/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/*
* Copyright (C) 1999-2008 Novell, Inc. (www.novell.com)
*
* This library is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see .
*
*/
#include "evolution-data-server-config.h"
#include
#include
#include
#include "camel-network-settings.h"
#include "camel-sasl-ntlm.h"
#include "camel-stream-process.h"
#define CAMEL_SASL_NTLM_GET_PRIVATE(obj) \
(G_TYPE_INSTANCE_GET_PRIVATE \
((obj), CAMEL_TYPE_SASL_NTLM, CamelSaslNTLMPrivate))
struct _CamelSaslNTLMPrivate {
gint placeholder; /* allow for future expansion */
#ifndef G_OS_WIN32
gboolean tried_helper;
CamelStream *helper_stream;
gchar *type1_msg;
#endif
};
static CamelServiceAuthType sasl_ntlm_auth_type = {
N_("NTLM / SPA"),
N_("This option will connect to a Windows-based server using "
"NTLM / Secure Password Authentication."),
"NTLM",
TRUE
};
G_DEFINE_TYPE (CamelSaslNTLM, camel_sasl_ntlm, CAMEL_TYPE_SASL)
#define NTLM_REQUEST "NTLMSSP\x00\x01\x00\x00\x00\x06\x82\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00"
#define NTLM_CHALLENGE_DOMAIN_OFFSET 12
#define NTLM_CHALLENGE_FLAGS_OFFSET 20
#define NTLM_CHALLENGE_NONCE_OFFSET 24
#define NTLM_RESPONSE_HEADER "NTLMSSP\x00\x03\x00\x00\x00"
#define NTLM_RESPONSE_FLAGS "\x82\x01"
#define NTLM_RESPONSE_BASE_SIZE 64
#define NTLM_RESPONSE_LM_RESP_OFFSET 12
#define NTLM_RESPONSE_NT_RESP_OFFSET 20
#define NTLM_RESPONSE_DOMAIN_OFFSET 28
#define NTLM_RESPONSE_USER_OFFSET 36
#define NTLM_RESPONSE_HOST_OFFSET 44
#define NTLM_RESPONSE_FLAGS_OFFSET 60
#define NTLM_AUTH_HELPER "/usr/bin/ntlm_auth"
typedef struct {
guint16 length;
guint16 allocated;
guint32 offset;
} SecurityBuffer;
static GString *
ntlm_get_string (GByteArray *ba,
gint offset)
{
SecurityBuffer *secbuf;
gchar *buf_string;
guint16 buf_length;
guint32 buf_offset;
secbuf = (SecurityBuffer *) &ba->data[offset];
buf_length = GUINT16_FROM_LE (secbuf->length);
buf_offset = GUINT32_FROM_LE (secbuf->offset);
if (ba->len < buf_offset + buf_length)
return NULL;
buf_string = (gchar *) &ba->data[buf_offset];
return g_string_new_len (buf_string, buf_length);
}
static void
ntlm_set_string (GByteArray *ba,
gint offset,
const gchar *data,
gint len)
{
SecurityBuffer *secbuf;
secbuf = (SecurityBuffer *) &ba->data[offset];
secbuf->length = GUINT16_TO_LE (len);
secbuf->offset = GUINT32_TO_LE (ba->len);
secbuf->allocated = secbuf->length;
g_byte_array_append (ba, (guint8 *) data, len);
}
/* MD4 */
static void md4sum (const guchar *in,
gint nbytes,
guchar digest[16]);
/* DES */
typedef guint32 DES_KS[16][2]; /* Single-key DES key schedule */
static void deskey (DES_KS, guchar *, gint);
static void des (DES_KS, guchar *);
static void setup_schedule (const guchar *key_56, DES_KS ks);
#define LM_PASSWORD_MAGIC "\x4B\x47\x53\x21\x40\x23\x24\x25" \
"\x4B\x47\x53\x21\x40\x23\x24\x25" \
"\x00\x00\x00\x00\x00"
static void
ntlm_lanmanager_hash (const gchar *password,
gchar hash[21])
{
guchar lm_password[15];
DES_KS ks;
gint i;
for (i = 0; i < 14 && password && password[i]; i++)
lm_password[i] = toupper ((guchar) password[i]);
for (; i < 15; i++)
lm_password[i] = '\0';
memcpy (hash, LM_PASSWORD_MAGIC, 21);
setup_schedule (lm_password, ks);
des (ks, (guchar *) hash);
setup_schedule (lm_password + 7, ks);
des (ks, (guchar *) hash + 8);
}
static void
ntlm_nt_hash (const gchar *password,
gchar hash[21])
{
guchar *buf, *p;
if (!password)
password = "";
p = buf = g_malloc (strlen (password) * 2);
while (*password) {
*p++ = *password++;
*p++ = '\0';
}
md4sum (buf, p - buf, (guchar *) hash);
memset (hash + 16, 0, 5);
g_free (buf);
}
#define KEYBITS(k,s) \
(((k[(s) / 8] << ((s) % 8)) & 0xFF) | (k[(s) / 8 + 1] >> (8 - (s) % 8)))
/* DES utils */
/* Set up a key schedule based on a 56bit key */
static void
setup_schedule (const guchar *key_56,
DES_KS ks)
{
guchar key[8];
gint i, c, bit;
for (i = 0; i < 8; i++) {
key[i] = KEYBITS (key_56, i * 7);
/* Fix parity */
for (c = bit = 0; bit < 8; bit++)
if (key[i] & (1 << bit))
c++;
if (!(c & 1))
key[i] ^= 0x01;
}
deskey (ks, key, 0);
}
static void
ntlm_calc_response (const guchar key[21],
const guchar plaintext[8],
guchar results[24])
{
DES_KS ks;
memcpy (results, plaintext, 8);
memcpy (results + 8, plaintext, 8);
memcpy (results + 16, plaintext, 8);
setup_schedule (key, ks);
des (ks, results);
setup_schedule (key + 7, ks);
des (ks, results + 8);
setup_schedule (key + 14, ks);
des (ks, results + 16);
}
/*
* MD4 encoder. (The one everyone else uses is not GPL-compatible;
* this is a reimplementation from spec.) This doesn't need to be
* efficient for our purposes, although it would be nice to fix
* it to not malloc()...
*/
#define F(X,Y,Z) ( ((X)&(Y)) | ((~(X))&(Z)) )
#define G(X,Y,Z) ( ((X)&(Y)) | ((X)&(Z)) | ((Y)&(Z)) )
#define H(X,Y,Z) ( (X)^(Y)^(Z) )
#define ROT(val, n) ( ((val) << (n)) | ((val) >> (32 - (n))) )
static void
md4sum (const guchar *in,
gint nbytes,
guchar digest[16])
{
guchar *M;
guint32 A, B, C, D, AA, BB, CC, DD, X[16];
gint pbytes, nbits = nbytes * 8, i, j;
/* There is *always* padding of at least one bit. */
pbytes = ((119 - (nbytes % 64)) % 64) + 1;
M = alloca (nbytes + pbytes + 8);
memcpy (M, in, nbytes);
memset (M + nbytes, 0, pbytes + 8);
M[nbytes] = 0x80;
M[nbytes + pbytes] = nbits & 0xFF;
M[nbytes + pbytes + 1] = (nbits >> 8) & 0xFF;
M[nbytes + pbytes + 2] = (nbits >> 16) & 0xFF;
M[nbytes + pbytes + 3] = (nbits >> 24) & 0xFF;
A = 0x67452301;
B = 0xEFCDAB89;
C = 0x98BADCFE;
D = 0x10325476;
for (i = 0; i < nbytes + pbytes + 8; i += 64) {
for (j = 0; j < 16; j++) {
X[j] = (M[i + j * 4]) |
(M[i + j * 4 + 1] << 8) |
(M[i + j * 4 + 2] << 16) |
(M[i + j * 4 + 3] << 24);
}
AA = A;
BB = B;
CC = C;
DD = D;
A = ROT (A + F (B, C, D) + X[0], 3);
D = ROT (D + F (A, B, C) + X[1], 7);
C = ROT (C + F (D, A, B) + X[2], 11);
B = ROT (B + F (C, D, A) + X[3], 19);
A = ROT (A + F (B, C, D) + X[4], 3);
D = ROT (D + F (A, B, C) + X[5], 7);
C = ROT (C + F (D, A, B) + X[6], 11);
B = ROT (B + F (C, D, A) + X[7], 19);
A = ROT (A + F (B, C, D) + X[8], 3);
D = ROT (D + F (A, B, C) + X[9], 7);
C = ROT (C + F (D, A, B) + X[10], 11);
B = ROT (B + F (C, D, A) + X[11], 19);
A = ROT (A + F (B, C, D) + X[12], 3);
D = ROT (D + F (A, B, C) + X[13], 7);
C = ROT (C + F (D, A, B) + X[14], 11);
B = ROT (B + F (C, D, A) + X[15], 19);
A = ROT (A + G (B, C, D) + X[0] + 0x5A827999, 3);
D = ROT (D + G (A, B, C) + X[4] + 0x5A827999, 5);
C = ROT (C + G (D, A, B) + X[8] + 0x5A827999, 9);
B = ROT (B + G (C, D, A) + X[12] + 0x5A827999, 13);
A = ROT (A + G (B, C, D) + X[1] + 0x5A827999, 3);
D = ROT (D + G (A, B, C) + X[5] + 0x5A827999, 5);
C = ROT (C + G (D, A, B) + X[9] + 0x5A827999, 9);
B = ROT (B + G (C, D, A) + X[13] + 0x5A827999, 13);
A = ROT (A + G (B, C, D) + X[2] + 0x5A827999, 3);
D = ROT (D + G (A, B, C) + X[6] + 0x5A827999, 5);
C = ROT (C + G (D, A, B) + X[10] + 0x5A827999, 9);
B = ROT (B + G (C, D, A) + X[14] + 0x5A827999, 13);
A = ROT (A + G (B, C, D) + X[3] + 0x5A827999, 3);
D = ROT (D + G (A, B, C) + X[7] + 0x5A827999, 5);
C = ROT (C + G (D, A, B) + X[11] + 0x5A827999, 9);
B = ROT (B + G (C, D, A) + X[15] + 0x5A827999, 13);
A = ROT (A + H (B, C, D) + X[0] + 0x6ED9EBA1, 3);
D = ROT (D + H (A, B, C) + X[8] + 0x6ED9EBA1, 9);
C = ROT (C + H (D, A, B) + X[4] + 0x6ED9EBA1, 11);
B = ROT (B + H (C, D, A) + X[12] + 0x6ED9EBA1, 15);
A = ROT (A + H (B, C, D) + X[2] + 0x6ED9EBA1, 3);
D = ROT (D + H (A, B, C) + X[10] + 0x6ED9EBA1, 9);
C = ROT (C + H (D, A, B) + X[6] + 0x6ED9EBA1, 11);
B = ROT (B + H (C, D, A) + X[14] + 0x6ED9EBA1, 15);
A = ROT (A + H (B, C, D) + X[1] + 0x6ED9EBA1, 3);
D = ROT (D + H (A, B, C) + X[9] + 0x6ED9EBA1, 9);
C = ROT (C + H (D, A, B) + X[5] + 0x6ED9EBA1, 11);
B = ROT (B + H (C, D, A) + X[13] + 0x6ED9EBA1, 15);
A = ROT (A + H (B, C, D) + X[3] + 0x6ED9EBA1, 3);
D = ROT (D + H (A, B, C) + X[11] + 0x6ED9EBA1, 9);
C = ROT (C + H (D, A, B) + X[7] + 0x6ED9EBA1, 11);
B = ROT (B + H (C, D, A) + X[15] + 0x6ED9EBA1, 15);
A += AA;
B += BB;
C += CC;
D += DD;
}
digest[0] = A & 0xFF;
digest[1] = (A >> 8) & 0xFF;
digest[2] = (A >> 16) & 0xFF;
digest[3] = (A >> 24) & 0xFF;
digest[4] = B & 0xFF;
digest[5] = (B >> 8) & 0xFF;
digest[6] = (B >> 16) & 0xFF;
digest[7] = (B >> 24) & 0xFF;
digest[8] = C & 0xFF;
digest[9] = (C >> 8) & 0xFF;
digest[10] = (C >> 16) & 0xFF;
digest[11] = (C >> 24) & 0xFF;
digest[12] = D & 0xFF;
digest[13] = (D >> 8) & 0xFF;
digest[14] = (D >> 16) & 0xFF;
digest[15] = (D >> 24) & 0xFF;
}
/* Public domain DES implementation from Phil Karn */
static guint32 Spbox[8][64] = {
{ 0x01010400, 0x00000000, 0x00010000, 0x01010404,
0x01010004, 0x00010404, 0x00000004, 0x00010000,
0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004,
0x00000404, 0x01000400, 0x01000400, 0x00010400,
0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004,
0x00000000, 0x00000404, 0x00010404, 0x01000000,
0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400,
0x01010004, 0x00010000, 0x00010400, 0x01000004,
0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404,
0x01000004, 0x00000404, 0x00010404, 0x01010400,
0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004 },
{ 0x80108020, 0x80008000, 0x00008000, 0x00108020,
0x00100000, 0x00000020, 0x80100020, 0x80008020,
0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020,
0x00108000, 0x00100020, 0x80008020, 0x00000000,
0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000,
0x00008020, 0x80108000, 0x80100000, 0x00008020,
0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000,
0x80100000, 0x80008000, 0x00000020, 0x80108020,
0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020,
0x00100020, 0x80008020, 0x80000020, 0x00100020,
0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000 },
{ 0x00000208, 0x08020200, 0x00000000, 0x08020008,
0x08000200, 0x00000000, 0x00020208, 0x08000200,
0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208,
0x08000000, 0x00000008, 0x08020200, 0x00000200,
0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208,
0x00000008, 0x08020208, 0x00000200, 0x08000000,
0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000,
0x00000200, 0x00020008, 0x08020208, 0x08000200,
0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208,
0x00000008, 0x00020208, 0x00020200, 0x08000008,
0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200 },
{ 0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802080, 0x00800081, 0x00800001, 0x00002001,
0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001,
0x00000001, 0x00002000, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080,
0x00002000, 0x00802080, 0x00802081, 0x00000081,
0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000,
0x00002080, 0x00800080, 0x00800081, 0x00000001,
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000,
0x00800001, 0x00002001, 0x00802080, 0x00800081,
0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080 },
{ 0x00000100, 0x02080100, 0x02080000, 0x42000100,
0x00080000, 0x00000100, 0x40000000, 0x02080000,
0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000,
0x02000000, 0x40080000, 0x40080000, 0x00000000,
0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000,
0x02080100, 0x02000000, 0x42000000, 0x00080100,
0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100,
0x02000100, 0x40000000, 0x42080000, 0x02080100,
0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100,
0x02080000, 0x00000000, 0x40080000, 0x42000000,
0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100 },
{ 0x20000010, 0x20400000, 0x00004000, 0x20404010,
0x20400000, 0x00000010, 0x20404010, 0x00400000,
0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010,
0x00000000, 0x00400010, 0x20004010, 0x00004000,
0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000,
0x00004010, 0x00404000, 0x20404000, 0x20000000,
0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010,
0x00400000, 0x20004000, 0x20000000, 0x00004010,
0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010,
0x00000010, 0x00004000, 0x20400000, 0x00404010,
0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010 },
{ 0x00200000, 0x04200002, 0x04000802, 0x00000000,
0x00000800, 0x04000802, 0x00200802, 0x04200800,
0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802,
0x04000800, 0x00200802, 0x00200002, 0x04000800,
0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802,
0x00200800, 0x00000002, 0x04000000, 0x00200800,
0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002,
0x00200002, 0x04000000, 0x04000800, 0x00200000,
0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000,
0x00200800, 0x00000000, 0x00000002, 0x04200802,
0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002 },
{ 0x10001040, 0x00001000, 0x00040000, 0x10041040,
0x10000000, 0x10001040, 0x00000040, 0x10000000,
0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040,
0x10040000, 0x10000040, 0x10001000, 0x00001040,
0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040,
0x10000040, 0x10001000, 0x00041040, 0x00040000,
0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040,
0x10001000, 0x00000040, 0x10000040, 0x10040000,
0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040,
0x10040000, 0x10001000, 0x10001040, 0x00000000,
0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000 }
};
#undef F
#define F(l,r,key){\
work = ((r >> 4) | (r << 28)) ^ key[0];\
l ^= Spbox[6][work & 0x3f];\
l ^= Spbox[4][(work >> 8) & 0x3f];\
l ^= Spbox[2][(work >> 16) & 0x3f];\
l ^= Spbox[0][(work >> 24) & 0x3f];\
work = r ^ key[1];\
l ^= Spbox[7][work & 0x3f];\
l ^= Spbox[5][(work >> 8) & 0x3f];\
l ^= Spbox[3][(work >> 16) & 0x3f];\
l ^= Spbox[1][(work >> 24) & 0x3f];\
}
/* Encrypt or decrypt a block of data in ECB mode */
static void
des (guint32 ks[16][2],
guchar block[8])
{
guint32 left, right, work;
/* Read input block and place in left/right in big-endian order */
left = ((guint32) block[0] << 24)
| ((guint32) block[1] << 16)
| ((guint32) block[2] << 8)
| (guint32) block[3];
right = ((guint32) block[4] << 24)
| ((guint32) block[5] << 16)
| ((guint32) block[6] << 8)
| (guint32) block[7];
/* Hoey's clever initial permutation algorithm, from Outerbridge
* (see Schneier p 478)
*
* The convention here is the same as Outerbridge: rotate each
* register left by 1 bit, i.e., so that "left" contains permuted
* input bits 2, 3, 4, ... 1 and "right" contains 33, 34, 35, ... 32
* (using origin-1 numbering as in the FIPS). This allows us to avoid
* one of the two rotates that would otherwise be required in each of
* the 16 rounds.
*/
work = ((left >> 4) ^ right) & 0x0f0f0f0f;
right ^= work;
left ^= work << 4;
work = ((left >> 16) ^ right) & 0xffff;
right ^= work;
left ^= work << 16;
work = ((right >> 2) ^ left) & 0x33333333;
left ^= work;
right ^= (work << 2);
work = ((right >> 8) ^ left) & 0xff00ff;
left ^= work;
right ^= (work << 8);
right = (right << 1) | (right >> 31);
work = (left ^ right) & 0xaaaaaaaa;
left ^= work;
right ^= work;
left = (left << 1) | (left >> 31);
/* Now do the 16 rounds */
F (left,right,ks[0]);
F (right,left,ks[1]);
F (left,right,ks[2]);
F (right,left,ks[3]);
F (left,right,ks[4]);
F (right,left,ks[5]);
F (left,right,ks[6]);
F (right,left,ks[7]);
F (left,right,ks[8]);
F (right,left,ks[9]);
F (left,right,ks[10]);
F (right,left,ks[11]);
F (left,right,ks[12]);
F (right,left,ks[13]);
F (left,right,ks[14]);
F (right,left,ks[15]);
/* Inverse permutation, also from Hoey via Outerbridge and Schneier */
right = (right << 31) | (right >> 1);
work = (left ^ right) & 0xaaaaaaaa;
left ^= work;
right ^= work;
left = (left >> 1) | (left << 31);
work = ((left >> 8) ^ right) & 0xff00ff;
right ^= work;
left ^= work << 8;
work = ((left >> 2) ^ right) & 0x33333333;
right ^= work;
left ^= work << 2;
work = ((right >> 16) ^ left) & 0xffff;
left ^= work;
right ^= work << 16;
work = ((right >> 4) ^ left) & 0x0f0f0f0f;
left ^= work;
right ^= work << 4;
/* Put the block back into the user's buffer with final swap */
block[0] = right >> 24;
block[1] = right >> 16;
block[2] = right >> 8;
block[3] = right;
block[4] = left >> 24;
block[5] = left >> 16;
block[6] = left >> 8;
block[7] = left;
}
/* Key schedule-related tables from FIPS-46 */
/* permuted choice table (key) */
static guchar pc1[] = {
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4
};
/* number left rotations of pc1 */
static guchar totrot[] = {
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
};
/* permuted choice key (table) */
static guchar pc2[] = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
/* End of DES-defined tables */
/* bit 0 is left-most in byte */
static gint bytebit[] = {
0200,0100,040,020,010,04,02,01
};
/* Generate key schedule for encryption or decryption
* depending on the value of "decrypt"
*/
static void
deskey (DES_KS k,
guchar *key,
gint decrypt)
{
guchar pc1m[56]; /* place to modify pc1 into */
guchar pcr[56]; /* place to rotate pc1 into */
register gint i,j,l;
gint m;
guchar ks[8];
for (j=0; j<56; j++) { /* convert pc1 to bits of key */
l=pc1[j]-1; /* integer bit location */
m = l & 07; /* find bit */
pc1m[j]=(key[l>>3] & /* find which key byte l is in */
bytebit[m]) /* and which bit of that byte */
? 1 : 0; /* and store 1-bit result */
}
for (i=0; i<16; i++) { /* key chunk for each iteration */
memset (ks,0,sizeof (ks)); /* Clear key schedule */
for (j=0; j<56; j++) /* rotate pc1 the right amount */
pcr[j] = pc1m[(l = j + totrot[decrypt? 15 - i : i]) < (j < 28? 28 : 56) ? l: l - 28];
/* rotate left and right halves independently */
for (j=0; j<48; j++){ /* select bits individually */
/* check bit that goes to ks[j] */
if (pcr[pc2[j]-1]) {
/* mask it in if it's there */
l= j % 6;
ks[j / 6] |= bytebit[l] >> 2;
}
}
/* Now convert to packed odd/even interleaved form */
k[i][0] = ((guint32) ks[0] << 24)
| ((guint32) ks[2] << 16)
| ((guint32) ks[4] << 8)
| ((guint32) ks[6]);
k[i][1] = ((guint32) ks[1] << 24)
| ((guint32) ks[3] << 16)
| ((guint32) ks[5] << 8)
| ((guint32) ks[7]);
}
}
static gboolean
sasl_ntlm_try_empty_password_sync (CamelSasl *sasl,
GCancellable *cancellable,
GError **error)
{
#ifndef G_OS_WIN32
CamelStream *stream;
CamelNetworkSettings *network_settings;
CamelSettings *settings;
CamelService *service;
CamelSaslNTLM *ntlm = CAMEL_SASL_NTLM (sasl);
CamelSaslNTLMPrivate *priv = ntlm->priv;
const gchar *cp;
gchar *user;
gchar buf[1024];
gsize s;
gchar *command;
gint ret;
if (priv->tried_helper)
return !!priv->helper_stream;
priv->tried_helper = TRUE;
if (access (NTLM_AUTH_HELPER, X_OK))
return FALSE;
service = camel_sasl_get_service (sasl);
settings = camel_service_ref_settings (service);
g_return_val_if_fail (CAMEL_IS_NETWORK_SETTINGS (settings), FALSE);
network_settings = CAMEL_NETWORK_SETTINGS (settings);
user = camel_network_settings_dup_user (network_settings);
g_object_unref (settings);
g_return_val_if_fail (user != NULL, FALSE);
cp = strchr (user, '\\');
if (cp != NULL) {
command = g_strdup_printf (
"%s --helper-protocol ntlmssp-client-1 "
"--use-cached-creds --username '%s' "
"--domain '%.*s'", NTLM_AUTH_HELPER,
cp + 1, (gint)(cp - user), user);
} else {
command = g_strdup_printf (
"%s --helper-protocol ntlmssp-client-1 "
"--use-cached-creds --username '%s'",
NTLM_AUTH_HELPER, user);
}
stream = camel_stream_process_new ();
ret = camel_stream_process_connect (
CAMEL_STREAM_PROCESS (stream), command, NULL, error);
g_free (command);
g_free (user);
if (ret) {
g_object_unref (stream);
return FALSE;
}
if (camel_stream_write_string (stream, "YR\n", cancellable, error) < 0) {
g_object_unref (stream);
return FALSE;
}
s = camel_stream_read (stream, buf, sizeof (buf), cancellable, NULL);
if (s < 4) {
g_object_unref (stream);
return FALSE;
}
if (buf[0] != 'Y' || buf[1] != 'R' || buf[2] != ' ' || buf[s - 1] != '\n') {
g_object_unref (stream);
return FALSE;
}
buf[s - 1] = 0;
priv->helper_stream = stream;
priv->type1_msg = g_strdup (buf + 3);
return TRUE;
#else
/* Win32 should be able to use SSPI here. */
return FALSE;
#endif
}
static GByteArray *
sasl_ntlm_challenge_sync (CamelSasl *sasl,
GByteArray *token,
GCancellable *cancellable,
GError **error)
{
#ifndef G_OS_WIN32
CamelSaslNTLM *ntlm = CAMEL_SASL_NTLM (sasl);
CamelSaslNTLMPrivate *priv = ntlm->priv;
#endif
CamelNetworkSettings *network_settings;
CamelSettings *settings;
CamelService *service;
GByteArray *ret;
guchar nonce[8], hash[21], lm_resp[24], nt_resp[24];
GString *domain = NULL;
const gchar *password;
const gchar *real_user;
const gchar *cp;
gchar *user = NULL;
service = camel_sasl_get_service (sasl);
settings = camel_service_ref_settings (service);
g_return_val_if_fail (CAMEL_IS_NETWORK_SETTINGS (settings), NULL);
network_settings = CAMEL_NETWORK_SETTINGS (settings);
user = camel_network_settings_dup_user (network_settings);
g_object_unref (settings);
g_return_val_if_fail (user != NULL, NULL);
password = camel_service_get_password (service);
/* Assert a non-NULL password below, not here. */
ret = g_byte_array_new ();
#ifndef G_OS_WIN32
if (!priv->tried_helper && password == NULL)
sasl_ntlm_try_empty_password_sync (sasl, cancellable, NULL);
if (priv->helper_stream && password == NULL) {
guchar *data;
gsize length = 0;
gchar buf[1024];
gsize s = 0;
buf[0] = 0;
if (!token || !token->len) {
if (priv->type1_msg) {
data = g_base64_decode (priv->type1_msg, &length);
g_byte_array_append (ret, data, length);
g_free (data);
g_free (priv->type1_msg);
priv->type1_msg = NULL;
}
goto exit;
} else {
gchar *type2;
gchar *string;
type2 = g_base64_encode (token->data, token->len);
string = g_strdup_printf ("TT %s\n", type2);
if (camel_stream_write_string (
priv->helper_stream, string, NULL, NULL) >= 0 &&
(s = camel_stream_read (
priv->helper_stream, buf,
sizeof (buf), cancellable, NULL)) > 4 &&
buf[0] == 'K' &&
buf[1] == 'K' &&
buf[2] == ' ' &&
buf[s - 1] == '\n') {
buf[s - 1] = 0;
data = g_base64_decode (buf + 3, &length);
g_byte_array_append (ret, data, length);
g_free (data);
} else
g_warning ("Didn't get valid response from ntlm_auth helper");
g_free (string);
g_free (type2);
}
/* On failure, we just return an empty string. Setting the
* GError would cause the providers to abort the whole
* connection, and we want them to ask the user for a password
* and continue. */
g_object_unref (priv->helper_stream);
priv->helper_stream = NULL;
goto exit;
}
#endif
g_return_val_if_fail (password != NULL, NULL);
if (!token || token->len < NTLM_CHALLENGE_NONCE_OFFSET + 8)
goto fail;
/* 0x00080000: Negotiate NTLM2 Key */
if (token->data[NTLM_CHALLENGE_FLAGS_OFFSET + 2] & 8) {
/* NTLM2 session response */
struct {
guint32 srv[2];
guint32 clnt[2];
} sess_nonce;
GChecksum *md5;
guint8 digest[16];
gsize digest_len = sizeof (digest);
sess_nonce.clnt[0] = g_random_int ();
sess_nonce.clnt[1] = g_random_int ();
/* LM response is 8-byte client nonce, NUL-padded to 24 */
memcpy (lm_resp, sess_nonce.clnt, 8);
memset (lm_resp + 8, 0, 16);
/* Session nonce is client nonce + server nonce */
memcpy (
sess_nonce.srv,
token->data + NTLM_CHALLENGE_NONCE_OFFSET, 8);
/* Take MD5 of session nonce */
md5 = g_checksum_new (G_CHECKSUM_MD5);
g_checksum_update (md5, (gpointer) &sess_nonce, 16);
g_checksum_get_digest (md5, (gpointer) &digest, &digest_len);
g_checksum_get_digest (md5, digest, &digest_len);
g_checksum_free (md5);
ntlm_nt_hash (password, (gchar *) hash);
ntlm_calc_response (hash, digest, nt_resp);
} else {
/* NTLM1 */
memcpy (nonce, token->data + NTLM_CHALLENGE_NONCE_OFFSET, 8);
ntlm_lanmanager_hash (password, (gchar *) hash);
ntlm_calc_response (hash, nonce, lm_resp);
ntlm_nt_hash (password, (gchar *) hash);
ntlm_calc_response (hash, nonce, nt_resp);
}
/* If a domain is supplied as part of the username, use it */
cp = strchr (user, '\\');
if (cp != NULL) {
domain = g_string_new_len (user, cp - user);
real_user = cp + 1;
} else
real_user = user;
/* Otherwise, fall back to the domain of the server, if possible */
if (domain == NULL)
domain = ntlm_get_string (token, NTLM_CHALLENGE_DOMAIN_OFFSET);
if (domain == NULL)
goto fail;
/* Don't jump to 'fail' label after this point. */
g_byte_array_set_size (ret, NTLM_RESPONSE_BASE_SIZE);
memset (ret->data, 0, NTLM_RESPONSE_BASE_SIZE);
memcpy (
ret->data, NTLM_RESPONSE_HEADER,
sizeof (NTLM_RESPONSE_HEADER) - 1);
memcpy (
ret->data + NTLM_RESPONSE_FLAGS_OFFSET,
NTLM_RESPONSE_FLAGS, sizeof (NTLM_RESPONSE_FLAGS) - 1);
/* Mask in the NTLM2SESSION flag */
ret->data[NTLM_RESPONSE_FLAGS_OFFSET + 2] |=
token->data[NTLM_CHALLENGE_FLAGS_OFFSET + 2] & 8;
ntlm_set_string (
ret, NTLM_RESPONSE_DOMAIN_OFFSET,
domain->str, domain->len);
ntlm_set_string (
ret, NTLM_RESPONSE_USER_OFFSET,
real_user, strlen (real_user));
ntlm_set_string (
ret, NTLM_RESPONSE_HOST_OFFSET,
"UNKNOWN", sizeof ("UNKNOWN") - 1);
ntlm_set_string (
ret, NTLM_RESPONSE_LM_RESP_OFFSET,
(const gchar *) lm_resp, sizeof (lm_resp));
ntlm_set_string (
ret, NTLM_RESPONSE_NT_RESP_OFFSET,
(const gchar *) nt_resp, sizeof (nt_resp));
camel_sasl_set_authenticated (sasl, TRUE);
g_string_free (domain, TRUE);
goto exit;
fail:
/* If the challenge is malformed, restart authentication.
* XXX A malicious server could make this loop indefinitely. */
g_byte_array_append (
ret, (guint8 *) NTLM_REQUEST,
sizeof (NTLM_REQUEST) - 1);
exit:
g_free (user);
return ret;
}
static void
sasl_ntlm_finalize (GObject *object)
{
#ifndef G_OS_WIN32
CamelSaslNTLM *ntlm = CAMEL_SASL_NTLM (object);
CamelSaslNTLMPrivate *priv = ntlm->priv;
if (priv->type1_msg)
g_free (priv->type1_msg);
if (priv->helper_stream)
g_object_unref (priv->helper_stream);
#endif
/* Chain up to parent's finalize() method. */
G_OBJECT_CLASS (camel_sasl_ntlm_parent_class)->finalize (object);
}
static void
camel_sasl_ntlm_class_init (CamelSaslNTLMClass *class)
{
GObjectClass *object_class;
CamelSaslClass *sasl_class;
g_type_class_add_private (class, sizeof (CamelSaslNTLMPrivate));
object_class = G_OBJECT_CLASS (class);
object_class->finalize = sasl_ntlm_finalize;
sasl_class = CAMEL_SASL_CLASS (class);
sasl_class->auth_type = &sasl_ntlm_auth_type;
sasl_class->challenge_sync = sasl_ntlm_challenge_sync;
sasl_class->try_empty_password_sync = sasl_ntlm_try_empty_password_sync;
}
static void
camel_sasl_ntlm_init (CamelSaslNTLM *sasl)
{
sasl->priv = CAMEL_SASL_NTLM_GET_PRIVATE (sasl);
}