summaryrefslogtreecommitdiff
path: root/lisp/emacs-lisp/generator.el
blob: b19f6fab7221d7edb59292195a6a13d9e79e1e09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
;;; generator.el --- generators  -*- lexical-binding: t -*-

;;; Copyright (C) 2015-2018 Free Software Foundation, Inc.

;; Author: Daniel Colascione <dancol@dancol.org>
;; Keywords: extensions, elisp
;; Package: emacs

;; This file is part of GNU Emacs.

;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.

;;; Commentary:

;; This package implements generators for Emacs Lisp through a
;; continuation-passing transformation.  It provides essentially the
;; same generator API and iterator facilities that Python and
;; JavaScript ES6 provide.
;;
;; `iter-lambda' and `iter-defun' work like `lambda' and `defun',
;; except that they evaluate to or define, respectively, generator
;; functions.  These functions, when called, return an iterator.
;; An iterator is an opaque object that generates a sequence of
;; values.  Callers use `iter-next' to retrieve the next value from
;; the sequence; when the sequence is exhausted, `iter-next' will
;; raise the `iter-end-of-sequence' condition.
;;
;; Generator functions are written like normal functions, except that
;; they can invoke `iter-yield' to suspend themselves and return a
;; value to callers; this value becomes the return value of
;; `iter-next'.  On the next call to `iter-next', execution of the
;; generator function resumes where it left off.  When a generator
;; function returns normally, the `iter-next' raises
;; `iter-end-of-sequence' with the value the function returned.
;;
;; `iter-yield-from' yields all the values from another iterator; it
;; then evaluates to the value the sub-iterator returned normally.
;; This facility is useful for functional composition of generators
;; and for implementing coroutines.
;;
;; `iter-yield' is illegal inside the UNWINDFORMS of an
;; `unwind-protect' for various sordid internal reasons documented in
;; the code.
;;
;; N.B. Each call to a generator function generates a *new* iterator,
;; and each iterator maintains its own internal state.
;;
;; This raw form of iteration is general, but a bit awkward to use, so
;; this library also provides some convenience functions:
;;
;; `iter-do' is like `cl-do', except that instead of walking a list,
;; it walks an iterator.  `cl-loop' is also extended with a new
;; keyword, `iter-by', that iterates over an iterator.
;;

;;; Implementation:

;;
;; The internal cps transformation code uses the cps- namespace.
;; Iteration functions use the `iter-' namespace.  Generator functions
;; are somewhat less efficient than conventional elisp routines,
;; although we try to avoid CPS transformation on forms that do not
;; invoke `iter-yield'.
;;

;;; Code:

(require 'cl-lib)

(defvar cps--bindings nil)
(defvar cps--states nil)
(defvar cps--value-symbol nil)
(defvar cps--state-symbol nil)
(defvar cps--cleanup-table-symbol nil)
(defvar cps--cleanup-function nil)

(defmacro cps--gensym (fmt &rest args)
  `(gensym (format ,fmt ,@args)))

(defvar cps--dynamic-wrappers '(identity)
  "List of transformer functions to apply to atomic forms we
evaluate in CPS context.")

(defconst cps-standard-special-forms
  '(setq setq-default throw interactive)
  "List of special forms that we treat just like ordinary
  function applications." )

(defun cps--trace-funcall (func &rest args)
  (message "%S: args=%S" func args)
  (let ((result (apply func args)))
    (message "%S: result=%S" func result)
    result))

(defun cps--trace (fmt &rest args)
  (princ (apply #'format (concat fmt "\n") args)))

(defun cps--special-form-p (definition)
  "Non-nil if and only if DEFINITION is a special form."
  ;; Copied from ad-special-form-p
  (if (and (symbolp definition) (fboundp definition))
      (setf definition (indirect-function definition)))
  (and (subrp definition) (eq (cdr (subr-arity definition)) 'unevalled)))

(defmacro cps--define-unsupported (function)
  `(defun ,(intern (format "cps--transform-%s" function))
       (error "%s not supported in generators" ,function)))

(defmacro cps--with-value-wrapper (wrapper &rest body)
  "Continue generating CPS code with an atomic-form wrapper
to the current stack of such wrappers.  WRAPPER is a function that
takes a form and returns a wrapped form.

Whenever we generate an atomic form (i.e., a form that can't
iter-yield), we first (before actually inserting that form in our
generated code) pass that form through all the transformer
functions.  We use this facility to wrap forms that can transfer
control flow non-locally in goo that diverts this control flow to
the CPS state machinery.
"
  (declare (indent 1))
  `(let ((cps--dynamic-wrappers
          (cons
           ,wrapper
           cps--dynamic-wrappers)))
     ,@body))

(defun cps--make-dynamic-binding-wrapper (dynamic-var static-var)
  (cl-assert lexical-binding)
  (lambda (form)
    `(let ((,dynamic-var ,static-var))
       (unwind-protect ; Update the static shadow after evaluation is done
            ,form
         (setf ,static-var ,dynamic-var)))))

(defmacro cps--with-dynamic-binding (dynamic-var static-var &rest body)
  "Evaluate BODY such that generated atomic evaluations run with
DYNAMIC-VAR bound to STATIC-VAR."
  (declare (indent 2))
  `(cps--with-value-wrapper
       (cps--make-dynamic-binding-wrapper ,dynamic-var ,static-var)
     ,@body))

(defun cps--add-state (kind body)
  "Create a new CPS state with body BODY and return the state's name."
  (declare (indent 1))
  (let* ((state (cps--gensym "cps-state-%s-" kind)))
    (push (list state body cps--cleanup-function) cps--states)
    (push state cps--bindings)
    state))

(defun cps--add-binding (original-name)
  (car (push (cps--gensym (format "cps-binding-%s-" original-name))
             cps--bindings)))

(defun cps--find-special-form-handler (form)
  (let* ((handler-name (format "cps--transform-%s" (car-safe form)))
         (handler (intern-soft handler-name)))
    (and (fboundp handler) handler)))

(defvar cps-inhibit-atomic-optimization nil
  "When t, always rewrite forms into cps even when they
don't yield.")

(defvar cps--yield-seen)

(defun cps--atomic-p (form)
  "Return whether the given form never yields."

  (and (not cps-inhibit-atomic-optimization)
       (let* ((cps--yield-seen))
         (ignore (macroexpand-all
                  `(cl-macrolet ((cps-internal-yield
                                     (_val)
                                   (setf cps--yield-seen t)))
                     ,form)
                  macroexpand-all-environment))
         (not cps--yield-seen))))

(defun cps--make-atomic-state (form next-state)
  (let ((tform `(prog1 ,form (setf ,cps--state-symbol ,next-state))))
    (cl-loop for wrapper in cps--dynamic-wrappers
       do (setf tform (funcall wrapper tform)))
    ;; Bind cps--cleanup-function to nil here because the wrapper
    ;; function mechanism is responsible for cleanup here, not the
    ;; generic cleanup mechanism.  If we didn't make this binding,
    ;; we'd run cleanup handlers twice on anything that made it out
    ;; to toplevel.
    (let ((cps--cleanup-function nil))
      (cps--add-state "atom"
        `(setf ,cps--value-symbol ,tform)))))

(defun cps--transform-1 (form next-state)
  (pcase form

    ;; If we're looking at an "atomic" form (i.e., one that does not
    ;; iter-yield), just evaluate the form as a whole instead of rewriting
    ;; it into CPS.

    ((guard (cps--atomic-p form))
     (cps--make-atomic-state form next-state))

    ;; Process `and'.

    (`(and)                             ; (and) -> t
      (cps--transform-1 t next-state))
    (`(and ,condition)                  ; (and CONDITION) -> CONDITION
      (cps--transform-1 condition next-state))
    (`(and ,condition . ,rest)
      ;; Evaluate CONDITION; if it's true, go on to evaluate the rest
      ;; of the `and'.
      (cps--transform-1
       condition
       (cps--add-state "and"
         `(setf ,cps--state-symbol
                (if ,cps--value-symbol
                    ,(cps--transform-1 `(and ,@rest)
                                       next-state)
                  ,next-state)))))

    ;; Process `catch'.

    (`(catch ,tag . ,body)
      (let ((tag-binding (cps--add-binding "catch-tag")))
        (cps--transform-1 tag
                          (cps--add-state "cps-update-tag"
                            `(setf ,tag-binding ,cps--value-symbol
                                   ,cps--state-symbol
                                   ,(cps--with-value-wrapper
                                     (cps--make-catch-wrapper
                                      tag-binding next-state)
                                     (cps--transform-1 `(progn ,@body)
                                                       next-state)))))))

    ;; Process `cond': transform into `if' or `or' depending on the
    ;; precise kind of the condition we're looking at.

    (`(cond)                            ; (cond) -> nil
      (cps--transform-1 nil next-state))
    (`(cond (,condition) . ,rest)
      (cps--transform-1 `(or ,condition (cond ,@rest))
                        next-state))
    (`(cond (,condition . ,body) . ,rest)
      (cps--transform-1 `(if ,condition
                             (progn ,@body)
                           (cond ,@rest))
                        next-state))

    ;; Process `condition-case': do the heavy lifting in a helper
    ;; function.

    (`(condition-case ,var ,bodyform . ,handlers)
      (cps--with-value-wrapper
          (cps--make-condition-wrapper var next-state handlers)
        (cps--transform-1 bodyform
                          next-state)))

    ;; Process `if'.

    (`(if ,cond ,then . ,else)
      (cps--transform-1 cond
                        (cps--add-state "if"
                          `(setf ,cps--state-symbol
                                 (if ,cps--value-symbol
                                     ,(cps--transform-1 then
                                                        next-state)
                                   ,(cps--transform-1 `(progn ,@else)
                                                      next-state))))))

    ;; Process `progn' and `inline': they are identical except for the
    ;; name, which has some significance to the byte compiler.

    (`(inline) (cps--transform-1 nil next-state))
    (`(inline ,form) (cps--transform-1 form next-state))
    (`(inline ,form . ,rest)
      (cps--transform-1 form
                        (cps--transform-1 `(inline ,@rest)
                                          next-state)))

    (`(progn) (cps--transform-1 nil next-state))
    (`(progn ,form) (cps--transform-1 form next-state))
    (`(progn ,form . ,rest)
      (cps--transform-1 form
                        (cps--transform-1 `(progn ,@rest)
                                          next-state)))

    ;; Process `let' in a helper function that transforms it into a
    ;; let* with temporaries.

    (`(let ,bindings . ,body)
      (let* ((bindings (cl-loop for binding in bindings
                          collect (if (symbolp binding)
                                      (list binding nil)
                                    binding)))
             (temps (cl-loop for (var _value-form) in bindings
                       collect (cps--add-binding var))))
        (cps--transform-1
         `(let* ,(append
                  (cl-loop for (_var value-form) in bindings
                     for temp in temps
                     collect (list temp value-form))
                  (cl-loop for (var _binding) in bindings
                     for temp in temps
                     collect (list var temp)))
            ,@body)
         next-state)))

    ;; Process `let*' binding: process one binding at a time.  Flatten
    ;; lexical bindings.

    (`(let* () . ,body)
      (cps--transform-1 `(progn ,@body) next-state))

    (`(let* (,binding . ,more-bindings) . ,body)
      (let* ((var (if (symbolp binding) binding (car binding)))
             (value-form (car (cdr-safe binding)))
             (new-var (cps--add-binding var)))

        (cps--transform-1
         value-form
         (cps--add-state "let*"
           `(setf ,new-var ,cps--value-symbol
                  ,cps--state-symbol
                  ,(if (or (not lexical-binding) (special-variable-p var))
                       (cps--with-dynamic-binding var new-var
                         (cps--transform-1
                          `(let* ,more-bindings ,@body)
                          next-state))
                       (cps--transform-1
                        (cps--replace-variable-references
                         var new-var
                         `(let* ,more-bindings ,@body))
                        next-state)))))))

    ;; Process `or'.

    (`(or) (cps--transform-1 nil next-state))
    (`(or ,condition) (cps--transform-1 condition next-state))
    (`(or ,condition . ,rest)
      (cps--transform-1
       condition
       (cps--add-state "or"
         `(setf ,cps--state-symbol
                (if ,cps--value-symbol
                    ,next-state
                  ,(cps--transform-1
                    `(or ,@rest) next-state))))))

    ;; Process `prog1'.

    (`(prog1 ,first) (cps--transform-1 first next-state))
    (`(prog1 ,first . ,body)
      (cps--transform-1
       first
       (let ((temp-var-symbol (cps--add-binding "prog1-temp")))
         (cps--add-state "prog1"
           `(setf ,temp-var-symbol
                  ,cps--value-symbol
                  ,cps--state-symbol
                  ,(cps--transform-1
                    `(progn ,@body)
                    (cps--add-state "prog1inner"
                      `(setf ,cps--value-symbol ,temp-var-symbol
                             ,cps--state-symbol ,next-state))))))))

    ;; Process `prog2'.

    (`(prog2 ,form1 ,form2 . ,body)
      (cps--transform-1
       `(progn ,form1 (prog1 ,form2 ,@body))
       next-state))

    ;; Process `unwind-protect': If we're inside an unwind-protect, we
    ;; have a block of code UNWINDFORMS which we would like to run
    ;; whenever control flows away from the main piece of code,
    ;; BODYFORM.  We deal with the local control flow case by
    ;; generating BODYFORM such that it yields to a continuation that
    ;; executes UNWINDFORMS, which then yields to NEXT-STATE.
    ;;
    ;; Non-local control flow is trickier: we need to ensure that we
    ;; execute UNWINDFORMS even when control bypasses our normal
    ;; continuation.  To make this guarantee, we wrap every external
    ;; application (i.e., every piece of elisp that can transfer
    ;; control non-locally) in an unwind-protect that runs UNWINDFORMS
    ;; before allowing the non-local control transfer to proceed.
    ;;
    ;; Unfortunately, because elisp lacks a mechanism for generically
    ;; capturing the reason for an arbitrary non-local control
    ;; transfer and restarting the transfer at a later point, we
    ;; cannot reify non-local transfers and cannot allow
    ;; continuation-passing code inside UNWINDFORMS.

    (`(unwind-protect ,bodyform . ,unwindforms)
      ;; Signal the evaluator-generator that it needs to generate code
      ;; to handle cleanup forms.
      (unless cps--cleanup-table-symbol
        (setf cps--cleanup-table-symbol (cps--gensym "cps-cleanup-table-")))
      (let* ((unwind-state
              (cps--add-state
                  "unwind"
                ;; N.B. It's safe to just substitute unwindforms by
                ;; sexp-splicing: we've already replaced all variable
                ;; references inside it with lifted equivalents.
                `(progn
                   ,@unwindforms
                   (setf ,cps--state-symbol ,next-state))))
             (old-cleanup cps--cleanup-function)
             (cps--cleanup-function
              (let ((cps--cleanup-function nil))
                (cps--add-state "cleanup"
                  `(progn
                     ,(when old-cleanup `(funcall ,old-cleanup))
                     ,@unwindforms)))))
        (cps--with-value-wrapper
            (cps--make-unwind-wrapper unwindforms)
          (cps--transform-1 bodyform unwind-state))))

    ;; Process `while'.

    (`(while ,test . ,body)
      ;; Open-code state addition instead of using cps--add-state: we
      ;; need our states to be self-referential. (That's what makes the
      ;; state a loop.)
      (let* ((loop-state
                (cps--gensym "cps-state-while-"))
             (eval-loop-condition-state
              (cps--transform-1 test loop-state))
             (loop-state-body
                `(progn
                   (setf ,cps--state-symbol
                         (if ,cps--value-symbol
                             ,(cps--transform-1
                               `(progn ,@body)
                               eval-loop-condition-state)
                           ,next-state)))))
        (push (list loop-state loop-state-body cps--cleanup-function)
              cps--states)
        (push loop-state cps--bindings)
        eval-loop-condition-state))

    ;; Process various kinds of `quote'.

    (`(quote ,arg) (cps--add-state "quote"
                     `(setf ,cps--value-symbol (quote ,arg)
                            ,cps--state-symbol ,next-state)))
    (`(function ,arg) (cps--add-state "function"
                        `(setf ,cps--value-symbol (function ,arg)
                               ,cps--state-symbol ,next-state)))

    ;; Deal with `iter-yield'.

    (`(cps-internal-yield ,value)
      (cps--transform-1
       value
       (cps--add-state "iter-yield"
         `(progn
            (setf ,cps--state-symbol
                  ,(if cps--cleanup-function
                       (cps--add-state "after-yield"
                         `(setf ,cps--state-symbol ,next-state))
                       next-state))
            (throw 'cps--yield ,cps--value-symbol)))))

    ;; Catch any unhandled special forms.

    ((and `(,name . ,_)
          (guard (cps--special-form-p name))
          (guard (not (memq name cps-standard-special-forms))))
     name                               ; Shut up byte compiler
     (error "special form %S incorrect or not supported" form))

    ;; Process regular function applications with nontrivial
    ;; parameters, converting them to applications of trivial
    ;; let-bound parameters.

    ((and `(,function . ,arguments)
          (guard (not (cl-loop for argument in arguments
                         always (atom argument)))))
     (let ((argument-symbols
            (cl-loop for argument in arguments
               collect (if (atom argument)
                           argument
                         (cps--gensym "cps-argument-")))))

       (cps--transform-1
        `(let* ,(cl-loop for argument in arguments
                   for argument-symbol in argument-symbols
                   unless (eq argument argument-symbol)
                   collect (list argument-symbol argument))
           ,(cons function argument-symbols))
        next-state)))

    ;; Process everything else by just evaluating the form normally.
    (_ (cps--make-atomic-state form next-state))))

(defun cps--make-catch-wrapper (tag-binding next-state)
  (lambda (form)
    (let ((normal-exit-symbol
           (cps--gensym "cps-normal-exit-from-catch-")))
      `(let (,normal-exit-symbol)
         (prog1
             (catch ,tag-binding
               (prog1
                   ,form
                 (setf ,normal-exit-symbol t)))
           (unless ,normal-exit-symbol
             (setf ,cps--state-symbol ,next-state)))))))

(defun cps--make-condition-wrapper (var next-state handlers)
  ;; Each handler is both one of the transformers with which we wrap
  ;; evaluated atomic forms and a state to which we jump when we
  ;; encounter the given error.

  (let* ((error-symbol (cps--add-binding "condition-case-error"))
         (lexical-error-symbol (cps--gensym "cps-lexical-error-"))
         (processed-handlers
          (cl-loop for (condition . body) in handlers
             collect (cons condition
                           (cps--transform-1
                            (cps--replace-variable-references
                             var error-symbol
                             `(progn ,@body))
                            next-state)))))

    (lambda (form)
      `(condition-case
           ,lexical-error-symbol
           ,form
         ,@(cl-loop
              for (condition . error-state) in processed-handlers
              collect
                `(,condition
                  (setf ,error-symbol
                        ,lexical-error-symbol
                        ,cps--state-symbol
                        ,error-state)))))))

(defun cps--replace-variable-references (var new-var form)
  "Replace all non-shadowed references to VAR with NEW-VAR in FORM.
This routine does not modify FORM. Instead, it returns a
modified copy."
  (macroexpand-all
   `(cl-symbol-macrolet ((,var ,new-var)) ,form)
   macroexpand-all-environment))

(defun cps--make-unwind-wrapper (unwind-forms)
  (cl-assert lexical-binding)
  (lambda (form)
    (let ((normal-exit-symbol
           (cps--gensym "cps-normal-exit-from-unwind-")))
      `(let (,normal-exit-symbol)
         (unwind-protect
              (prog1
                  ,form
                (setf ,normal-exit-symbol t))
           (unless ,normal-exit-symbol
             ,@unwind-forms))))))

(put 'iter-end-of-sequence 'error-conditions '(iter-end-of-sequence))
(put 'iter-end-of-sequence 'error-message "iteration terminated")

(defun cps--make-close-iterator-form (terminal-state)
  (if cps--cleanup-table-symbol
      `(let ((cleanup (cdr (assq ,cps--state-symbol ,cps--cleanup-table-symbol))))
         (setf ,cps--state-symbol ,terminal-state
               ,cps--value-symbol nil)
         (when cleanup (funcall cleanup)))
    `(setf ,cps--state-symbol ,terminal-state
           ,cps--value-symbol nil)))

(defun cps-generate-evaluator (body)
  (let* (cps--states
         cps--bindings
         cps--cleanup-function
         (cps--value-symbol (cps--gensym "cps-current-value-"))
         (cps--state-symbol (cps--gensym "cps-current-state-"))
         ;; We make *cps-cleanup-table-symbol** non-nil when we notice
         ;; that we have cleanup processing to perform.
         (cps--cleanup-table-symbol nil)
         (terminal-state (cps--add-state "terminal"
                           `(signal 'iter-end-of-sequence
                                    ,cps--value-symbol)))
         (initial-state (cps--transform-1
                         (macroexpand-all
                          `(cl-macrolet
                               ((iter-yield (value)
                                  `(cps-internal-yield ,value)))
                             ,@body)
                          macroexpand-all-environment)
                         terminal-state))
         (finalizer-symbol
          (when cps--cleanup-table-symbol
            (when cps--cleanup-table-symbol
              (cps--gensym "cps-iterator-finalizer-")))))
    `(let ,(append (list cps--state-symbol cps--value-symbol)
                   (when cps--cleanup-table-symbol
                     (list cps--cleanup-table-symbol))
                   (when finalizer-symbol
                     (list finalizer-symbol))
                   (nreverse cps--bindings))
       ;; Order state list so that cleanup states are always defined
       ;; before they're referenced.
       ,@(cl-loop for (state body cleanup) in (nreverse cps--states)
            collect `(setf ,state (lambda () ,body))
            when cleanup
            do (cl-assert cps--cleanup-table-symbol)
            and collect `(push (cons ,state ,cleanup) ,cps--cleanup-table-symbol))
       (setf ,cps--state-symbol ,initial-state)

       (let ((iterator
              (lambda (op value)
                (cond
                  ,@(when finalizer-symbol
                          `(((eq op :stash-finalizer)
                             (setf ,finalizer-symbol value))
                            ((eq op :get-finalizer)
                             ,finalizer-symbol)))
                  ((eq op :close)
                   ,(cps--make-close-iterator-form terminal-state))
                  ((eq op :next)
                   (setf ,cps--value-symbol value)
                   (let ((yielded nil))
                     (unwind-protect
                          (prog1
                              (catch 'cps--yield
                                (while t
                                  (funcall ,cps--state-symbol)))
                            (setf yielded t))
                       (unless yielded
                         ;; If we're exiting non-locally (error, quit,
                         ;; etc.)  close the iterator.
                         ,(cps--make-close-iterator-form terminal-state)))))
                  (t (error "unknown iterator operation %S" op))))))
         ,(when finalizer-symbol
                `(funcall iterator
                          :stash-finalizer
                          (make-finalizer
                           (lambda ()
                             (iter-close iterator)))))
         iterator))))

(defun iter-yield (value)
  "When used inside a generator, yield control to caller.
The caller of `iter-next' receives VALUE, and the next call to
`iter-next' resumes execution at the previous
`iter-yield' point."
  (identity value)
  (error "`iter-yield' used outside a generator"))

(defmacro iter-yield-from (value)
  "When used inside a generator function, delegate to a sub-iterator.
The values that the sub-iterator yields are passed directly to
the caller, and values supplied to `iter-next' are sent to the
sub-iterator.  `iter-yield-from' evaluates to the value that the
sub-iterator function returns via `iter-end-of-sequence'."
  (let ((errsym (cps--gensym "yield-from-result"))
        (valsym (cps--gensym "yield-from-value")))
    `(let ((,valsym ,value))
       (unwind-protect
            (condition-case ,errsym
                (let ((vs nil))
                  (while t
                    (setf vs (iter-yield (iter-next ,valsym vs)))))
              (iter-end-of-sequence (cdr ,errsym)))
         (iter-close ,valsym)))))

(defmacro iter-defun (name arglist &rest body)
  "Creates a generator NAME.
When called as a function, NAME returns an iterator value that
encapsulates the state of a computation that produces a sequence
of values.  Callers can retrieve each value using `iter-next'."
  (declare (indent defun)
           (debug (&define name lambda-list lambda-doc def-body)))
  (cl-assert lexical-binding)
  (let* ((parsed-body (macroexp-parse-body body))
         (declarations (car parsed-body))
         (exps (cdr parsed-body)))
    `(defun ,name ,arglist
       ,@declarations
       ,(cps-generate-evaluator exps))))

(defmacro iter-lambda (arglist &rest body)
  "Return a lambda generator.
`iter-lambda' is to `iter-defun' as `lambda' is to `defun'."
  (declare (indent defun)
           (debug (&define lambda-list lambda-doc def-body)))
  (cl-assert lexical-binding)
  `(lambda ,arglist
     ,(cps-generate-evaluator body)))

(defun iter-next (iterator &optional yield-result)
  "Extract a value from an iterator.
YIELD-RESULT becomes the return value of `iter-yield' in the
context of the generator.

This routine raises the `iter-end-of-sequence' condition if the
iterator cannot supply more values."
  (funcall iterator :next yield-result))

(defun iter-close (iterator)
  "Terminate an iterator early.
Run any unwind-protect handlers in scope at the point  ITERATOR
is blocked."
  (funcall iterator :close nil))

(cl-defmacro iter-do ((var iterator) &rest body)
  "Loop over values from an iterator.
Evaluate BODY with VAR bound to each value from ITERATOR.
Return the value with which ITERATOR finished iteration."
  (declare (indent 1)
           (debug ((symbolp form) body)))
  (let ((done-symbol (cps--gensym "iter-do-iterator-done"))
        (condition-symbol (cps--gensym "iter-do-condition"))
        (it-symbol (cps--gensym "iter-do-iterator"))
        (result-symbol (cps--gensym "iter-do-result")))
    `(let (,var
           ,result-symbol
           (,done-symbol nil)
           (,it-symbol ,iterator))
       (while (not ,done-symbol)
         (condition-case ,condition-symbol
             (setf ,var (iter-next ,it-symbol))
           (iter-end-of-sequence
            (setf ,result-symbol (cdr ,condition-symbol))
            (setf ,done-symbol t)))
         (unless ,done-symbol ,@body))
       ,result-symbol)))

(defvar cl--loop-args)

(defmacro cps--advance-for (conscell)
  ;; See cps--handle-loop-for
  `(condition-case nil
       (progn
         (setcar ,conscell (iter-next (cdr ,conscell)))
         ,conscell)
     (iter-end-of-sequence
      nil)))

(defmacro cps--initialize-for (iterator)
  ;; See cps--handle-loop-for
  (let ((cs (cps--gensym "cps--loop-temp")))
    `(let ((,cs (cons nil ,iterator)))
       (cps--advance-for ,cs))))

(defun cps--handle-loop-for (var)
  "Support `iter-by' in `loop'.  "
  ;; N.B. While the cl-loop-for-handler is a documented interface,
  ;; there's no documented way for cl-loop-for-handler callbacks to do
  ;; anything useful!  Additionally, cl-loop currently lexbinds useful
  ;; internal variables, so our only option is to modify
  ;; cl--loop-args.  If we substitute a general-purpose for-clause for
  ;; our iterating clause, however, we can't preserve the
  ;; parallel-versus-sequential `loop' semantics for for clauses ---
  ;; we need a terminating condition as well, which requires us to use
  ;; while, and inserting a while would break and-sequencing.
  ;;
  ;; To work around this problem, we actually use the "for var in LIST
  ;; by FUNCTION" syntax, creating a new fake list each time through
  ;; the loop, this "list" being a cons cell (val . it).
  (let ((it-form (pop cl--loop-args)))
    (setf cl--loop-args
          (append
           `(for ,var
                 in (cps--initialize-for ,it-form)
                 by 'cps--advance-for)
           cl--loop-args))))

(put 'iter-by 'cl-loop-for-handler 'cps--handle-loop-for)

(eval-after-load 'elisp-mode
  (lambda ()
    (font-lock-add-keywords
     'emacs-lisp-mode
     '(("(\\(iter-defun\\)\\_>\\s *\\(\\(?:\\sw\\|\\s_\\)+\\)?"
        (1 font-lock-keyword-face nil t)
        (2 font-lock-function-name-face nil t))
       ("(\\(iter-\\(?:next\\|lambda\\|yield\\|yield-from\\)\\)\\_>"
        (1 font-lock-keyword-face nil t))))))

(provide 'generator)

;;; generator.el ends here