LHS and RHS are respectively the Left Hand Side and Right Hand Side of
the rule."
(setq rprec nil
rcode nil
nitems 0
nrules 0)
(let (def nonterm rlist rule rules rhs rest item items
rhl plevel semact @n @count iactn)
(setq @count 0)
(while defs
(setq def (car defs)
defs (cdr defs)
nonterm (car def)
rlist (cdr def)
iactn 0)
(or (consp rlist)
(error "Invalid nonterminal definition syntax: %S" def))
(while rlist
(setq rule (car rlist)
rlist (cdr rlist)
items (car rule)
rest (cdr rule)
rhl 0
rhs nil)
;; Check & count items
(setq nitems (1+ nitems)) ;; LHS item
(while items
(setq item (car items)
items (cdr items)
nitems (1+ nitems)) ;; RHS items
(if (listp item)
;; Mid-rule action
(progn
(setq @count (1+ @count)
@n (intern (format "@%d" @count)))
(wisent-push-var @n t)
;; Push a new empty rule with the mid-rule action
(setq semact (vector item rhl (list nonterm iactn))
iactn (1+ iactn)
plevel nil
rcode (cons semact rcode)
rprec (cons plevel rprec)
item @n ;; Replace action by @N nonterminal
rules (cons (list item) rules)
nitems (1+ nitems)
nrules (1+ nrules)))
;; Check terminal or nonterminal symbol
(cond
((or (memq item token-list) (memq item var-list)))
;; Create new literal character token
((wisent-char-p item) (wisent-push-token item t))
((error "Symbol `%s' is used, but is not defined as a token and has no rules"
item))))
(setq rhl (1+ rhl)
rhs (cons item rhs)))
;; Check & collect rule precedence level
(setq plevel (when (vectorp (car rest))
(setq item (car rest)
rest (cdr rest))
(if (and (= (length item) 1)
(memq (aref item 0) token-list)
(wisent-prec (aref item 0)))
(wisent-item-number (aref item 0))
(error "Invalid rule precedence level syntax: %S" item)))
rprec (cons plevel rprec))
;; Check & collect semantic action body
(setq semact (vector
(if rest
(if (cdr rest)
(error "Invalid semantic action syntax: %S" rest)
(car rest))
;; Give a default semantic action body: nil
;; for an empty rule or $1, the value of the
;; first symbol in the rule, otherwise.
(if (> rhl 0) '$1 '()))
rhl
(list nonterm iactn))
iactn (1+ iactn)
rcode (cons semact rcode))
(setq rules (cons (cons nonterm (nreverse rhs)) rules)
nrules (1+ nrules))))
(setq ruseful (make-vector (1+ nrules) t)
rprec (vconcat (cons nil (nreverse rprec)))
rcode (vconcat (cons nil (nreverse rcode))))
(nreverse rules)
))
(defun wisent-parse-grammar (grammar &optional start-list)
"Parse GRAMMAR and build a suitable internal representation.
Optional argument START-LIST defines the start symbols.
GRAMMAR is a list of form: (TOKENS ASSOCS . NONTERMS)
TOKENS is a list of terminal symbols (tokens).
ASSOCS is nil or an alist of (ASSOC-TYPE . ASSOC-VALUE) elements
describing the associativity of TOKENS. ASSOC-TYPE must be one of the
`default-prec' `nonassoc', `left' or `right' symbols. When ASSOC-TYPE
is `default-prec', ASSOC-VALUE must be nil or t (the default).
Otherwise it is a list of tokens which must have been previously
declared in TOKENS.
NONTERMS is the list of non terminal definitions (see function
`wisent-parse-nonterminals')."
(or (and (consp grammar) (> (length grammar) 2))
(error "Bad input grammar"))
(let (i r rhs pre dpre lst start-var assoc rules item
token var def tokens defs ep-token ep-var ep-def)
;; Built-in tokens
(setq ntokens 0 nvars 0)
(wisent-push-token wisent-eoi-term t)
(wisent-push-token wisent-error-term t)
;; Check/collect terminals
(setq lst (car grammar))
(while lst
(wisent-push-token (car lst))
(setq lst (cdr lst)))
;; Check/Set up tokens precedence & associativity
(setq lst (nth 1 grammar)
pre 0
defs nil
dpre nil
default-prec t)
(while lst
(setq def (car lst)
assoc (car def)
tokens (cdr def)
lst (cdr lst))
(if (eq assoc 'default-prec)
(progn
(or (null (cdr tokens))
(memq (car tokens) '(t nil))
(error "Invalid default-prec value: %S" tokens))
(setq default-prec (car tokens))
(if dpre
(message "*** redefining default-prec to %s"
default-prec))
(setq dpre t))
(or (memq assoc '(left right nonassoc))
(error "Invalid associativity syntax: %S" assoc))
(setq pre (1+ pre))
(while tokens
(setq token (car tokens)
tokens (cdr tokens))
(if (memq token defs)
(message "*** redefining precedence of `%s'" token))
(or (memq token token-list)
;; Define token not previously declared.
(wisent-push-token token))
(setq defs (cons token defs))
;; Record the precedence and associativity of the terminal.
(wisent-set-prec token pre)
(wisent-set-assoc token assoc))))
;; Check/Collect nonterminals
(setq lst (nthcdr 2 grammar)
defs nil)
(while lst
(setq def (car lst)
lst (cdr lst))
(or (consp def)
(error "Invalid nonterminal definition: %S" def))
(if (memq (car def) token-list)
(error "Nonterminal `%s' already defined as token" (car def)))
(wisent-push-var (car def))
(setq defs (cons def defs)))
(or defs
(error "No input grammar"))
(setq defs (nreverse defs))
;; Set up the start symbol.
(setq start-table nil)
(cond
;; 1. START-LIST is nil, the start symbol is the first
;; nonterminal defined in the grammar (Bison like).
((null start-list)
(setq start-var (caar defs)))
;; 2. START-LIST contains only one element, it is the start
;; symbol (Bison like).
((or wisent-single-start-flag (null (cdr start-list)))
(setq start-var (car start-list))
(or (assq start-var defs)
(error "Start symbol `%s' has no rule" start-var)))
;; 3. START-LIST contains more than one element. All defines
;; potential start symbols. One of them (the first one by
;; default) will be given at parse time to be the parser goal.
;; If `wisent-single-start-flag' is non-nil that feature is
;; disabled and the first nonterminal in START-LIST defines
;; the start symbol, like in case 2 above.
((not wisent-single-start-flag)
;; START-LIST is a list of nonterminals '(nt0 ... ntN).
;; Build and push ad hoc start rules in the grammar:
;; ($STARTS ((nt0) $1) ((nt1) $1) ... ((ntN) $1))
;; ($nt1 (($$nt1 nt1) $2))
;; ...
;; ($ntN (($$ntN ntN) $2))
;; Where internal symbols $ntI and $$ntI are respectively
;; nonterminals and terminals.
;; The internal start symbol $STARTS is used to build the
;; LALR(1) automaton. The true default start symbol used by the
;; parser is the first nonterminal in START-LIST (nt0).
(setq start-var wisent-starts-nonterm
lst (nreverse start-list))
(while lst
(setq var (car lst)
lst (cdr lst))
(or (memq var var-list)
(error "Start symbol `%s' has no rule" var))
(unless (assq var start-table) ;; Ignore duplicates
;; For each nt start symbol
(setq ep-var (intern (format "$%s" var))
ep-token (intern (format "$$%s" var)))
(wisent-push-token ep-token t)
(wisent-push-var ep-var t)
(setq
;; Add entry (nt . $$nt) to start-table
start-table (cons (cons var ep-token) start-table)
;; Add rule ($nt (($$nt nt) $2))
defs (cons (list ep-var (list (list ep-token var) '$2)) defs)
;; Add start rule (($nt) $1)
ep-def (cons (list (list ep-var) '$1) ep-def))
))
(wisent-push-var start-var t)
(setq defs (cons (cons start-var ep-def) defs))))
;; Set up rules main data structure & RPREC, RCODE, RUSEFUL
(setq rules (wisent-parse-nonterminals defs))
;; Set up the terminal & nonterminal lists.
(setq nsyms (+ ntokens nvars)
token-list (nreverse token-list)
lst var-list
var-list nil)
(while lst
(setq var (car lst)
lst (cdr lst)
var-list (cons var var-list))
(wisent-set-item-number ;; adjust nonterminal item number to
var (+ ntokens (wisent-item-number var)))) ;; I += NTOKENS
;; Store special item numbers
(setq error-token-number (wisent-item-number wisent-error-term)
start-symbol (wisent-item-number start-var))
;; Keep symbols in the TAGS vector so that TAGS[I] is the symbol
;; associated to item number I.
(setq tags (vconcat token-list var-list))
;; Set up RLHS RRHS & RITEM data structures from list of rules
;; (LHS . RHS) received from `wisent-parse-nonterminals'.
(setq rlhs (make-vector (1+ nrules) nil)
rrhs (make-vector (1+ nrules) nil)
ritem (make-vector (1+ nitems) nil)
i 0
r 1)
(while rules
(aset rlhs r (wisent-item-number (caar rules)))
(aset rrhs r i)
(setq rhs (cdar rules)
pre nil)
(while rhs
(setq item (wisent-item-number (car rhs)))
;; Get default precedence level of rule, that is the
;; precedence of the last terminal in it.
(and (wisent-ISTOKEN item)
default-prec
(setq pre item))
(aset ritem i item)
(setq i (1+ i)
rhs (cdr rhs)))
;; Setup the precedence level of the rule, that is the one
;; specified by %prec or the default one.
(and (not (aref rprec r)) ;; Already set by %prec
pre
(wisent-prec (aref tags pre))
(aset rprec r pre))
(aset ritem i (- r))
(setq i (1+ i)
r (1+ r))
(setq rules (cdr rules)))
))
;;;; ---------------------
;;;; Compile input grammar
;;;; ---------------------
(defun wisent-compile-grammar (grammar &optional start-list)
"Compile the LALR(1) GRAMMAR.
GRAMMAR is a list (TOKENS ASSOCS . NONTERMS) where:
- TOKENS is a list of terminal symbols (tokens).
- ASSOCS is nil, or an alist of (ASSOC-TYPE . ASSOC-VALUE) elements
describing the associativity of TOKENS. ASSOC-TYPE must be one of
the `default-prec' `nonassoc', `left' or `right' symbols. When
ASSOC-TYPE is `default-prec', ASSOC-VALUE must be nil or t (the
default). Otherwise it is a list of tokens which must have been
previously declared in TOKENS.
- NONTERMS is a list of nonterminal definitions.
Optional argument START-LIST specify the possible grammar start
symbols. This is a list of nonterminals which must have been
previously declared in GRAMMAR's NONTERMS form. By default, the start
symbol is the first nonterminal defined. When START-LIST contains
only one element, it is the start symbol. Otherwise, all elements are
possible start symbols, unless `wisent-single-start-flag' is non-nil.
In that case, the first element is the start symbol, and others are
ignored.
Return an automaton as a vector: [ACTIONS GOTOS STARTS FUNCTIONS]
where:
- ACTIONS is a state/token matrix telling the parser what to do at
every state based on the current lookahead token. That is shift,
reduce, accept or error.
- GOTOS is a state/nonterminal matrix telling the parser the next
state to go to after reducing with each rule.
- STARTS is an alist which maps the allowed start nonterminal symbols
to tokens that will be first shifted into the parser stack.
- FUNCTIONS is an obarray of semantic action symbols. Each symbol's
function definition is the semantic action lambda expression."
(if (wisent-automaton-p grammar)
grammar ;; Grammar already compiled just return it
(wisent-with-context compile-grammar
(let* ((gc-cons-threshold 1000000))
(garbage-collect)
(setq wisent-new-log-flag t)
;; Parse input grammar
(wisent-parse-grammar grammar start-list)
;; Generate the LALR(1) automaton
(wisent-parser-automaton)))))
;;;; --------------------------
;;;; Byte compile input grammar
;;;; --------------------------
(require 'bytecomp)
(defun wisent-byte-compile-grammar (form)
"Byte compile the `wisent-compile-grammar' FORM.
Automatically called by the Emacs Lisp byte compiler as a
`byte-compile' handler."
;; Eval the `wisent-compile-grammar' form to obtain an LALR
;; automaton internal data structure. Then, because the internal
;; data structure contains an obarray, convert it to a lisp form so
;; it can be byte-compiled.
(byte-compile-form
;; FIXME: we macroexpand here since `byte-compile-form' expects
;; macroexpanded code, but that's just a workaround: for lexical-binding
;; the lisp form should have to pass through closure-conversion and
;; `wisent-byte-compile-grammar' is called much too late for that.
;; Why isn't this `wisent-automaton-lisp-form' performed at
;; macroexpansion time? --Stef
(macroexpand-all
(wisent-automaton-lisp-form (eval form)))))
;; FIXME: We shouldn't use a `byte-compile' handler. Maybe using a hash-table
;; instead of an obarray would work around the problem that obarrays
;; aren't printable. Then (put 'wisent-compile-grammar 'side-effect-free t).
(put 'wisent-compile-grammar 'byte-compile 'wisent-byte-compile-grammar)
(defun wisent-automaton-lisp-form (automaton)
"Return a Lisp form that produces AUTOMATON.
See also `wisent-compile-grammar' for more details on AUTOMATON."
(or (wisent-automaton-p automaton)
(signal 'wrong-type-argument
(list 'wisent-automaton-p automaton)))
(let ((obn (make-symbol "ob")) ; Generated obarray name
(obv (aref automaton 3)) ; Semantic actions obarray
)
`(let ((,obn (make-vector 13 0)))
;; Generate code to initialize the semantic actions obarray,
;; in local variable OBN.
,@(let (obcode)
(mapatoms
#'(lambda (s)
(setq obcode
(cons `(fset (intern ,(symbol-name s) ,obn)
#',(symbol-function s))
obcode)))
obv)
obcode)
;; Generate code to create the automaton.
(vector
;; In code generated to initialize the action table, take
;; care of symbols that are interned in the semantic actions
;; obarray.
(vector
,@(mapcar
#'(lambda (state) ;; for each state
`(list
,@(mapcar
#'(lambda (tr) ;; for each transition
(let ((k (car tr)) ; token
(a (cdr tr))) ; action
(if (and (symbolp a)
(intern-soft (symbol-name a) obv))
`(cons ,(if (symbolp k) `(quote ,k) k)
(intern-soft ,(symbol-name a) ,obn))
`(quote ,tr))))
state)))
(aref automaton 0)))
;; The code of the goto table is unchanged.
,(aref automaton 1)
;; The code of the alist of start symbols is unchanged.
',(aref automaton 2)
;; The semantic actions obarray is in the local variable OBN.
,obn))))
(provide 'semantic/wisent/comp)
;; Disable messages with regards to lexical scoping, since this will
;; produce a bunch of 'lacks a prefix' warnings with the
;; `wisent-defcontext' trickery above.
;; Local variables:
;; byte-compile-warnings: (not lexical)
;; generated-autoload-load-name: "semantic/wisent/comp"
;; End:
;;; semantic/wisent/comp.el ends here
|