1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
;;; cl-extra.el --- Common Lisp features, part 2 -*-byte-compile-dynamic: t;-*-
;; Copyright (C) 1993, 2000, 2002, 2003, 2004,
;; 2005 Free Software Foundation, Inc.
;; Author: Dave Gillespie <daveg@synaptics.com>
;; Keywords: extensions
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;;; Commentary:
;; These are extensions to Emacs Lisp that provide a degree of
;; Common Lisp compatibility, beyond what is already built-in
;; in Emacs Lisp.
;;
;; This package was written by Dave Gillespie; it is a complete
;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
;;
;; Bug reports, comments, and suggestions are welcome!
;; This file contains portions of the Common Lisp extensions
;; package which are autoloaded since they are relatively obscure.
;;; Code:
(require 'cl)
;;; Type coercion.
(defun coerce (x type)
"Coerce OBJECT to type TYPE.
TYPE is a Common Lisp type specifier.
\n(fn OBJECT TYPE)"
(cond ((eq type 'list) (if (listp x) x (append x nil)))
((eq type 'vector) (if (vectorp x) x (vconcat x)))
((eq type 'string) (if (stringp x) x (concat x)))
((eq type 'array) (if (arrayp x) x (vconcat x)))
((and (eq type 'character) (stringp x) (= (length x) 1)) (aref x 0))
((and (eq type 'character) (symbolp x)) (coerce (symbol-name x) type))
((eq type 'float) (float x))
((typep x type) x)
(t (error "Can't coerce %s to type %s" x type))))
;;; Predicates.
(defun equalp (x y)
"Return t if two Lisp objects have similar structures and contents.
This is like `equal', except that it accepts numerically equal
numbers of different types (float vs. integer), and also compares
strings case-insensitively."
(cond ((eq x y) t)
((stringp x)
(and (stringp y) (= (length x) (length y))
(or (string-equal x y)
(string-equal (downcase x) (downcase y))))) ; lazy but simple!
((numberp x)
(and (numberp y) (= x y)))
((consp x)
(while (and (consp x) (consp y) (equalp (car x) (car y)))
(setq x (cdr x) y (cdr y)))
(and (not (consp x)) (equalp x y)))
((vectorp x)
(and (vectorp y) (= (length x) (length y))
(let ((i (length x)))
(while (and (>= (setq i (1- i)) 0)
(equalp (aref x i) (aref y i))))
(< i 0))))
(t (equal x y))))
;;; Control structures.
(defun cl-mapcar-many (cl-func cl-seqs)
(if (cdr (cdr cl-seqs))
(let* ((cl-res nil)
(cl-n (apply 'min (mapcar 'length cl-seqs)))
(cl-i 0)
(cl-args (copy-sequence cl-seqs))
cl-p1 cl-p2)
(setq cl-seqs (copy-sequence cl-seqs))
(while (< cl-i cl-n)
(setq cl-p1 cl-seqs cl-p2 cl-args)
(while cl-p1
(setcar cl-p2
(if (consp (car cl-p1))
(prog1 (car (car cl-p1))
(setcar cl-p1 (cdr (car cl-p1))))
(aref (car cl-p1) cl-i)))
(setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))
(push (apply cl-func cl-args) cl-res)
(setq cl-i (1+ cl-i)))
(nreverse cl-res))
(let ((cl-res nil)
(cl-x (car cl-seqs))
(cl-y (nth 1 cl-seqs)))
(let ((cl-n (min (length cl-x) (length cl-y)))
(cl-i -1))
(while (< (setq cl-i (1+ cl-i)) cl-n)
(push (funcall cl-func
(if (consp cl-x) (pop cl-x) (aref cl-x cl-i))
(if (consp cl-y) (pop cl-y) (aref cl-y cl-i)))
cl-res)))
(nreverse cl-res))))
(defun map (cl-type cl-func cl-seq &rest cl-rest)
"Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
TYPE is the sequence type to return.
\n(fn TYPE FUNCTION SEQUENCE...)"
(let ((cl-res (apply 'mapcar* cl-func cl-seq cl-rest)))
(and cl-type (coerce cl-res cl-type))))
(defun maplist (cl-func cl-list &rest cl-rest)
"Map FUNCTION to each sublist of LIST or LISTs.
Like `mapcar', except applies to lists and their cdr's rather than to
the elements themselves.
\n(fn FUNCTION LIST...)"
(if cl-rest
(let ((cl-res nil)
(cl-args (cons cl-list (copy-sequence cl-rest)))
cl-p)
(while (not (memq nil cl-args))
(push (apply cl-func cl-args) cl-res)
(setq cl-p cl-args)
(while cl-p (setcar cl-p (cdr (pop cl-p)) )))
(nreverse cl-res))
(let ((cl-res nil))
(while cl-list
(push (funcall cl-func cl-list) cl-res)
(setq cl-list (cdr cl-list)))
(nreverse cl-res))))
(defun cl-mapc (cl-func cl-seq &rest cl-rest)
"Like `mapcar', but does not accumulate values returned by the function.
\n(fn FUNCTION SEQUENCE...)"
(if cl-rest
(progn (apply 'map nil cl-func cl-seq cl-rest)
cl-seq)
(mapc cl-func cl-seq)))
(defun mapl (cl-func cl-list &rest cl-rest)
"Like `maplist', but does not accumulate values returned by the function.
\n(fn FUNCTION LIST...)"
(if cl-rest
(apply 'maplist cl-func cl-list cl-rest)
(let ((cl-p cl-list))
(while cl-p (funcall cl-func cl-p) (setq cl-p (cdr cl-p)))))
cl-list)
(defun mapcan (cl-func cl-seq &rest cl-rest)
"Like `mapcar', but nconc's together the values returned by the function.
\n(fn FUNCTION SEQUENCE...)"
(apply 'nconc (apply 'mapcar* cl-func cl-seq cl-rest)))
(defun mapcon (cl-func cl-list &rest cl-rest)
"Like `maplist', but nconc's together the values returned by the function.
\n(fn FUNCTION LIST...)"
(apply 'nconc (apply 'maplist cl-func cl-list cl-rest)))
(defun some (cl-pred cl-seq &rest cl-rest)
"Return true if PREDICATE is true of any element of SEQ or SEQs.
If so, return the true (non-nil) value returned by PREDICATE.
\n(fn PREDICATE SEQ...)"
(if (or cl-rest (nlistp cl-seq))
(catch 'cl-some
(apply 'map nil
(function (lambda (&rest cl-x)
(let ((cl-res (apply cl-pred cl-x)))
(if cl-res (throw 'cl-some cl-res)))))
cl-seq cl-rest) nil)
(let ((cl-x nil))
(while (and cl-seq (not (setq cl-x (funcall cl-pred (pop cl-seq))))))
cl-x)))
(defun every (cl-pred cl-seq &rest cl-rest)
"Return true if PREDICATE is true of every element of SEQ or SEQs.
\n(fn PREDICATE SEQ...)"
(if (or cl-rest (nlistp cl-seq))
(catch 'cl-every
(apply 'map nil
(function (lambda (&rest cl-x)
(or (apply cl-pred cl-x) (throw 'cl-every nil))))
cl-seq cl-rest) t)
(while (and cl-seq (funcall cl-pred (car cl-seq)))
(setq cl-seq (cdr cl-seq)))
(null cl-seq)))
(defun notany (cl-pred cl-seq &rest cl-rest)
"Return true if PREDICATE is false of every element of SEQ or SEQs.
\n(fn PREDICATE SEQ...)"
(not (apply 'some cl-pred cl-seq cl-rest)))
(defun notevery (cl-pred cl-seq &rest cl-rest)
"Return true if PREDICATE is false of some element of SEQ or SEQs.
\n(fn PREDICATE SEQ...)"
(not (apply 'every cl-pred cl-seq cl-rest)))
;;; Support for `loop'.
(defalias 'cl-map-keymap 'map-keymap)
(defun cl-map-keymap-recursively (cl-func-rec cl-map &optional cl-base)
(or cl-base
(setq cl-base (copy-sequence [0])))
(map-keymap
(function
(lambda (cl-key cl-bind)
(aset cl-base (1- (length cl-base)) cl-key)
(if (keymapp cl-bind)
(cl-map-keymap-recursively
cl-func-rec cl-bind
(vconcat cl-base (list 0)))
(funcall cl-func-rec cl-base cl-bind))))
cl-map))
(defun cl-map-intervals (cl-func &optional cl-what cl-prop cl-start cl-end)
(or cl-what (setq cl-what (current-buffer)))
(if (bufferp cl-what)
(let (cl-mark cl-mark2 (cl-next t) cl-next2)
(with-current-buffer cl-what
(setq cl-mark (copy-marker (or cl-start (point-min))))
(setq cl-mark2 (and cl-end (copy-marker cl-end))))
(while (and cl-next (or (not cl-mark2) (< cl-mark cl-mark2)))
(setq cl-next (if cl-prop (next-single-property-change
cl-mark cl-prop cl-what)
(next-property-change cl-mark cl-what))
cl-next2 (or cl-next (with-current-buffer cl-what
(point-max))))
(funcall cl-func (prog1 (marker-position cl-mark)
(set-marker cl-mark cl-next2))
(if cl-mark2 (min cl-next2 cl-mark2) cl-next2)))
(set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))
(or cl-start (setq cl-start 0))
(or cl-end (setq cl-end (length cl-what)))
(while (< cl-start cl-end)
(let ((cl-next (or (if cl-prop (next-single-property-change
cl-start cl-prop cl-what)
(next-property-change cl-start cl-what))
cl-end)))
(funcall cl-func cl-start (min cl-next cl-end))
(setq cl-start cl-next)))))
(defun cl-map-overlays (cl-func &optional cl-buffer cl-start cl-end cl-arg)
(or cl-buffer (setq cl-buffer (current-buffer)))
(if (fboundp 'overlay-lists)
;; This is the preferred algorithm, though overlay-lists is undocumented.
(let (cl-ovl)
(with-current-buffer cl-buffer
(setq cl-ovl (overlay-lists))
(if cl-start (setq cl-start (copy-marker cl-start)))
(if cl-end (setq cl-end (copy-marker cl-end))))
(setq cl-ovl (nconc (car cl-ovl) (cdr cl-ovl)))
(while (and cl-ovl
(or (not (overlay-start (car cl-ovl)))
(and cl-end (>= (overlay-start (car cl-ovl)) cl-end))
(and cl-start (<= (overlay-end (car cl-ovl)) cl-start))
(not (funcall cl-func (car cl-ovl) cl-arg))))
(setq cl-ovl (cdr cl-ovl)))
(if cl-start (set-marker cl-start nil))
(if cl-end (set-marker cl-end nil)))
;; This alternate algorithm fails to find zero-length overlays.
(let ((cl-mark (with-current-buffer cl-buffer
(copy-marker (or cl-start (point-min)))))
(cl-mark2 (and cl-end (with-current-buffer cl-buffer
(copy-marker cl-end))))
cl-pos cl-ovl)
(while (save-excursion
(and (setq cl-pos (marker-position cl-mark))
(< cl-pos (or cl-mark2 (point-max)))
(progn
(set-buffer cl-buffer)
(setq cl-ovl (overlays-at cl-pos))
(set-marker cl-mark (next-overlay-change cl-pos)))))
(while (and cl-ovl
(or (/= (overlay-start (car cl-ovl)) cl-pos)
(not (and (funcall cl-func (car cl-ovl) cl-arg)
(set-marker cl-mark nil)))))
(setq cl-ovl (cdr cl-ovl))))
(set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))))
;;; Support for `setf'.
(defun cl-set-frame-visible-p (frame val)
(cond ((null val) (make-frame-invisible frame))
((eq val 'icon) (iconify-frame frame))
(t (make-frame-visible frame)))
val)
;;; Support for `progv'.
(defvar cl-progv-save)
(defun cl-progv-before (syms values)
(while syms
(push (if (boundp (car syms))
(cons (car syms) (symbol-value (car syms)))
(car syms)) cl-progv-save)
(if values
(set (pop syms) (pop values))
(makunbound (pop syms)))))
(defun cl-progv-after ()
(while cl-progv-save
(if (consp (car cl-progv-save))
(set (car (car cl-progv-save)) (cdr (car cl-progv-save)))
(makunbound (car cl-progv-save)))
(pop cl-progv-save)))
;;; Numbers.
(defun gcd (&rest args)
"Return the greatest common divisor of the arguments."
(let ((a (abs (or (pop args) 0))))
(while args
(let ((b (abs (pop args))))
(while (> b 0) (setq b (% a (setq a b))))))
a))
(defun lcm (&rest args)
"Return the least common multiple of the arguments."
(if (memq 0 args)
0
(let ((a (abs (or (pop args) 1))))
(while args
(let ((b (abs (pop args))))
(setq a (* (/ a (gcd a b)) b))))
a)))
(defun isqrt (x)
"Return the integer square root of the argument."
(if (and (integerp x) (> x 0))
(let ((g (cond ((<= x 100) 10) ((<= x 10000) 100)
((<= x 1000000) 1000) (t x)))
g2)
(while (< (setq g2 (/ (+ g (/ x g)) 2)) g)
(setq g g2))
g)
(if (eq x 0) 0 (signal 'arith-error nil))))
(defun floor* (x &optional y)
"Return a list of the floor of X and the fractional part of X.
With two arguments, return floor and remainder of their quotient."
(let ((q (floor x y)))
(list q (- x (if y (* y q) q)))))
(defun ceiling* (x &optional y)
"Return a list of the ceiling of X and the fractional part of X.
With two arguments, return ceiling and remainder of their quotient."
(let ((res (floor* x y)))
(if (= (car (cdr res)) 0) res
(list (1+ (car res)) (- (car (cdr res)) (or y 1))))))
(defun truncate* (x &optional y)
"Return a list of the integer part of X and the fractional part of X.
With two arguments, return truncation and remainder of their quotient."
(if (eq (>= x 0) (or (null y) (>= y 0)))
(floor* x y) (ceiling* x y)))
(defun round* (x &optional y)
"Return a list of X rounded to the nearest integer and the remainder.
With two arguments, return rounding and remainder of their quotient."
(if y
(if (and (integerp x) (integerp y))
(let* ((hy (/ y 2))
(res (floor* (+ x hy) y)))
(if (and (= (car (cdr res)) 0)
(= (+ hy hy) y)
(/= (% (car res) 2) 0))
(list (1- (car res)) hy)
(list (car res) (- (car (cdr res)) hy))))
(let ((q (round (/ x y))))
(list q (- x (* q y)))))
(if (integerp x) (list x 0)
(let ((q (round x)))
(list q (- x q))))))
(defun mod* (x y)
"The remainder of X divided by Y, with the same sign as Y."
(nth 1 (floor* x y)))
(defun rem* (x y)
"The remainder of X divided by Y, with the same sign as X."
(nth 1 (truncate* x y)))
(defun signum (x)
"Return 1 if X is positive, -1 if negative, 0 if zero."
(cond ((> x 0) 1) ((< x 0) -1) (t 0)))
;; Random numbers.
(defvar *random-state*)
(defun random* (lim &optional state)
"Return a random nonnegative number less than LIM, an integer or float.
Optional second arg STATE is a random-state object."
(or state (setq state *random-state*))
;; Inspired by "ran3" from Numerical Recipes. Additive congruential method.
(let ((vec (aref state 3)))
(if (integerp vec)
(let ((i 0) (j (- 1357335 (% (abs vec) 1357333))) (k 1) ii)
(aset state 3 (setq vec (make-vector 55 nil)))
(aset vec 0 j)
(while (> (setq i (% (+ i 21) 55)) 0)
(aset vec i (setq j (prog1 k (setq k (- j k))))))
(while (< (setq i (1+ i)) 200) (random* 2 state))))
(let* ((i (aset state 1 (% (1+ (aref state 1)) 55)))
(j (aset state 2 (% (1+ (aref state 2)) 55)))
(n (logand 8388607 (aset vec i (- (aref vec i) (aref vec j))))))
(if (integerp lim)
(if (<= lim 512) (% n lim)
(if (> lim 8388607) (setq n (+ (lsh n 9) (random* 512 state))))
(let ((mask 1023))
(while (< mask (1- lim)) (setq mask (1+ (+ mask mask))))
(if (< (setq n (logand n mask)) lim) n (random* lim state))))
(* (/ n '8388608e0) lim)))))
(defun make-random-state (&optional state)
"Return a copy of random-state STATE, or of `*random-state*' if omitted.
If STATE is t, return a new state object seeded from the time of day."
(cond ((null state) (make-random-state *random-state*))
((vectorp state) (cl-copy-tree state t))
((integerp state) (vector 'cl-random-state-tag -1 30 state))
(t (make-random-state (cl-random-time)))))
(defun random-state-p (object)
"Return t if OBJECT is a random-state object."
(and (vectorp object) (= (length object) 4)
(eq (aref object 0) 'cl-random-state-tag)))
;; Implementation limits.
(defun cl-finite-do (func a b)
(condition-case err
(let ((res (funcall func a b))) ; check for IEEE infinity
(and (numberp res) (/= res (/ res 2)) res))
(arith-error nil)))
(defvar most-positive-float)
(defvar most-negative-float)
(defvar least-positive-float)
(defvar least-negative-float)
(defvar least-positive-normalized-float)
(defvar least-negative-normalized-float)
(defvar float-epsilon)
(defvar float-negative-epsilon)
(defun cl-float-limits ()
(or most-positive-float (not (numberp '2e1))
(let ((x '2e0) y z)
;; Find maximum exponent (first two loops are optimizations)
(while (cl-finite-do '* x x) (setq x (* x x)))
(while (cl-finite-do '* x (/ x 2)) (setq x (* x (/ x 2))))
(while (cl-finite-do '+ x x) (setq x (+ x x)))
(setq z x y (/ x 2))
;; Now fill in 1's in the mantissa.
(while (and (cl-finite-do '+ x y) (/= (+ x y) x))
(setq x (+ x y) y (/ y 2)))
(setq most-positive-float x
most-negative-float (- x))
;; Divide down until mantissa starts rounding.
(setq x (/ x z) y (/ 16 z) x (* x y))
(while (condition-case err (and (= x (* (/ x 2) 2)) (> (/ y 2) 0))
(arith-error nil))
(setq x (/ x 2) y (/ y 2)))
(setq least-positive-normalized-float y
least-negative-normalized-float (- y))
;; Divide down until value underflows to zero.
(setq x (/ 1 z) y x)
(while (condition-case err (> (/ x 2) 0) (arith-error nil))
(setq x (/ x 2)))
(setq least-positive-float x
least-negative-float (- x))
(setq x '1e0)
(while (/= (+ '1e0 x) '1e0) (setq x (/ x 2)))
(setq float-epsilon (* x 2))
(setq x '1e0)
(while (/= (- '1e0 x) '1e0) (setq x (/ x 2)))
(setq float-negative-epsilon (* x 2))))
nil)
;;; Sequence functions.
(defun subseq (seq start &optional end)
"Return the subsequence of SEQ from START to END.
If END is omitted, it defaults to the length of the sequence.
If START or END is negative, it counts from the end."
(if (stringp seq) (substring seq start end)
(let (len)
(and end (< end 0) (setq end (+ end (setq len (length seq)))))
(if (< start 0) (setq start (+ start (or len (setq len (length seq))))))
(cond ((listp seq)
(if (> start 0) (setq seq (nthcdr start seq)))
(if end
(let ((res nil))
(while (>= (setq end (1- end)) start)
(push (pop seq) res))
(nreverse res))
(copy-sequence seq)))
(t
(or end (setq end (or len (length seq))))
(let ((res (make-vector (max (- end start) 0) nil))
(i 0))
(while (< start end)
(aset res i (aref seq start))
(setq i (1+ i) start (1+ start)))
res))))))
(defun concatenate (type &rest seqs)
"Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
\n(fn TYPE SEQUENCE...)"
(cond ((eq type 'vector) (apply 'vconcat seqs))
((eq type 'string) (apply 'concat seqs))
((eq type 'list) (apply 'append (append seqs '(nil))))
(t (error "Not a sequence type name: %s" type))))
;;; List functions.
(defun revappend (x y)
"Equivalent to (append (reverse X) Y)."
(nconc (reverse x) y))
(defun nreconc (x y)
"Equivalent to (nconc (nreverse X) Y)."
(nconc (nreverse x) y))
(defun list-length (x)
"Return the length of list X. Return nil if list is circular."
(let ((n 0) (fast x) (slow x))
(while (and (cdr fast) (not (and (eq fast slow) (> n 0))))
(setq n (+ n 2) fast (cdr (cdr fast)) slow (cdr slow)))
(if fast (if (cdr fast) nil (1+ n)) n)))
(defun tailp (sublist list)
"Return true if SUBLIST is a tail of LIST."
(while (and (consp list) (not (eq sublist list)))
(setq list (cdr list)))
(if (numberp sublist) (equal sublist list) (eq sublist list)))
(defalias 'cl-copy-tree 'copy-tree)
;;; Property lists.
(defun get* (sym tag &optional def) ; See compiler macro in cl-macs.el
"Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
\n(fn SYMBOL PROPNAME &optional DEFAULT)"
(or (get sym tag)
(and def
(let ((plist (symbol-plist sym)))
(while (and plist (not (eq (car plist) tag)))
(setq plist (cdr (cdr plist))))
(if plist (car (cdr plist)) def)))))
(defun getf (plist tag &optional def)
"Search PROPLIST for property PROPNAME; return its value or DEFAULT.
PROPLIST is a list of the sort returned by `symbol-plist'.
\n(fn PROPLIST PROPNAME &optional DEFAULT)"
(setplist '--cl-getf-symbol-- plist)
(or (get '--cl-getf-symbol-- tag)
;; Originally we called get* here,
;; but that fails, because get* has a compiler macro
;; definition that uses getf!
(when def
(while (and plist (not (eq (car plist) tag)))
(setq plist (cdr (cdr plist))))
(if plist (car (cdr plist)) def))))
(defun cl-set-getf (plist tag val)
(let ((p plist))
(while (and p (not (eq (car p) tag))) (setq p (cdr (cdr p))))
(if p (progn (setcar (cdr p) val) plist) (list* tag val plist))))
(defun cl-do-remf (plist tag)
(let ((p (cdr plist)))
(while (and (cdr p) (not (eq (car (cdr p)) tag))) (setq p (cdr (cdr p))))
(and (cdr p) (progn (setcdr p (cdr (cdr (cdr p)))) t))))
(defun cl-remprop (sym tag)
"Remove from SYMBOL's plist the property PROPNAME and its value.
\n(fn SYMBOL PROPNAME)"
(let ((plist (symbol-plist sym)))
(if (and plist (eq tag (car plist)))
(progn (setplist sym (cdr (cdr plist))) t)
(cl-do-remf plist tag))))
(defalias 'remprop 'cl-remprop)
;;; Hash tables.
;; This is just kept for compatibility with code byte-compiled by Emacs-20.
;; No idea if this might still be needed.
(defun cl-not-hash-table (x &optional y &rest z)
(signal 'wrong-type-argument (list 'cl-hash-table-p (or y x))))
(defvar cl-builtin-gethash (symbol-function 'gethash))
(defvar cl-builtin-remhash (symbol-function 'remhash))
(defvar cl-builtin-clrhash (symbol-function 'clrhash))
(defvar cl-builtin-maphash (symbol-function 'maphash))
(defalias 'cl-gethash 'gethash)
(defalias 'cl-puthash 'puthash)
(defalias 'cl-remhash 'remhash)
(defalias 'cl-clrhash 'clrhash)
(defalias 'cl-maphash 'maphash)
;; These three actually didn't exist in Emacs-20.
(defalias 'cl-make-hash-table 'make-hash-table)
(defalias 'cl-hash-table-p 'hash-table-p)
(defalias 'cl-hash-table-count 'hash-table-count)
;;; Some debugging aids.
(defun cl-prettyprint (form)
"Insert a pretty-printed rendition of a Lisp FORM in current buffer."
(let ((pt (point)) last)
(insert "\n" (prin1-to-string form) "\n")
(setq last (point))
(goto-char (1+ pt))
(while (search-forward "(quote " last t)
(delete-backward-char 7)
(insert "'")
(forward-sexp)
(delete-char 1))
(goto-char (1+ pt))
(cl-do-prettyprint)))
(defun cl-do-prettyprint ()
(skip-chars-forward " ")
(if (looking-at "(")
(let ((skip (or (looking-at "((") (looking-at "(prog")
(looking-at "(unwind-protect ")
(looking-at "(function (")
(looking-at "(cl-block-wrapper ")))
(two (or (looking-at "(defun ") (looking-at "(defmacro ")))
(let (or (looking-at "(let\\*? ") (looking-at "(while ")))
(set (looking-at "(p?set[qf] ")))
(if (or skip let
(progn
(forward-sexp)
(and (>= (current-column) 78) (progn (backward-sexp) t))))
(let ((nl t))
(forward-char 1)
(cl-do-prettyprint)
(or skip (looking-at ")") (cl-do-prettyprint))
(or (not two) (looking-at ")") (cl-do-prettyprint))
(while (not (looking-at ")"))
(if set (setq nl (not nl)))
(if nl (insert "\n"))
(lisp-indent-line)
(cl-do-prettyprint))
(forward-char 1))))
(forward-sexp)))
(defvar cl-macroexpand-cmacs nil)
(defvar cl-closure-vars nil)
(defun cl-macroexpand-all (form &optional env)
"Expand all macro calls through a Lisp FORM.
This also does some trivial optimizations to make the form prettier."
(while (or (not (eq form (setq form (macroexpand form env))))
(and cl-macroexpand-cmacs
(not (eq form (setq form (compiler-macroexpand form)))))))
(cond ((not (consp form)) form)
((memq (car form) '(let let*))
(if (null (nth 1 form))
(cl-macroexpand-all (cons 'progn (cddr form)) env)
(let ((letf nil) (res nil) (lets (cadr form)))
(while lets
(push (if (consp (car lets))
(let ((exp (cl-macroexpand-all (caar lets) env)))
(or (symbolp exp) (setq letf t))
(cons exp (cl-macroexpand-body (cdar lets) env)))
(let ((exp (cl-macroexpand-all (car lets) env)))
(if (symbolp exp) exp
(setq letf t) (list exp nil)))) res)
(setq lets (cdr lets)))
(list* (if letf (if (eq (car form) 'let) 'letf 'letf*) (car form))
(nreverse res) (cl-macroexpand-body (cddr form) env)))))
((eq (car form) 'cond)
(cons (car form)
(mapcar (function (lambda (x) (cl-macroexpand-body x env)))
(cdr form))))
((eq (car form) 'condition-case)
(list* (car form) (nth 1 form) (cl-macroexpand-all (nth 2 form) env)
(mapcar (function
(lambda (x)
(cons (car x) (cl-macroexpand-body (cdr x) env))))
(cdddr form))))
((memq (car form) '(quote function))
(if (eq (car-safe (nth 1 form)) 'lambda)
(let ((body (cl-macroexpand-body (cddadr form) env)))
(if (and cl-closure-vars (eq (car form) 'function)
(cl-expr-contains-any body cl-closure-vars))
(let* ((new (mapcar 'gensym cl-closure-vars))
(sub (pairlis cl-closure-vars new)) (decls nil))
(while (or (stringp (car body))
(eq (car-safe (car body)) 'interactive))
(push (list 'quote (pop body)) decls))
(put (car (last cl-closure-vars)) 'used t)
(append
(list 'list '(quote lambda) '(quote (&rest --cl-rest--)))
(sublis sub (nreverse decls))
(list
(list* 'list '(quote apply)
(list 'function
(list* 'lambda
(append new (cadadr form))
(sublis sub body)))
(nconc (mapcar (function
(lambda (x)
(list 'list '(quote quote) x)))
cl-closure-vars)
'((quote --cl-rest--)))))))
(list (car form) (list* 'lambda (cadadr form) body))))
(let ((found (assq (cadr form) env)))
(if (and found (ignore-errors
(eq (cadr (caddr found)) 'cl-labels-args)))
(cl-macroexpand-all (cadr (caddr (cadddr found))) env)
form))))
((memq (car form) '(defun defmacro))
(list* (car form) (nth 1 form) (cl-macroexpand-body (cddr form) env)))
((and (eq (car form) 'progn) (not (cddr form)))
(cl-macroexpand-all (nth 1 form) env))
((eq (car form) 'setq)
(let* ((args (cl-macroexpand-body (cdr form) env)) (p args))
(while (and p (symbolp (car p))) (setq p (cddr p)))
(if p (cl-macroexpand-all (cons 'setf args)) (cons 'setq args))))
((consp (car form))
(cl-macroexpand-all (list* 'funcall
(list 'function (car form))
(cdr form))
env))
(t (cons (car form) (cl-macroexpand-body (cdr form) env)))))
(defun cl-macroexpand-body (body &optional env)
(mapcar (function (lambda (x) (cl-macroexpand-all x env))) body))
(defun cl-prettyexpand (form &optional full)
(message "Expanding...")
(let ((cl-macroexpand-cmacs full) (cl-compiling-file full)
(byte-compile-macro-environment nil))
(setq form (cl-macroexpand-all form
(and (not full) '((block) (eval-when)))))
(message "Formatting...")
(prog1 (cl-prettyprint form)
(message ""))))
(run-hooks 'cl-extra-load-hook)
;; arch-tag: bcd03437-0871-43fb-a8f1-ad0e0b5427ed
;;; cl-extra.el ends here
|