diff options
-rw-r--r-- | Changelog | 1 | ||||
-rw-r--r-- | libavcodec/elbg.c | 416 | ||||
-rw-r--r-- | libavcodec/elbg.h | 50 |
3 files changed, 467 insertions, 0 deletions
@@ -86,6 +86,7 @@ version <next> - Renderware TXD demuxer and decoder - extern C declarations for C++ removed from headers - sws_flags command line option +- codebook generator version 0.4.9-pre1: diff --git a/libavcodec/elbg.c b/libavcodec/elbg.c new file mode 100644 index 0000000000..c2393e70ba --- /dev/null +++ b/libavcodec/elbg.c @@ -0,0 +1,416 @@ +/* + * Copyright (C) 2007 Vitor <vitor1001@gmail.com> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file cbook_gen.c + * Codebook Generator using the ELBG algorithm + */ + +#include <string.h> + +#include "elbg.h" +#include "avcodec.h" +#include "random.h" + +#define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentual error) + +/** + * In the ELBG jargon, a cell is the set of points that are closest to a + * codebook entry. Not to be confused with a RoQ Video cell. */ +typedef struct cell_s { + int index; + struct cell_s *next; +} cell; + +/** + * ELBG internal data + */ +typedef struct{ + int error; + int dim; + int numCB; + int *codebook; + cell **cells; + int *utility; + int *utility_inc; + int *nearest_cb; + int *points; + AVRandomState *rand_state; +} elbg_data; + +static inline int distance_limited(int *a, int *b, int dim, int limit) +{ + int i, dist=0; + for (i=0; i<dim; i++) { + dist += (a[i] - b[i])*(a[i] - b[i]); + if (dist > limit) + return INT_MAX; + } + + return dist; +} + +static inline void vect_division(int *res, int *vect, int div, int dim) +{ + int i; + if (div > 1) + for (i=0; i<dim; i++) + res[i] = ROUNDED_DIV(vect[i],div); + else if (res != vect) + memcpy(res, vect, dim*sizeof(int)); + +} + +static int eval_error_cell(elbg_data *elbg, int *centroid, cell *cells) +{ + int error=0; + for (; cells; cells=cells->next) + error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX); + + return error; +} + +static int get_closest_codebook(elbg_data *elbg, int index) +{ + int i, pick=0, diff, diff_min = INT_MAX; + for (i=0; i<elbg->numCB; i++) + if (i != index) { + diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min); + if (diff < diff_min) { + pick = i; + diff_min = diff; + } + } + return pick; +} + +static int get_high_utility_cell(elbg_data *elbg) +{ + int i=0; + /* Using linear search, do binary if it ever turns to be speed critical */ + int r = av_random(elbg->rand_state)%elbg->utility_inc[elbg->numCB-1]; + while (elbg->utility_inc[i] < r) + i++; + return i; +} + +/** + * Implementation of the simple LBG algorithm for just two codebooks + */ +static int simple_lbg(int dim, + int centroid[3][dim], + int newutility[3], + int *points, + cell *cells) +{ + int i, idx; + int numpoints[2] = {0,0}; + int newcentroid[2][dim]; + cell *tempcell; + + memset(newcentroid, 0, sizeof(newcentroid)); + + newutility[0] = + newutility[1] = 0; + + for (tempcell = cells; tempcell; tempcell=tempcell->next) { + idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>= + distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX); + numpoints[idx]++; + for (i=0; i<dim; i++) + newcentroid[idx][i] += points[tempcell->index*dim + i]; + } + + vect_division(centroid[0], newcentroid[0], numpoints[0], dim); + vect_division(centroid[1], newcentroid[1], numpoints[1], dim); + + for (tempcell = cells; tempcell; tempcell=tempcell->next) { + int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX), + distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)}; + int idx = dist[0] > dist[1]; + newutility[idx] += dist[idx]; + } + + return newutility[0] + newutility[1]; +} + +static void get_new_centroids(elbg_data *elbg, int huc, int *newcentroid_i, + int *newcentroid_p) +{ + cell *tempcell; + int min[elbg->dim]; + int max[elbg->dim]; + int i; + + for (i=0; i< elbg->dim; i++) { + min[i]=INT_MAX; + max[i]=0; + } + + for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next) + for(i=0; i<elbg->dim; i++) { + min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]); + max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]); + } + + for (i=0; i<elbg->dim; i++) { + newcentroid_i[i] = min[i] + (max[i] - min[i])/3; + newcentroid_p[i] = min[i] + (2*(max[i] - min[i]))/3; + } +} + +/** + * Add the points in the low utility cell to its closest cell. Split the high + * utility cell, putting the separed points in the (now empty) low utility + * cell. + * + * @param elbg Internal elbg data + * @param indexes {luc, huc, cluc} + * @param newcentroid A vector with the position of the new centroids + */ +static void shift_codebook(elbg_data *elbg, int *indexes, + int newcentroid[3][elbg->dim]) +{ + cell *tempdata; + cell **pp = &elbg->cells[indexes[2]]; + + while(*pp) + pp= &(*pp)->next; + + *pp = elbg->cells[indexes[0]]; + + elbg->cells[indexes[0]] = NULL; + tempdata = elbg->cells[indexes[1]]; + elbg->cells[indexes[1]] = NULL; + + while(tempdata) { + cell *tempcell2 = tempdata->next; + int idx = distance_limited(elbg->points + tempdata->index*elbg->dim, + newcentroid[0], elbg->dim, INT_MAX) > + distance_limited(elbg->points + tempdata->index*elbg->dim, + newcentroid[1], elbg->dim, INT_MAX); + + tempdata->next = elbg->cells[indexes[idx]]; + elbg->cells[indexes[idx]] = tempdata; + tempdata = tempcell2; + } +} + +static void evaluate_utility_inc(elbg_data *elbg) +{ + int i, inc=0; + + for (i=0; i < elbg->numCB; i++) { + if (elbg->numCB*elbg->utility[i] > elbg->error) + inc += elbg->utility[i]; + elbg->utility_inc[i] = inc; + } +} + + +static void update_utility_and_n_cb(elbg_data *elbg, int idx, int newutility) +{ + cell *tempcell; + + elbg->utility[idx] = newutility; + for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next) + elbg->nearest_cb[tempcell->index] = idx; +} + +/** + * Evaluate if a shift lower the error. If it does, call shift_codebooks + * and update elbg->error, elbg->utility and elbg->nearest_cb. + * + * @param elbg Internal elbg data + * @param indexes {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)} + */ +static void try_shift_candidate(elbg_data *elbg, int idx[3]) +{ + int j, k, olderror=0, newerror, cont=0; + int newutility[3]; + int newcentroid[3][elbg->dim]; + cell *tempcell; + + for (j=0; j<3; j++) + olderror += elbg->utility[idx[j]]; + + memset(newcentroid[2], 0, elbg->dim*sizeof(int)); + + for (k=0; k<2; k++) + for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) { + cont++; + for (j=0; j<elbg->dim; j++) + newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j]; + } + + vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim); + + get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]); + + newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]); + newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]); + + newerror = newutility[2]; + + newerror += simple_lbg(elbg->dim, newcentroid, newutility, elbg->points, + elbg->cells[idx[1]]); + + if (olderror > newerror) { + shift_codebook(elbg, idx, newcentroid); + + elbg->error += newerror - olderror; + + for (j=0; j<3; j++) + update_utility_and_n_cb(elbg, idx[j], newutility[j]); + + evaluate_utility_inc(elbg); + } + } + +/** + * Implementation of the ELBG block + */ +static void do_shiftings(elbg_data *elbg) +{ + int idx[3]; + + evaluate_utility_inc(elbg); + + for (idx[0]=0; idx[0] < elbg->numCB; idx[0]++) + if (elbg->numCB*elbg->utility[idx[0]] < elbg->error) { + if (elbg->utility_inc[elbg->numCB-1] == 0) + return; + + idx[1] = get_high_utility_cell(elbg); + idx[2] = get_closest_codebook(elbg, idx[0]); + + try_shift_candidate(elbg, idx); + } +} + +#define BIG_PRIME 433494437LL + +void ff_init_elbg(int *points, int dim, int numpoints, int *codebook, + int numCB, int max_steps, int *closest_cb, + AVRandomState *rand_state) +{ + int i, k; + + if (numpoints > 24*numCB) { + /* ELBG is very costly for a big number of points. So if we have a lot + of them, get a good initial codebook to save on iterations */ + int *temp_points = av_malloc(dim*(numpoints/8)*sizeof(int)); + for (i=0; i<numpoints/8; i++) { + k = (i*BIG_PRIME) % numpoints; + memcpy(temp_points + i*dim, points + k*dim, dim*sizeof(int)); + } + + ff_init_elbg(temp_points, dim, numpoints/8, codebook, numCB, 2*max_steps, closest_cb, rand_state); + ff_do_elbg(temp_points, dim, numpoints/8, codebook, numCB, 2*max_steps, closest_cb, rand_state); + + av_free(temp_points); + + } else // If not, initialize the codebook with random positions + for (i=0; i < numCB; i++) + memcpy(codebook + i*dim, points + ((i*BIG_PRIME)%numpoints)*dim, + dim*sizeof(int)); + +} + +void ff_do_elbg(int *points, int dim, int numpoints, int *codebook, + int numCB, int max_steps, int *closest_cb, + AVRandomState *rand_state) +{ + int dist; + elbg_data elbg_d; + elbg_data *elbg = &elbg_d; + int i, j, k, last_error, steps=0; + int *dist_cb = av_malloc(numpoints*sizeof(int)); + int *size_part = av_malloc(numCB*sizeof(int)); + cell *list_buffer = av_malloc(numpoints*sizeof(cell)); + cell *free_cells; + + elbg->error = INT_MAX; + elbg->dim = dim; + elbg->numCB = numCB; + elbg->codebook = codebook; + elbg->cells = av_malloc(numCB*sizeof(cell *)); + elbg->utility = av_malloc(numCB*sizeof(int)); + elbg->nearest_cb = closest_cb; + elbg->points = points; + elbg->utility_inc = av_malloc(numCB*sizeof(int)); + + elbg->rand_state = rand_state; + + do { + free_cells = list_buffer; + last_error = elbg->error; + steps++; + memset(elbg->utility, 0, numCB*sizeof(int)); + memset(elbg->cells, 0, numCB*sizeof(cell *)); + + elbg->error = 0; + + /* This loop evaluate the actual Voronoi partition. It is the most + costly part of the algorithm. */ + for (i=0; i < numpoints; i++) { + dist_cb[i] = INT_MAX; + for (k=0; k < elbg->numCB; k++) { + dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + k*elbg->dim, dim, dist_cb[i]); + if (dist < dist_cb[i]) { + dist_cb[i] = dist; + elbg->nearest_cb[i] = k; + } + } + elbg->error += dist_cb[i]; + elbg->utility[elbg->nearest_cb[i]] += dist_cb[i]; + free_cells->index = i; + free_cells->next = elbg->cells[elbg->nearest_cb[i]]; + elbg->cells[elbg->nearest_cb[i]] = free_cells; + free_cells++; + } + + do_shiftings(elbg); + + memset(size_part, 0, numCB*sizeof(int)); + + memset(elbg->codebook, 0, elbg->numCB*dim*sizeof(int)); + + for (i=0; i < numpoints; i++) { + size_part[elbg->nearest_cb[i]]++; + for (j=0; j < elbg->dim; j++) + elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] += + elbg->points[i*elbg->dim + j]; + } + + for (i=0; i < elbg->numCB; i++) + vect_division(elbg->codebook + i*elbg->dim, + elbg->codebook + i*elbg->dim, size_part[i], elbg->dim); + + } while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) && + (steps < max_steps)); + + av_free(dist_cb); + av_free(size_part); + av_free(elbg->utility); + av_free(list_buffer); + av_free(elbg->cells); + av_free(elbg->utility_inc); +} diff --git a/libavcodec/elbg.h b/libavcodec/elbg.h new file mode 100644 index 0000000000..ab711b5b7c --- /dev/null +++ b/libavcodec/elbg.h @@ -0,0 +1,50 @@ +/* + * Copyright (C) 2007 Vitor <vitor1001@gmail.com> + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "random.h" + +/** + * Implementation of the Enhanced LBG Algorithm + * Based on the paper "Neural Networks 14:1219-1237" that can be found in + * http://citeseer.ist.psu.edu/patan01enhanced.html . + * + * @param points Input points. + * @param dim Dimension of the points. + * @param numpoints Num of points in **points. + * @param codebook Pointer to the output codebook. Must be allocated. + * @param numCB Number of points in the codebook. + * @param num_steps The maximum number of steps. One step is already a good compromise between time and quality. + * @param closest_cb Return the closest codebook to each point. Must be allocated. + * @param rand_state A random number generator state. Should be already initialised by av_init_random. + */ +void ff_do_elbg(int *points, int dim, int numpoints, int *codebook, + int numCB, int num_steps, int *closest_cb, + AVRandomState *rand_state); + +/** + * Initialize the **codebook vector for the elbg algorithm. If you have already + * a codebook and you want to refine it, you shouldn't call this function. + * If numpoints < 8*numCB this function fills **codebook with random numbers. + * If not, it calls ff_do_elbg for a (smaller) random sample of the points in + * **points. Get the same parameters as ff_do_elbg. + */ +void ff_init_elbg(int *points, int dim, int numpoints, int *codebook, + int numCB, int num_steps, int *closest_cb, + AVRandomState *rand_state); |