summaryrefslogtreecommitdiff
path: root/libavcodec/diracdec.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavcodec/diracdec.c')
-rw-r--r--libavcodec/diracdec.c1934
1 files changed, 1934 insertions, 0 deletions
diff --git a/libavcodec/diracdec.c b/libavcodec/diracdec.c
new file mode 100644
index 0000000000..a9191cd9cd
--- /dev/null
+++ b/libavcodec/diracdec.c
@@ -0,0 +1,1934 @@
+/*
+ * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
+ * Copyright (C) 2009 David Conrad
+ * Copyright (C) 2011 Jordi Ortiz
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Dirac Decoder
+ * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
+ */
+
+#include "avcodec.h"
+#include "dsputil.h"
+#include "get_bits.h"
+#include "bytestream.h"
+#include "internal.h"
+#include "golomb.h"
+#include "dirac_arith.h"
+#include "mpeg12data.h"
+#include "dirac_dwt.h"
+#include "dirac.h"
+#include "diracdsp.h"
+
+/**
+ * The spec limits the number of wavelet decompositions to 4 for both
+ * level 1 (VC-2) and 128 (long-gop default).
+ * 5 decompositions is the maximum before >16-bit buffers are needed.
+ * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
+ * the others to 4 decompositions (or 3 for the fidelity filter).
+ *
+ * We use this instead of MAX_DECOMPOSITIONS to save some memory.
+ */
+#define MAX_DWT_LEVELS 5
+
+/**
+ * The spec limits this to 3 for frame coding, but in practice can be as high as 6
+ */
+#define MAX_REFERENCE_FRAMES 8
+#define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
+#define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
+#define MAX_QUANT 68 /* max quant for VC-2 */
+#define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
+
+/**
+ * DiracBlock->ref flags, if set then the block does MC from the given ref
+ */
+#define DIRAC_REF_MASK_REF1 1
+#define DIRAC_REF_MASK_REF2 2
+#define DIRAC_REF_MASK_GLOBAL 4
+
+/**
+ * Value of Picture.reference when Picture is not a reference picture, but
+ * is held for delayed output.
+ */
+#define DELAYED_PIC_REF 4
+
+#define ff_emulated_edge_mc ff_emulated_edge_mc_8 /* Fix: change the calls to this function regarding bit depth */
+
+#define CALC_PADDING(size, depth) \
+ (((size + (1 << depth) - 1) >> depth) << depth)
+
+#define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
+
+typedef struct {
+ AVFrame avframe;
+ int interpolated[3]; /* 1 if hpel[] is valid */
+ uint8_t *hpel[3][4];
+ uint8_t *hpel_base[3][4];
+} DiracFrame;
+
+typedef struct {
+ union {
+ int16_t mv[2][2];
+ int16_t dc[3];
+ } u; /* anonymous unions aren't in C99 :( */
+ uint8_t ref;
+} DiracBlock;
+
+typedef struct SubBand {
+ int level;
+ int orientation;
+ int stride;
+ int width;
+ int height;
+ int quant;
+ IDWTELEM *ibuf;
+ struct SubBand *parent;
+
+ /* for low delay */
+ unsigned length;
+ const uint8_t *coeff_data;
+} SubBand;
+
+typedef struct Plane {
+ int width;
+ int height;
+ int stride;
+
+ int idwt_width;
+ int idwt_height;
+ int idwt_stride;
+ IDWTELEM *idwt_buf;
+ IDWTELEM *idwt_buf_base;
+ IDWTELEM *idwt_tmp;
+
+ /* block length */
+ uint8_t xblen;
+ uint8_t yblen;
+ /* block separation (block n+1 starts after this many pixels in block n) */
+ uint8_t xbsep;
+ uint8_t ybsep;
+ /* amount of overspill on each edge (half of the overlap between blocks) */
+ uint8_t xoffset;
+ uint8_t yoffset;
+
+ SubBand band[MAX_DWT_LEVELS][4];
+} Plane;
+
+typedef struct DiracContext {
+ AVCodecContext *avctx;
+ DSPContext dsp;
+ DiracDSPContext diracdsp;
+ GetBitContext gb;
+ dirac_source_params source;
+ int seen_sequence_header;
+ int frame_number; /* number of the next frame to display */
+ Plane plane[3];
+ int chroma_x_shift;
+ int chroma_y_shift;
+
+ int zero_res; /* zero residue flag */
+ int is_arith; /* whether coeffs use arith or golomb coding */
+ int low_delay; /* use the low delay syntax */
+ int globalmc_flag; /* use global motion compensation */
+ int num_refs; /* number of reference pictures */
+
+ /* wavelet decoding */
+ unsigned wavelet_depth; /* depth of the IDWT */
+ unsigned wavelet_idx;
+
+ /**
+ * schroedinger older than 1.0.8 doesn't store
+ * quant delta if only one codebook exists in a band
+ */
+ unsigned old_delta_quant;
+ unsigned codeblock_mode;
+
+ struct {
+ unsigned width;
+ unsigned height;
+ } codeblock[MAX_DWT_LEVELS+1];
+
+ struct {
+ unsigned num_x; /* number of horizontal slices */
+ unsigned num_y; /* number of vertical slices */
+ AVRational bytes; /* average bytes per slice */
+ uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
+ } lowdelay;
+
+ struct {
+ int pan_tilt[2]; /* pan/tilt vector */
+ int zrs[2][2]; /* zoom/rotate/shear matrix */
+ int perspective[2]; /* perspective vector */
+ unsigned zrs_exp;
+ unsigned perspective_exp;
+ } globalmc[2];
+
+ /* motion compensation */
+ uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
+ int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
+ unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
+
+ int blwidth; /* number of blocks (horizontally) */
+ int blheight; /* number of blocks (vertically) */
+ int sbwidth; /* number of superblocks (horizontally) */
+ int sbheight; /* number of superblocks (vertically) */
+
+ uint8_t *sbsplit;
+ DiracBlock *blmotion;
+
+ uint8_t *edge_emu_buffer[4];
+ uint8_t *edge_emu_buffer_base;
+
+ uint16_t *mctmp; /* buffer holding the MC data multipled by OBMC weights */
+ uint8_t *mcscratch;
+
+ DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
+
+ void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
+ void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
+ void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
+ dirac_weight_func weight_func;
+ dirac_biweight_func biweight_func;
+
+ DiracFrame *current_picture;
+ DiracFrame *ref_pics[2];
+
+ DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
+ DiracFrame *delay_frames[MAX_DELAY+1];
+ DiracFrame all_frames[MAX_FRAMES];
+} DiracContext;
+
+/**
+ * Dirac Specification ->
+ * Parse code values. 9.6.1 Table 9.1
+ */
+enum dirac_parse_code {
+ pc_seq_header = 0x00,
+ pc_eos = 0x10,
+ pc_aux_data = 0x20,
+ pc_padding = 0x30,
+};
+
+enum dirac_subband {
+ subband_ll = 0,
+ subband_hl = 1,
+ subband_lh = 2,
+ subband_hh = 3
+};
+
+static const uint8_t default_qmat[][4][4] = {
+ { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
+ { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
+ { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
+ { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
+ { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
+ { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
+ { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
+};
+
+static const int qscale_tab[MAX_QUANT+1] = {
+ 4, 5, 6, 7, 8, 10, 11, 13,
+ 16, 19, 23, 27, 32, 38, 45, 54,
+ 64, 76, 91, 108, 128, 152, 181, 215,
+ 256, 304, 362, 431, 512, 609, 724, 861,
+ 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
+ 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
+ 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
+ 65536, 77936
+};
+
+static const int qoffset_intra_tab[MAX_QUANT+1] = {
+ 1, 2, 3, 4, 4, 5, 6, 7,
+ 8, 10, 12, 14, 16, 19, 23, 27,
+ 32, 38, 46, 54, 64, 76, 91, 108,
+ 128, 152, 181, 216, 256, 305, 362, 431,
+ 512, 609, 724, 861, 1024, 1218, 1448, 1722,
+ 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
+ 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
+ 32768, 38968
+};
+
+static const int qoffset_inter_tab[MAX_QUANT+1] = {
+ 1, 2, 2, 3, 3, 4, 4, 5,
+ 6, 7, 9, 10, 12, 14, 17, 20,
+ 24, 29, 34, 41, 48, 57, 68, 81,
+ 96, 114, 136, 162, 192, 228, 272, 323,
+ 384, 457, 543, 646, 768, 913, 1086, 1292,
+ 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
+ 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
+ 24576, 29226
+};
+
+/* magic number division by 3 from schroedinger */
+static inline int divide3(int x)
+{
+ return ((x+1)*21845 + 10922) >> 16;
+}
+
+static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
+{
+ DiracFrame *remove_pic = NULL;
+ int i, remove_idx = -1;
+
+ for (i = 0; framelist[i]; i++)
+ if (framelist[i]->avframe.display_picture_number == picnum) {
+ remove_pic = framelist[i];
+ remove_idx = i;
+ }
+
+ if (remove_pic)
+ for (i = remove_idx; framelist[i]; i++)
+ framelist[i] = framelist[i+1];
+
+ return remove_pic;
+}
+
+static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
+{
+ int i;
+ for (i = 0; i < maxframes; i++)
+ if (!framelist[i]) {
+ framelist[i] = frame;
+ return 0;
+ }
+ return -1;
+}
+
+static int alloc_sequence_buffers(DiracContext *s)
+{
+ int sbwidth = DIVRNDUP(s->source.width, 4);
+ int sbheight = DIVRNDUP(s->source.height, 4);
+ int i, w, h, top_padding;
+
+ /* todo: think more about this / use or set Plane here */
+ for (i = 0; i < 3; i++) {
+ int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
+ int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
+ w = s->source.width >> (i ? s->chroma_x_shift : 0);
+ h = s->source.height >> (i ? s->chroma_y_shift : 0);
+
+ /* we allocate the max we support here since num decompositions can
+ * change from frame to frame. Stride is aligned to 16 for SIMD, and
+ * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
+ * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
+ * on each side */
+ top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
+ w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
+ h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
+
+ s->plane[i].idwt_buf_base = av_mallocz((w+max_xblen)*h * sizeof(IDWTELEM));
+ s->plane[i].idwt_tmp = av_malloc((w+16) * sizeof(IDWTELEM));
+ s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
+ if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
+ return AVERROR(ENOMEM);
+ }
+
+ w = s->source.width;
+ h = s->source.height;
+
+ /* fixme: allocate using real stride here */
+ s->sbsplit = av_malloc(sbwidth * sbheight);
+ s->blmotion = av_malloc(sbwidth * sbheight * 16 * sizeof(*s->blmotion));
+ s->edge_emu_buffer_base = av_malloc((w+64)*MAX_BLOCKSIZE);
+
+ s->mctmp = av_malloc((w+64+MAX_BLOCKSIZE) * (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
+ s->mcscratch = av_malloc((w+64)*MAX_BLOCKSIZE);
+
+ if (!s->sbsplit || !s->blmotion || !s->mctmp || !s->mcscratch)
+ return AVERROR(ENOMEM);
+ return 0;
+}
+
+static void free_sequence_buffers(DiracContext *s)
+{
+ int i, j, k;
+
+ for (i = 0; i < MAX_FRAMES; i++) {
+ if (s->all_frames[i].avframe.data[0]) {
+ s->avctx->release_buffer(s->avctx, &s->all_frames[i].avframe);
+ memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
+ }
+
+ for (j = 0; j < 3; j++)
+ for (k = 1; k < 4; k++)
+ av_freep(&s->all_frames[i].hpel_base[j][k]);
+ }
+
+ memset(s->ref_frames, 0, sizeof(s->ref_frames));
+ memset(s->delay_frames, 0, sizeof(s->delay_frames));
+
+ for (i = 0; i < 3; i++) {
+ av_freep(&s->plane[i].idwt_buf_base);
+ av_freep(&s->plane[i].idwt_tmp);
+ }
+
+ av_freep(&s->sbsplit);
+ av_freep(&s->blmotion);
+ av_freep(&s->edge_emu_buffer_base);
+
+ av_freep(&s->mctmp);
+ av_freep(&s->mcscratch);
+}
+
+static av_cold int dirac_decode_init(AVCodecContext *avctx)
+{
+ DiracContext *s = avctx->priv_data;
+ s->avctx = avctx;
+ s->frame_number = -1;
+
+ if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
+ av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported!\n");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ ff_dsputil_init(&s->dsp, avctx);
+ ff_diracdsp_init(&s->diracdsp);
+
+ return 0;
+}
+
+static void dirac_decode_flush(AVCodecContext *avctx)
+{
+ DiracContext *s = avctx->priv_data;
+ free_sequence_buffers(s);
+ s->seen_sequence_header = 0;
+ s->frame_number = -1;
+}
+
+static av_cold int dirac_decode_end(AVCodecContext *avctx)
+{
+ dirac_decode_flush(avctx);
+ return 0;
+}
+
+#define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
+
+static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
+ SubBand *b, IDWTELEM *buf, int x, int y)
+{
+ int coeff, sign;
+ int sign_pred = 0;
+ int pred_ctx = CTX_ZPZN_F1;
+
+ /* Check if the parent subband has a 0 in the corresponding position */
+ if (b->parent)
+ pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
+
+ if (b->orientation == subband_hl)
+ sign_pred = buf[-b->stride];
+
+ /* Determine if the pixel has only zeros in its neighbourhood */
+ if (x) {
+ pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
+ if (b->orientation == subband_lh)
+ sign_pred = buf[-1];
+ } else {
+ pred_ctx += !buf[-b->stride];
+ }
+
+ coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
+ if (coeff) {
+ coeff = (coeff * qfactor + qoffset + 2) >> 2;
+ sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
+ coeff = (coeff ^ -sign) + sign;
+ }
+ *buf = coeff;
+}
+
+static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
+{
+ int sign, coeff;
+
+ coeff = svq3_get_ue_golomb(gb);
+ if (coeff) {
+ coeff = (coeff * qfactor + qoffset + 2) >> 2;
+ sign = get_bits1(gb);
+ coeff = (coeff ^ -sign) + sign;
+ }
+ return coeff;
+}
+
+/**
+ * Decode the coeffs in the rectangle defined by left, right, top, bottom
+ * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
+ */
+static inline void codeblock(DiracContext *s, SubBand *b,
+ GetBitContext *gb, DiracArith *c,
+ int left, int right, int top, int bottom,
+ int blockcnt_one, int is_arith)
+{
+ int x, y, zero_block;
+ int qoffset, qfactor;
+ IDWTELEM *buf;
+
+ /* check for any coded coefficients in this codeblock */
+ if (!blockcnt_one) {
+ if (is_arith)
+ zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
+ else
+ zero_block = get_bits1(gb);
+
+ if (zero_block)
+ return;
+ }
+
+ if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
+ int quant = b->quant;
+ if (is_arith)
+ quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
+ else
+ quant += dirac_get_se_golomb(gb);
+ if (quant < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
+ return;
+ }
+ b->quant = quant;
+ }
+
+ b->quant = FFMIN(b->quant, MAX_QUANT);
+
+ qfactor = qscale_tab[b->quant];
+ /* TODO: context pointer? */
+ if (!s->num_refs)
+ qoffset = qoffset_intra_tab[b->quant];
+ else
+ qoffset = qoffset_inter_tab[b->quant];
+
+ buf = b->ibuf + top * b->stride;
+ for (y = top; y < bottom; y++) {
+ for (x = left; x < right; x++) {
+ /* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
+ if (is_arith)
+ coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
+ else
+ buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
+ }
+ buf += b->stride;
+ }
+}
+
+/**
+ * Dirac Specification ->
+ * 13.3 intra_dc_prediction(band)
+ */
+static inline void intra_dc_prediction(SubBand *b)
+{
+ IDWTELEM *buf = b->ibuf;
+ int x, y;
+
+ for (x = 1; x < b->width; x++)
+ buf[x] += buf[x-1];
+ buf += b->stride;
+
+ for (y = 1; y < b->height; y++) {
+ buf[0] += buf[-b->stride];
+
+ for (x = 1; x < b->width; x++) {
+ int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
+ buf[x] += divide3(pred);
+ }
+ buf += b->stride;
+ }
+}
+
+/**
+ * Dirac Specification ->
+ * 13.4.2 Non-skipped subbands. subband_coeffs()
+ */
+static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
+{
+ int cb_x, cb_y, left, right, top, bottom;
+ DiracArith c;
+ GetBitContext gb;
+ int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
+ int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
+ int blockcnt_one = (cb_width + cb_height) == 2;
+
+ if (!b->length)
+ return;
+
+ init_get_bits(&gb, b->coeff_data, b->length*8);
+
+ if (is_arith)
+ ff_dirac_init_arith_decoder(&c, &gb, b->length);
+
+ top = 0;
+ for (cb_y = 0; cb_y < cb_height; cb_y++) {
+ bottom = (b->height * (cb_y+1)) / cb_height;
+ left = 0;
+ for (cb_x = 0; cb_x < cb_width; cb_x++) {
+ right = (b->width * (cb_x+1)) / cb_width;
+ codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
+ left = right;
+ }
+ top = bottom;
+ }
+
+ if (b->orientation == subband_ll && s->num_refs == 0)
+ intra_dc_prediction(b);
+}
+
+static int decode_subband_arith(AVCodecContext *avctx, void *b)
+{
+ DiracContext *s = avctx->priv_data;
+ decode_subband_internal(s, b, 1);
+ return 0;
+}
+
+static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
+{
+ DiracContext *s = avctx->priv_data;
+ SubBand **b = arg;
+ decode_subband_internal(s, *b, 0);
+ return 0;
+}
+
+/**
+ * Dirac Specification ->
+ * [DIRAC_STD] 13.4.1 core_transform_data()
+ */
+static void decode_component(DiracContext *s, int comp)
+{
+ AVCodecContext *avctx = s->avctx;
+ SubBand *bands[3*MAX_DWT_LEVELS+1];
+ enum dirac_subband orientation;
+ int level, num_bands = 0;
+
+ /* Unpack all subbands at all levels. */
+ for (level = 0; level < s->wavelet_depth; level++) {
+ for (orientation = !!level; orientation < 4; orientation++) {
+ SubBand *b = &s->plane[comp].band[level][orientation];
+ bands[num_bands++] = b;
+
+ align_get_bits(&s->gb);
+ /* [DIRAC_STD] 13.4.2 subband() */
+ b->length = svq3_get_ue_golomb(&s->gb);
+ if (b->length) {
+ b->quant = svq3_get_ue_golomb(&s->gb);
+ align_get_bits(&s->gb);
+ b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
+ b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
+ skip_bits_long(&s->gb, b->length*8);
+ }
+ }
+ /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
+ if (s->is_arith)
+ avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
+ NULL, 4-!!level, sizeof(SubBand));
+ }
+ /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
+ if (!s->is_arith)
+ avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
+}
+
+/* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
+/* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
+static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
+ int slice_x, int slice_y, int bits_end,
+ SubBand *b1, SubBand *b2)
+{
+ int left = b1->width * slice_x / s->lowdelay.num_x;
+ int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
+ int top = b1->height * slice_y / s->lowdelay.num_y;
+ int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
+
+ int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
+ int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
+
+ IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
+ IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
+ int x, y;
+ /* we have to constantly check for overread since the spec explictly
+ requires this, with the meaning that all remaining coeffs are set to 0 */
+ if (get_bits_count(gb) >= bits_end)
+ return;
+
+ for (y = top; y < bottom; y++) {
+ for (x = left; x < right; x++) {
+ buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
+ if (get_bits_count(gb) >= bits_end)
+ return;
+ if (buf2) {
+ buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
+ if (get_bits_count(gb) >= bits_end)
+ return;
+ }
+ }
+ buf1 += b1->stride;
+ if (buf2)
+ buf2 += b2->stride;
+ }
+}
+
+struct lowdelay_slice {
+ GetBitContext gb;
+ int slice_x;
+ int slice_y;
+ int bytes;
+};
+
+
+/**
+ * Dirac Specification ->
+ * 13.5.2 Slices. slice(sx,sy)
+ */
+static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
+{
+ DiracContext *s = avctx->priv_data;
+ struct lowdelay_slice *slice = arg;
+ GetBitContext *gb = &slice->gb;
+ enum dirac_subband orientation;
+ int level, quant, chroma_bits, chroma_end;
+
+ int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
+ int length_bits = av_log2(8 * slice->bytes)+1;
+ int luma_bits = get_bits_long(gb, length_bits);
+ int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
+
+ /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
+ for (level = 0; level < s->wavelet_depth; level++)
+ for (orientation = !!level; orientation < 4; orientation++) {
+ quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
+ lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
+ &s->plane[0].band[level][orientation], NULL);
+ }
+
+ /* consume any unused bits from luma */
+ skip_bits_long(gb, get_bits_count(gb) - luma_end);
+
+ chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
+ chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
+ /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
+ for (level = 0; level < s->wavelet_depth; level++)
+ for (orientation = !!level; orientation < 4; orientation++) {
+ quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
+ lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
+ &s->plane[1].band[level][orientation],
+ &s->plane[2].band[level][orientation]);
+ }
+
+ return 0;
+}
+
+/**
+ * Dirac Specification ->
+ * 13.5.1 low_delay_transform_data()
+ */
+static void decode_lowdelay(DiracContext *s)
+{
+ AVCodecContext *avctx = s->avctx;
+ int slice_x, slice_y, bytes, bufsize;
+ const uint8_t *buf;
+ struct lowdelay_slice *slices;
+ int slice_num = 0;
+
+ slices = av_mallocz(s->lowdelay.num_x * s->lowdelay.num_y * sizeof(struct lowdelay_slice));
+
+ align_get_bits(&s->gb);
+ /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
+ buf = s->gb.buffer + get_bits_count(&s->gb)/8;
+ bufsize = get_bits_left(&s->gb);
+
+ for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
+ for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
+ bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
+ - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
+
+ slices[slice_num].bytes = bytes;
+ slices[slice_num].slice_x = slice_x;
+ slices[slice_num].slice_y = slice_y;
+ init_get_bits(&slices[slice_num].gb, buf, bufsize);
+ slice_num++;
+
+ buf += bytes;
+ bufsize -= bytes*8;
+ }
+
+ avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
+ sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
+ intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
+ intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
+ intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
+ av_free(slices);
+}
+
+static void init_planes(DiracContext *s)
+{
+ int i, w, h, level, orientation;
+
+ for (i = 0; i < 3; i++) {
+ Plane *p = &s->plane[i];
+
+ p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
+ p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
+ p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
+ p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
+ p->idwt_stride = FFALIGN(p->idwt_width, 8);
+
+ for (level = s->wavelet_depth-1; level >= 0; level--) {
+ w = w>>1;
+ h = h>>1;
+ for (orientation = !!level; orientation < 4; orientation++) {
+ SubBand *b = &p->band[level][orientation];
+
+ b->ibuf = p->idwt_buf;
+ b->level = level;
+ b->stride = p->idwt_stride << (s->wavelet_depth - level);
+ b->width = w;
+ b->height = h;
+ b->orientation = orientation;
+
+ if (orientation & 1)
+ b->ibuf += w;
+ if (orientation > 1)
+ b->ibuf += b->stride>>1;
+
+ if (level)
+ b->parent = &p->band[level-1][orientation];
+ }
+ }
+
+ if (i > 0) {
+ p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
+ p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
+ p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
+ p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
+ }
+
+ p->xoffset = (p->xblen - p->xbsep)/2;
+ p->yoffset = (p->yblen - p->ybsep)/2;
+ }
+}
+
+/**
+ * Unpack the motion compensation parameters
+ * Dirac Specification ->
+ * 11.2 Picture prediction data. picture_prediction()
+ */
+static int dirac_unpack_prediction_parameters(DiracContext *s)
+{
+ static const uint8_t default_blen[] = { 4, 12, 16, 24 };
+ static const uint8_t default_bsep[] = { 4, 8, 12, 16 };
+
+ GetBitContext *gb = &s->gb;
+ unsigned idx, ref;
+
+ align_get_bits(gb);
+ /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
+ /* Luma and Chroma are equal. 11.2.3 */
+ idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
+
+ if (idx > 4) {
+ av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
+ return -1;
+ }
+
+ if (idx == 0) {
+ s->plane[0].xblen = svq3_get_ue_golomb(gb);
+ s->plane[0].yblen = svq3_get_ue_golomb(gb);
+ s->plane[0].xbsep = svq3_get_ue_golomb(gb);
+ s->plane[0].ybsep = svq3_get_ue_golomb(gb);
+ } else {
+ /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
+ s->plane[0].xblen = default_blen[idx-1];
+ s->plane[0].yblen = default_blen[idx-1];
+ s->plane[0].xbsep = default_bsep[idx-1];
+ s->plane[0].ybsep = default_bsep[idx-1];
+ }
+ /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
+ Calculated in function dirac_unpack_block_motion_data */
+
+ if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
+ av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
+ return -1;
+ }
+ if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
+ av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
+ return -1;
+ }
+ if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
+ av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
+ return -1;
+ }
+
+ /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
+ Read motion vector precision */
+ s->mv_precision = svq3_get_ue_golomb(gb);
+ if (s->mv_precision > 3) {
+ av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
+ return -1;
+ }
+
+ /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
+ Read the global motion compensation parameters */
+ s->globalmc_flag = get_bits1(gb);
+ if (s->globalmc_flag) {
+ memset(s->globalmc, 0, sizeof(s->globalmc));
+ /* [DIRAC_STD] pan_tilt(gparams) */
+ for (ref = 0; ref < s->num_refs; ref++) {
+ if (get_bits1(gb)) {
+ s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
+ s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
+ }
+ /* [DIRAC_STD] zoom_rotate_shear(gparams)
+ zoom/rotation/shear parameters */
+ if (get_bits1(gb)) {
+ s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
+ s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
+ s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
+ s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
+ s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
+ } else {
+ s->globalmc[ref].zrs[0][0] = 1;
+ s->globalmc[ref].zrs[1][1] = 1;
+ }
+ /* [DIRAC_STD] perspective(gparams) */
+ if (get_bits1(gb)) {
+ s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
+ s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
+ s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
+ }
+ }
+ }
+
+ /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
+ Picture prediction mode, not currently used. */
+ if (svq3_get_ue_golomb(gb)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
+ return -1;
+ }
+
+ /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
+ just data read, weight calculation will be done later on. */
+ s->weight_log2denom = 1;
+ s->weight[0] = 1;
+ s->weight[1] = 1;
+
+ if (get_bits1(gb)) {
+ s->weight_log2denom = svq3_get_ue_golomb(gb);
+ s->weight[0] = dirac_get_se_golomb(gb);
+ if (s->num_refs == 2)
+ s->weight[1] = dirac_get_se_golomb(gb);
+ }
+ return 0;
+}
+
+/**
+ * Dirac Specification ->
+ * 11.3 Wavelet transform data. wavelet_transform()
+ */
+static int dirac_unpack_idwt_params(DiracContext *s)
+{
+ GetBitContext *gb = &s->gb;
+ int i, level;
+ unsigned tmp;
+
+#define CHECKEDREAD(dst, cond, errmsg) \
+ tmp = svq3_get_ue_golomb(gb); \
+ if (cond) { \
+ av_log(s->avctx, AV_LOG_ERROR, errmsg); \
+ return -1; \
+ }\
+ dst = tmp;
+
+ align_get_bits(gb);
+
+ s->zero_res = s->num_refs ? get_bits1(gb) : 0;
+ if (s->zero_res)
+ return 0;
+
+ /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
+ CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
+
+ CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
+
+ if (!s->low_delay) {
+ /* Codeblock parameters (core syntax only) */
+ if (get_bits1(gb)) {
+ for (i = 0; i <= s->wavelet_depth; i++) {
+ CHECKEDREAD(s->codeblock[i].width , tmp < 1, "codeblock width invalid\n")
+ CHECKEDREAD(s->codeblock[i].height, tmp < 1, "codeblock height invalid\n")
+ }
+
+ CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
+ } else
+ for (i = 0; i <= s->wavelet_depth; i++)
+ s->codeblock[i].width = s->codeblock[i].height = 1;
+ } else {
+ /* Slice parameters + quantization matrix*/
+ /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
+ s->lowdelay.num_x = svq3_get_ue_golomb(gb);
+ s->lowdelay.num_y = svq3_get_ue_golomb(gb);
+ s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
+ s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
+
+ if (s->lowdelay.bytes.den <= 0) {
+ av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
+ if (get_bits1(gb)) {
+ av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
+ /* custom quantization matrix */
+ s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
+ for (level = 0; level < s->wavelet_depth; level++) {
+ s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
+ s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
+ s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
+ }
+ } else {
+ if (s->wavelet_depth > 4) {
+ av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
+ return AVERROR_INVALIDDATA;
+ }
+ /* default quantization matrix */
+ for (level = 0; level < s->wavelet_depth; level++)
+ for (i = 0; i < 4; i++) {
+ s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
+ /* haar with no shift differs for different depths */
+ if (s->wavelet_idx == 3)
+ s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
+ }
+ }
+ }
+ return 0;
+}
+
+static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
+{
+ static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
+
+ if (!(x|y))
+ return 0;
+ else if (!y)
+ return sbsplit[-1];
+ else if (!x)
+ return sbsplit[-stride];
+
+ return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
+}
+
+static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
+{
+ int pred;
+
+ if (!(x|y))
+ return 0;
+ else if (!y)
+ return block[-1].ref & refmask;
+ else if (!x)
+ return block[-stride].ref & refmask;
+
+ /* return the majority */
+ pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
+ return (pred >> 1) & refmask;
+}
+
+static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
+{
+ int i, n = 0;
+
+ memset(block->u.dc, 0, sizeof(block->u.dc));
+
+ if (x && !(block[-1].ref & 3)) {
+ for (i = 0; i < 3; i++)
+ block->u.dc[i] += block[-1].u.dc[i];
+ n++;
+ }
+
+ if (y && !(block[-stride].ref & 3)) {
+ for (i = 0; i < 3; i++)
+ block->u.dc[i] += block[-stride].u.dc[i];
+ n++;
+ }
+
+ if (x && y && !(block[-1-stride].ref & 3)) {
+ for (i = 0; i < 3; i++)
+ block->u.dc[i] += block[-1-stride].u.dc[i];
+ n++;
+ }
+
+ if (n == 2) {
+ for (i = 0; i < 3; i++)
+ block->u.dc[i] = (block->u.dc[i]+1)>>1;
+ } else if (n == 3) {
+ for (i = 0; i < 3; i++)
+ block->u.dc[i] = divide3(block->u.dc[i]);
+ }
+}
+
+static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
+{
+ int16_t *pred[3];
+ int refmask = ref+1;
+ int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
+ int n = 0;
+
+ if (x && (block[-1].ref & mask) == refmask)
+ pred[n++] = block[-1].u.mv[ref];
+
+ if (y && (block[-stride].ref & mask) == refmask)
+ pred[n++] = block[-stride].u.mv[ref];
+
+ if (x && y && (block[-stride-1].ref & mask) == refmask)
+ pred[n++] = block[-stride-1].u.mv[ref];
+
+ switch (n) {
+ case 0:
+ block->u.mv[ref][0] = 0;
+ block->u.mv[ref][1] = 0;
+ break;
+ case 1:
+ block->u.mv[ref][0] = pred[0][0];
+ block->u.mv[ref][1] = pred[0][1];
+ break;
+ case 2:
+ block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
+ block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
+ break;
+ case 3:
+ block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
+ block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
+ break;
+ }
+}
+
+static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
+{
+ int ez = s->globalmc[ref].zrs_exp;
+ int ep = s->globalmc[ref].perspective_exp;
+ int (*A)[2] = s->globalmc[ref].zrs;
+ int *b = s->globalmc[ref].pan_tilt;
+ int *c = s->globalmc[ref].perspective;
+
+ int m = (1<<ep) - (c[0]*x + c[1]*y);
+ int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
+ int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
+
+ block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
+ block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
+}
+
+static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
+ int stride, int x, int y)
+{
+ int i;
+
+ block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
+ block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
+
+ if (s->num_refs == 2) {
+ block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
+ block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
+ }
+
+ if (!block->ref) {
+ pred_block_dc(block, stride, x, y);
+ for (i = 0; i < 3; i++)
+ block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
+ return;
+ }
+
+ if (s->globalmc_flag) {
+ block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
+ block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
+ }
+
+ for (i = 0; i < s->num_refs; i++)
+ if (block->ref & (i+1)) {
+ if (block->ref & DIRAC_REF_MASK_GLOBAL) {
+ global_mv(s, block, x, y, i);
+ } else {
+ pred_mv(block, stride, x, y, i);
+ block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
+ block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
+ }
+ }
+}
+
+/**
+ * Copies the current block to the other blocks covered by the current superblock split mode
+ */
+static void propagate_block_data(DiracBlock *block, int stride, int size)
+{
+ int x, y;
+ DiracBlock *dst = block;
+
+ for (x = 1; x < size; x++)
+ dst[x] = *block;
+
+ for (y = 1; y < size; y++) {
+ dst += stride;
+ for (x = 0; x < size; x++)
+ dst[x] = *block;
+ }
+}
+
+/**
+ * Dirac Specification ->
+ * 12. Block motion data syntax
+ */
+static int dirac_unpack_block_motion_data(DiracContext *s)
+{
+ GetBitContext *gb = &s->gb;
+ uint8_t *sbsplit = s->sbsplit;
+ int i, x, y, q, p;
+ DiracArith arith[8];
+
+ align_get_bits(gb);
+
+ /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
+ s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
+ s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
+ s->blwidth = 4 * s->sbwidth;
+ s->blheight = 4 * s->sbheight;
+
+ /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
+ decode superblock split modes */
+ ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
+ for (y = 0; y < s->sbheight; y++) {
+ for (x = 0; x < s->sbwidth; x++) {
+ unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
+ if (split > 2)
+ return -1;
+ sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
+ }
+ sbsplit += s->sbwidth;
+ }
+
+ /* setup arith decoding */
+ ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
+ for (i = 0; i < s->num_refs; i++) {
+ ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
+ ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
+ }
+ for (i = 0; i < 3; i++)
+ ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
+
+ for (y = 0; y < s->sbheight; y++)
+ for (x = 0; x < s->sbwidth; x++) {
+ int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
+ int step = 4 >> s->sbsplit[y * s->sbwidth + x];
+
+ for (q = 0; q < blkcnt; q++)
+ for (p = 0; p < blkcnt; p++) {
+ int bx = 4 * x + p*step;
+ int by = 4 * y + q*step;
+ DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
+ decode_block_params(s, arith, block, s->blwidth, bx, by);
+ propagate_block_data(block, s->blwidth, step);
+ }
+ }
+
+ return 0;
+}
+
+static int weight(int i, int blen, int offset)
+{
+#define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
+ (1 + (6*(i) + offset - 1) / (2*offset - 1))
+
+ if (i < 2*offset)
+ return ROLLOFF(i);
+ else if (i > blen-1 - 2*offset)
+ return ROLLOFF(blen-1 - i);
+ return 8;
+}
+
+static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
+ int left, int right, int wy)
+{
+ int x;
+ for (x = 0; left && x < p->xblen >> 1; x++)
+ obmc_weight[x] = wy*8;
+ for (; x < p->xblen >> right; x++)
+ obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
+ for (; x < p->xblen; x++)
+ obmc_weight[x] = wy*8;
+ for (; x < stride; x++)
+ obmc_weight[x] = 0;
+}
+
+static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
+ int left, int right, int top, int bottom)
+{
+ int y;
+ for (y = 0; top && y < p->yblen >> 1; y++) {
+ init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
+ obmc_weight += stride;
+ }
+ for (; y < p->yblen >> bottom; y++) {
+ int wy = weight(y, p->yblen, p->yoffset);
+ init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
+ obmc_weight += stride;
+ }
+ for (; y < p->yblen; y++) {
+ init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
+ obmc_weight += stride;
+ }
+}
+
+static void init_obmc_weights(DiracContext *s, Plane *p, int by)
+{
+ int top = !by;
+ int bottom = by == s->blheight-1;
+
+ /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
+ if (top || bottom || by == 1) {
+ init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
+ init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
+ init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
+ }
+}
+
+static const uint8_t epel_weights[4][4][4] = {
+ {{ 16, 0, 0, 0 },
+ { 12, 4, 0, 0 },
+ { 8, 8, 0, 0 },
+ { 4, 12, 0, 0 }},
+ {{ 12, 0, 4, 0 },
+ { 9, 3, 3, 1 },
+ { 6, 6, 2, 2 },
+ { 3, 9, 1, 3 }},
+ {{ 8, 0, 8, 0 },
+ { 6, 2, 6, 2 },
+ { 4, 4, 4, 4 },
+ { 2, 6, 2, 6 }},
+ {{ 4, 0, 12, 0 },
+ { 3, 1, 9, 3 },
+ { 2, 2, 6, 6 },
+ { 1, 3, 3, 9 }}
+};
+
+/**
+ * For block x,y, determine which of the hpel planes to do bilinear
+ * interpolation from and set src[] to the location in each hpel plane
+ * to MC from.
+ *
+ * @return the index of the put_dirac_pixels_tab function to use
+ * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
+ */
+static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
+ int x, int y, int ref, int plane)
+{
+ Plane *p = &s->plane[plane];
+ uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
+ int motion_x = block->u.mv[ref][0];
+ int motion_y = block->u.mv[ref][1];
+ int mx, my, i, epel, nplanes = 0;
+
+ if (plane) {
+ motion_x >>= s->chroma_x_shift;
+ motion_y >>= s->chroma_y_shift;
+ }
+
+ mx = motion_x & ~(-1 << s->mv_precision);
+ my = motion_y & ~(-1 << s->mv_precision);
+ motion_x >>= s->mv_precision;
+ motion_y >>= s->mv_precision;
+ /* normalize subpel coordinates to epel */
+ /* TODO: template this function? */
+ mx <<= 3 - s->mv_precision;
+ my <<= 3 - s->mv_precision;
+
+ x += motion_x;
+ y += motion_y;
+ epel = (mx|my)&1;
+
+ /* hpel position */
+ if (!((mx|my)&3)) {
+ nplanes = 1;
+ src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
+ } else {
+ /* qpel or epel */
+ nplanes = 4;
+ for (i = 0; i < 4; i++)
+ src[i] = ref_hpel[i] + y*p->stride + x;
+
+ /* if we're interpolating in the right/bottom halves, adjust the planes as needed
+ we increment x/y because the edge changes for half of the pixels */
+ if (mx > 4) {
+ src[0] += 1;
+ src[2] += 1;
+ x++;
+ }
+ if (my > 4) {
+ src[0] += p->stride;
+ src[1] += p->stride;
+ y++;
+ }
+
+ /* hpel planes are:
+ [0]: F [1]: H
+ [2]: V [3]: C */
+ if (!epel) {
+ /* check if we really only need 2 planes since either mx or my is
+ a hpel position. (epel weights of 0 handle this there) */
+ if (!(mx&3)) {
+ /* mx == 0: average [0] and [2]
+ mx == 4: average [1] and [3] */
+ src[!mx] = src[2 + !!mx];
+ nplanes = 2;
+ } else if (!(my&3)) {
+ src[0] = src[(my>>1) ];
+ src[1] = src[(my>>1)+1];
+ nplanes = 2;
+ }
+ } else {
+ /* adjust the ordering if needed so the weights work */
+ if (mx > 4) {
+ FFSWAP(const uint8_t *, src[0], src[1]);
+ FFSWAP(const uint8_t *, src[2], src[3]);
+ }
+ if (my > 4) {
+ FFSWAP(const uint8_t *, src[0], src[2]);
+ FFSWAP(const uint8_t *, src[1], src[3]);
+ }
+ src[4] = epel_weights[my&3][mx&3];
+ }
+ }
+
+ /* fixme: v/h _edge_pos */
+ if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
+ y + p->yblen > p->height+EDGE_WIDTH/2 ||
+ x < 0 || y < 0) {
+ for (i = 0; i < nplanes; i++) {
+ ff_emulated_edge_mc(s->edge_emu_buffer[i], src[i], p->stride,
+ p->xblen, p->yblen, x, y,
+ p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
+ src[i] = s->edge_emu_buffer[i];
+ }
+ }
+ return (nplanes>>1) + epel;
+}
+
+static void add_dc(uint16_t *dst, int dc, int stride,
+ uint8_t *obmc_weight, int xblen, int yblen)
+{
+ int x, y;
+ dc += 128;
+
+ for (y = 0; y < yblen; y++) {
+ for (x = 0; x < xblen; x += 2) {
+ dst[x ] += dc * obmc_weight[x ];
+ dst[x+1] += dc * obmc_weight[x+1];
+ }
+ dst += stride;
+ obmc_weight += MAX_BLOCKSIZE;
+ }
+}
+
+static void block_mc(DiracContext *s, DiracBlock *block,
+ uint16_t *mctmp, uint8_t *obmc_weight,
+ int plane, int dstx, int dsty)
+{
+ Plane *p = &s->plane[plane];
+ const uint8_t *src[5];
+ int idx;
+
+ switch (block->ref&3) {
+ case 0: /* DC */
+ add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
+ return;
+ case 1:
+ case 2:
+ idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
+ s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
+ if (s->weight_func)
+ s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
+ s->weight[0] + s->weight[1], p->yblen);
+ break;
+ case 3:
+ idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
+ s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
+ idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
+ if (s->biweight_func) {
+ /* fixme: +32 is a quick hack */
+ s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
+ s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
+ s->weight[0], s->weight[1], p->yblen);
+ } else
+ s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
+ break;
+ }
+ s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
+}
+
+static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
+{
+ Plane *p = &s->plane[plane];
+ int x, dstx = p->xbsep - p->xoffset;
+
+ block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
+ mctmp += p->xbsep;
+
+ for (x = 1; x < s->blwidth-1; x++) {
+ block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
+ dstx += p->xbsep;
+ mctmp += p->xbsep;
+ }
+ block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
+}
+
+static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
+{
+ int idx = 0;
+ if (xblen > 8)
+ idx = 1;
+ if (xblen > 16)
+ idx = 2;
+
+ memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
+ memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
+ s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
+ if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
+ s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
+ s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
+ } else {
+ s->weight_func = NULL;
+ s->biweight_func = NULL;
+ }
+}
+
+static void interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
+{
+ /* chroma allocates an edge of 8 when subsampled
+ which for 4:2:2 means an h edge of 16 and v edge of 8
+ just use 8 for everything for the moment */
+ int i, edge = EDGE_WIDTH/2;
+
+ ref->hpel[plane][0] = ref->avframe.data[plane];
+ s->dsp.draw_edges(ref->hpel[plane][0], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
+
+ /* no need for hpel if we only have fpel vectors */
+ if (!s->mv_precision)
+ return;
+
+ for (i = 1; i < 4; i++) {
+ if (!ref->hpel_base[plane][i])
+ ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe.linesize[plane] + 32);
+ /* we need to be 16-byte aligned even for chroma */
+ ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe.linesize[plane] + 16;
+ }
+
+ if (!ref->interpolated[plane]) {
+ s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
+ ref->hpel[plane][3], ref->hpel[plane][0],
+ ref->avframe.linesize[plane], width, height);
+ s->dsp.draw_edges(ref->hpel[plane][1], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
+ s->dsp.draw_edges(ref->hpel[plane][2], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
+ s->dsp.draw_edges(ref->hpel[plane][3], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
+ }
+ ref->interpolated[plane] = 1;
+}
+
+/**
+ * Dirac Specification ->
+ * 13.0 Transform data syntax. transform_data()
+ */
+static int dirac_decode_frame_internal(DiracContext *s)
+{
+ DWTContext d;
+ int y, i, comp, dsty;
+
+ if (s->low_delay) {
+ /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
+ for (comp = 0; comp < 3; comp++) {
+ Plane *p = &s->plane[comp];
+ memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
+ }
+ if (!s->zero_res)
+ decode_lowdelay(s);
+ }
+
+ for (comp = 0; comp < 3; comp++) {
+ Plane *p = &s->plane[comp];
+ uint8_t *frame = s->current_picture->avframe.data[comp];
+
+ /* FIXME: small resolutions */
+ for (i = 0; i < 4; i++)
+ s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
+
+ if (!s->zero_res && !s->low_delay)
+ {
+ memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
+ decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
+ }
+ if (ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
+ s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp))
+ return -1;
+
+ if (!s->num_refs) { /* intra */
+ for (y = 0; y < p->height; y += 16) {
+ ff_spatial_idwt_slice2(&d, y+16); /* decode */
+ s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
+ p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
+ }
+ } else { /* inter */
+ int rowheight = p->ybsep*p->stride;
+
+ select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
+
+ for (i = 0; i < s->num_refs; i++)
+ interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
+
+ memset(s->mctmp, 0, 4*p->yoffset*p->stride);
+
+ dsty = -p->yoffset;
+ for (y = 0; y < s->blheight; y++) {
+ int h = 0,
+ start = FFMAX(dsty, 0);
+ uint16_t *mctmp = s->mctmp + y*rowheight;
+ DiracBlock *blocks = s->blmotion + y*s->blwidth;
+
+ init_obmc_weights(s, p, y);
+
+ if (y == s->blheight-1 || start+p->ybsep > p->height)
+ h = p->height - start;
+ else
+ h = p->ybsep - (start - dsty);
+ if (h < 0)
+ break;
+
+ memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
+ mc_row(s, blocks, mctmp, comp, dsty);
+
+ mctmp += (start - dsty)*p->stride + p->xoffset;
+ ff_spatial_idwt_slice2(&d, start + h); /* decode */
+ s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
+ p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
+
+ dsty += p->ybsep;
+ }
+ }
+ }
+
+
+ return 0;
+}
+
+/**
+ * Dirac Specification ->
+ * 11.1.1 Picture Header. picture_header()
+ */
+static int dirac_decode_picture_header(DiracContext *s)
+{
+ int retire, picnum;
+ int i, j, refnum, refdist;
+ GetBitContext *gb = &s->gb;
+
+ /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
+ picnum = s->current_picture->avframe.display_picture_number = get_bits_long(gb, 32);
+
+
+ av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
+
+ /* if this is the first keyframe after a sequence header, start our
+ reordering from here */
+ if (s->frame_number < 0)
+ s->frame_number = picnum;
+
+ s->ref_pics[0] = s->ref_pics[1] = NULL;
+ for (i = 0; i < s->num_refs; i++) {
+ refnum = picnum + dirac_get_se_golomb(gb);
+ refdist = INT_MAX;
+
+ /* find the closest reference to the one we want */
+ /* Jordi: this is needed if the referenced picture hasn't yet arrived */
+ for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
+ if (s->ref_frames[j]
+ && FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum) < refdist) {
+ s->ref_pics[i] = s->ref_frames[j];
+ refdist = FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum);
+ }
+
+ if (!s->ref_pics[i] || refdist)
+ av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
+
+ /* if there were no references at all, allocate one */
+ if (!s->ref_pics[i])
+ for (j = 0; j < MAX_FRAMES; j++)
+ if (!s->all_frames[j].avframe.data[0]) {
+ s->ref_pics[i] = &s->all_frames[j];
+ ff_get_buffer(s->avctx, &s->ref_pics[i]->avframe);
+ break;
+ }
+ }
+
+ /* retire the reference frames that are not used anymore */
+ if (s->current_picture->avframe.reference) {
+ retire = picnum + dirac_get_se_golomb(gb);
+ if (retire != picnum) {
+ DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
+
+ if (retire_pic)
+ retire_pic->avframe.reference &= DELAYED_PIC_REF;
+ else
+ av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
+ }
+
+ /* if reference array is full, remove the oldest as per the spec */
+ while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
+ remove_frame(s->ref_frames, s->ref_frames[0]->avframe.display_picture_number)->avframe.reference &= DELAYED_PIC_REF;
+ }
+ }
+
+ if (s->num_refs) {
+ if (dirac_unpack_prediction_parameters(s)) /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
+ return -1;
+ if (dirac_unpack_block_motion_data(s)) /* [DIRAC_STD] 12. Block motion data syntax */
+ return -1;
+ }
+ if (dirac_unpack_idwt_params(s)) /* [DIRAC_STD] 11.3 Wavelet transform data */
+ return -1;
+
+ init_planes(s);
+ return 0;
+}
+
+static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
+{
+ DiracFrame *out = s->delay_frames[0];
+ int i, out_idx = 0;
+
+ /* find frame with lowest picture number */
+ for (i = 1; s->delay_frames[i]; i++)
+ if (s->delay_frames[i]->avframe.display_picture_number < out->avframe.display_picture_number) {
+ out = s->delay_frames[i];
+ out_idx = i;
+ }
+
+ for (i = out_idx; s->delay_frames[i]; i++)
+ s->delay_frames[i] = s->delay_frames[i+1];
+
+ if (out) {
+ out->avframe.reference ^= DELAYED_PIC_REF;
+ *got_frame = 1;
+ *(AVFrame *)picture = out->avframe;
+ }
+
+ return 0;
+}
+
+/**
+ * Dirac Specification ->
+ * 9.6 Parse Info Header Syntax. parse_info()
+ * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
+ */
+#define DATA_UNIT_HEADER_SIZE 13
+
+/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
+ inside the function parse_sequence() */
+static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
+{
+ DiracContext *s = avctx->priv_data;
+ DiracFrame *pic = NULL;
+ int i, parse_code = buf[4];
+ unsigned tmp;
+
+ if (size < DATA_UNIT_HEADER_SIZE)
+ return -1;
+
+ init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
+
+ if (parse_code == pc_seq_header) {
+ if (s->seen_sequence_header)
+ return 0;
+
+ /* [DIRAC_STD] 10. Sequence header */
+ if (avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source))
+ return -1;
+
+ avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
+
+ if (alloc_sequence_buffers(s))
+ return -1;
+
+ s->seen_sequence_header = 1;
+ } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
+ free_sequence_buffers(s);
+ s->seen_sequence_header = 0;
+ } else if (parse_code == pc_aux_data) {
+ if (buf[13] == 1) { /* encoder implementation/version */
+ int ver[3];
+ /* versions older than 1.0.8 don't store quant delta for
+ subbands with only one codeblock */
+ if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
+ if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
+ s->old_delta_quant = 1;
+ }
+ } else if (parse_code & 0x8) { /* picture data unit */
+ if (!s->seen_sequence_header) {
+ av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
+ return -1;
+ }
+
+ /* find an unused frame */
+ for (i = 0; i < MAX_FRAMES; i++)
+ if (s->all_frames[i].avframe.data[0] == NULL)
+ pic = &s->all_frames[i];
+ if (!pic) {
+ av_log(avctx, AV_LOG_ERROR, "framelist full\n");
+ return -1;
+ }
+
+ avcodec_get_frame_defaults(&pic->avframe);
+
+ /* [DIRAC_STD] Defined in 9.6.1 ... */
+ tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
+ if (tmp > 2) {
+ av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
+ return -1;
+ }
+ s->num_refs = tmp;
+ s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
+ s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
+ pic->avframe.reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
+ pic->avframe.key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
+ pic->avframe.pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
+
+ if (ff_get_buffer(avctx, &pic->avframe) < 0) {
+ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
+ return -1;
+ }
+ s->current_picture = pic;
+ s->plane[0].stride = pic->avframe.linesize[0];
+ s->plane[1].stride = pic->avframe.linesize[1];
+ s->plane[2].stride = pic->avframe.linesize[2];
+
+ /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
+ if (dirac_decode_picture_header(s))
+ return -1;
+
+ /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
+ if (dirac_decode_frame_internal(s))
+ return -1;
+ }
+ return 0;
+}
+
+static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
+{
+ DiracContext *s = avctx->priv_data;
+ DiracFrame *picture = data;
+ uint8_t *buf = pkt->data;
+ int buf_size = pkt->size;
+ int i, data_unit_size, buf_idx = 0;
+
+ /* release unused frames */
+ for (i = 0; i < MAX_FRAMES; i++)
+ if (s->all_frames[i].avframe.data[0] && !s->all_frames[i].avframe.reference) {
+ avctx->release_buffer(avctx, &s->all_frames[i].avframe);
+ memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
+ }
+
+ s->current_picture = NULL;
+ *got_frame = 0;
+
+ /* end of stream, so flush delayed pics */
+ if (buf_size == 0)
+ return get_delayed_pic(s, (AVFrame *)data, got_frame);
+
+ for (;;) {
+ /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
+ [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
+ BBCD start code search */
+ for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
+ if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
+ buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
+ break;
+ }
+ /* BBCD found or end of data */
+ if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
+ break;
+
+ data_unit_size = AV_RB32(buf+buf_idx+5);
+ if (buf_idx + data_unit_size > buf_size || !data_unit_size) {
+ if(buf_idx + data_unit_size > buf_size)
+ av_log(s->avctx, AV_LOG_ERROR,
+ "Data unit with size %d is larger than input buffer, discarding\n",
+ data_unit_size);
+ buf_idx += 4;
+ continue;
+ }
+ /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
+ if (dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size))
+ {
+ av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
+ return -1;
+ }
+ buf_idx += data_unit_size;
+ }
+
+ if (!s->current_picture)
+ return buf_size;
+
+ if (s->current_picture->avframe.display_picture_number > s->frame_number) {
+ DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
+
+ s->current_picture->avframe.reference |= DELAYED_PIC_REF;
+
+ if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
+ int min_num = s->delay_frames[0]->avframe.display_picture_number;
+ /* Too many delayed frames, so we display the frame with the lowest pts */
+ av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
+ delayed_frame = s->delay_frames[0];
+
+ for (i = 1; s->delay_frames[i]; i++)
+ if (s->delay_frames[i]->avframe.display_picture_number < min_num)
+ min_num = s->delay_frames[i]->avframe.display_picture_number;
+
+ delayed_frame = remove_frame(s->delay_frames, min_num);
+ add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
+ }
+
+ if (delayed_frame) {
+ delayed_frame->avframe.reference ^= DELAYED_PIC_REF;
+ *(AVFrame*)data = delayed_frame->avframe;
+ *got_frame = 1;
+ }
+ } else if (s->current_picture->avframe.display_picture_number == s->frame_number) {
+ /* The right frame at the right time :-) */
+ *(AVFrame*)data = s->current_picture->avframe;
+ *got_frame = 1;
+ }
+
+ if (*got_frame)
+ s->frame_number = picture->avframe.display_picture_number + 1;
+
+ return buf_idx;
+}
+
+AVCodec ff_dirac_decoder = {
+ .name = "dirac",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .id = AV_CODEC_ID_DIRAC,
+ .priv_data_size = sizeof(DiracContext),
+ .init = dirac_decode_init,
+ .close = dirac_decode_end,
+ .decode = dirac_decode_frame,
+ .capabilities = CODEC_CAP_DELAY,
+ .flush = dirac_decode_flush,
+ .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
+};