summaryrefslogtreecommitdiff
path: root/libavcodec/opusenc.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavcodec/opusenc.c')
-rw-r--r--libavcodec/opusenc.c1163
1 files changed, 1163 insertions, 0 deletions
diff --git a/libavcodec/opusenc.c b/libavcodec/opusenc.c
new file mode 100644
index 0000000000..79d20dc6e6
--- /dev/null
+++ b/libavcodec/opusenc.c
@@ -0,0 +1,1163 @@
+/*
+ * Opus encoder
+ * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "opusenc.h"
+#include "opus_pvq.h"
+#include "opusenc_psy.h"
+#include "opustab.h"
+
+#include "libavutil/float_dsp.h"
+#include "libavutil/opt.h"
+#include "internal.h"
+#include "bytestream.h"
+#include "audio_frame_queue.h"
+
+typedef struct OpusEncContext {
+ AVClass *av_class;
+ OpusEncOptions options;
+ OpusPsyContext psyctx;
+ AVCodecContext *avctx;
+ AudioFrameQueue afq;
+ AVFloatDSPContext *dsp;
+ MDCT15Context *mdct[CELT_BLOCK_NB];
+ CeltPVQ *pvq;
+ struct FFBufQueue bufqueue;
+
+ uint8_t enc_id[64];
+ int enc_id_bits;
+
+ OpusPacketInfo packet;
+
+ int channels;
+
+ CeltFrame *frame;
+ OpusRangeCoder *rc;
+
+ /* Actual energy the decoder will have */
+ float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS];
+
+ DECLARE_ALIGNED(32, float, scratch)[2048];
+} OpusEncContext;
+
+static void opus_write_extradata(AVCodecContext *avctx)
+{
+ uint8_t *bs = avctx->extradata;
+
+ bytestream_put_buffer(&bs, "OpusHead", 8);
+ bytestream_put_byte (&bs, 0x1);
+ bytestream_put_byte (&bs, avctx->channels);
+ bytestream_put_le16 (&bs, avctx->initial_padding);
+ bytestream_put_le32 (&bs, avctx->sample_rate);
+ bytestream_put_le16 (&bs, 0x0);
+ bytestream_put_byte (&bs, 0x0); /* Default layout */
+}
+
+static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
+{
+ int i, tmp = 0x0, extended_toc = 0;
+ static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = {
+ /* Silk Hybrid Celt Layer */
+ /* NB MB WB SWB FB NB MB WB SWB FB NB MB WB SWB FB Bandwidth */
+ { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 17, 0, 21, 25, 29 } }, /* 2.5 ms */
+ { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 18, 0, 22, 26, 30 } }, /* 5 ms */
+ { { 1, 5, 9, 0, 0 }, { 0, 0, 0, 13, 15 }, { 19, 0, 23, 27, 31 } }, /* 10 ms */
+ { { 2, 6, 10, 0, 0 }, { 0, 0, 0, 14, 16 }, { 20, 0, 24, 28, 32 } }, /* 20 ms */
+ { { 3, 7, 11, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }, /* 40 ms */
+ { { 4, 8, 12, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }, /* 60 ms */
+ };
+ int cfg = toc_cfg[s->packet.framesize][s->packet.mode][s->packet.bandwidth];
+ *fsize_needed = 0;
+ if (!cfg)
+ return 1;
+ if (s->packet.frames == 2) { /* 2 packets */
+ if (s->frame[0].framebits == s->frame[1].framebits) { /* same size */
+ tmp = 0x1;
+ } else { /* different size */
+ tmp = 0x2;
+ *fsize_needed = 1; /* put frame sizes in the packet */
+ }
+ } else if (s->packet.frames > 2) {
+ tmp = 0x3;
+ extended_toc = 1;
+ }
+ tmp |= (s->channels > 1) << 2; /* Stereo or mono */
+ tmp |= (cfg - 1) << 3; /* codec configuration */
+ *toc++ = tmp;
+ if (extended_toc) {
+ for (i = 0; i < (s->packet.frames - 1); i++)
+ *fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits);
+ tmp = (*fsize_needed) << 7; /* vbr flag */
+ tmp |= (0) << 6; /* padding flag */
+ tmp |= s->packet.frames;
+ *toc++ = tmp;
+ }
+ *size = 1 + extended_toc;
+ return 0;
+}
+
+static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
+{
+ int sf, ch;
+ AVFrame *cur = NULL;
+ const int subframesize = s->avctx->frame_size;
+ int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;
+
+ cur = ff_bufqueue_get(&s->bufqueue);
+
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *b = &f->block[ch];
+ const void *input = cur->extended_data[ch];
+ size_t bps = av_get_bytes_per_sample(cur->format);
+ memcpy(b->overlap, input, bps*cur->nb_samples);
+ }
+
+ av_frame_free(&cur);
+
+ for (sf = 0; sf < subframes; sf++) {
+ if (sf != (subframes - 1))
+ cur = ff_bufqueue_get(&s->bufqueue);
+ else
+ cur = ff_bufqueue_peek(&s->bufqueue, 0);
+
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *b = &f->block[ch];
+ const void *input = cur->extended_data[ch];
+ const size_t bps = av_get_bytes_per_sample(cur->format);
+ const size_t left = (subframesize - cur->nb_samples)*bps;
+ const size_t len = FFMIN(subframesize, cur->nb_samples)*bps;
+ memcpy(&b->samples[sf*subframesize], input, len);
+ memset(&b->samples[cur->nb_samples], 0, left);
+ }
+
+ /* Last frame isn't popped off and freed yet - we need it for overlap */
+ if (sf != (subframes - 1))
+ av_frame_free(&cur);
+ }
+}
+
+/* Apply the pre emphasis filter */
+static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
+{
+ int i, sf, ch;
+ const int subframesize = s->avctx->frame_size;
+ const int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;
+
+ /* Filter overlap */
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *b = &f->block[ch];
+ float m = b->emph_coeff;
+ for (i = 0; i < CELT_OVERLAP; i++) {
+ float sample = b->overlap[i];
+ b->overlap[i] = sample - m;
+ m = sample * CELT_EMPH_COEFF;
+ }
+ b->emph_coeff = m;
+ }
+
+ /* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */
+ for (sf = 0; sf < subframes; sf++) {
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *b = &f->block[ch];
+ float m = b->emph_coeff;
+ for (i = 0; i < subframesize; i++) {
+ float sample = b->samples[sf*subframesize + i];
+ b->samples[sf*subframesize + i] = sample - m;
+ m = sample * CELT_EMPH_COEFF;
+ }
+ if (sf != (subframes - 1))
+ b->emph_coeff = m;
+ }
+ }
+}
+
+/* Create the window and do the mdct */
+static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
+{
+ int i, j, t, ch;
+ float *win = s->scratch, *temp = s->scratch + 1920;
+
+ if (f->transient) {
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *b = &f->block[ch];
+ float *src1 = b->overlap;
+ for (t = 0; t < f->blocks; t++) {
+ float *src2 = &b->samples[CELT_OVERLAP*t];
+ s->dsp->vector_fmul(win, src1, ff_celt_window, 128);
+ s->dsp->vector_fmul_reverse(&win[CELT_OVERLAP], src2,
+ ff_celt_window - 8, 128);
+ src1 = src2;
+ s->mdct[0]->mdct(s->mdct[0], b->coeffs + t, win, f->blocks);
+ }
+ }
+ } else {
+ int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1);
+ int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1;
+ memset(win, 0, wlen*sizeof(float));
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *b = &f->block[ch];
+
+ /* Overlap */
+ s->dsp->vector_fmul(temp, b->overlap, ff_celt_window, 128);
+ memcpy(win + lap_dst, temp, CELT_OVERLAP*sizeof(float));
+
+ /* Samples, flat top window */
+ memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float));
+
+ /* Samples, windowed */
+ s->dsp->vector_fmul_reverse(temp, b->samples + rwin,
+ ff_celt_window - 8, 128);
+ memcpy(win + lap_dst + blk_len, temp, CELT_OVERLAP*sizeof(float));
+
+ s->mdct[f->size]->mdct(s->mdct[f->size], b->coeffs, win, 1);
+ }
+ }
+
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *block = &f->block[ch];
+ for (i = 0; i < CELT_MAX_BANDS; i++) {
+ float ener = 0.0f;
+ int band_offset = ff_celt_freq_bands[i] << f->size;
+ int band_size = ff_celt_freq_range[i] << f->size;
+ float *coeffs = &block->coeffs[band_offset];
+
+ for (j = 0; j < band_size; j++)
+ ener += coeffs[j]*coeffs[j];
+
+ block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON;
+ ener = 1.0f/block->lin_energy[i];
+
+ for (j = 0; j < band_size; j++)
+ coeffs[j] *= ener;
+
+ block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i];
+
+ /* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */
+ block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE);
+ }
+ }
+}
+
+static void celt_enc_tf(OpusRangeCoder *rc, CeltFrame *f)
+{
+ int i, tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed;
+ int bits = f->transient ? 2 : 4;
+
+ tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits));
+
+ for (i = f->start_band; i < f->end_band; i++) {
+ if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) {
+ const int tbit = (diff ^ 1) == f->tf_change[i];
+ ff_opus_rc_enc_log(rc, tbit, bits);
+ diff ^= tbit;
+ tf_changed |= diff;
+ }
+ bits = f->transient ? 4 : 5;
+ }
+
+ if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
+ ff_celt_tf_select[f->size][f->transient][1][tf_changed]) {
+ ff_opus_rc_enc_log(rc, f->tf_select, 1);
+ tf_select = f->tf_select;
+ }
+
+ for (i = f->start_band; i < f->end_band; i++)
+ f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
+}
+
+void ff_celt_enc_bitalloc(OpusRangeCoder *rc, CeltFrame *f)
+{
+ int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
+ int skip_startband = f->start_band;
+ int skip_bit = 0;
+ int intensitystereo_bit = 0;
+ int dualstereo_bit = 0;
+ int dynalloc = 6;
+ int extrabits = 0;
+
+ int *cap = f->caps;
+ int boost[CELT_MAX_BANDS];
+ int trim_offset[CELT_MAX_BANDS];
+ int threshold[CELT_MAX_BANDS];
+ int bits1[CELT_MAX_BANDS];
+ int bits2[CELT_MAX_BANDS];
+
+ /* Tell the spread to the decoder */
+ if (opus_rc_tell(rc) + 4 <= f->framebits)
+ ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
+ else
+ f->spread = CELT_SPREAD_NORMAL;
+
+ /* Generate static allocation caps */
+ for (i = 0; i < CELT_MAX_BANDS; i++) {
+ cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
+ * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
+ }
+
+ /* Band boosts */
+ tbits_8ths = f->framebits << 3;
+ for (i = f->start_band; i < f->end_band; i++) {
+ int quanta, b_dynalloc, boost_amount = f->alloc_boost[i];
+
+ boost[i] = 0;
+
+ quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
+ quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
+ b_dynalloc = dynalloc;
+
+ while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < cap[i]) {
+ int is_boost = boost_amount--;
+
+ ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
+ if (!is_boost)
+ break;
+
+ boost[i] += quanta;
+ tbits_8ths -= quanta;
+
+ b_dynalloc = 1;
+ }
+
+ if (boost[i])
+ dynalloc = FFMAX(2, dynalloc - 1);
+ }
+
+ /* Put allocation trim */
+ if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
+ ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
+
+ /* Anti-collapse bit reservation */
+ tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
+ f->anticollapse_needed = 0;
+ if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
+ f->anticollapse_needed = 1 << 3;
+ tbits_8ths -= f->anticollapse_needed;
+
+ /* Band skip bit reservation */
+ if (tbits_8ths >= 1 << 3)
+ skip_bit = 1 << 3;
+ tbits_8ths -= skip_bit;
+
+ /* Intensity/dual stereo bit reservation */
+ if (f->channels == 2) {
+ intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
+ if (intensitystereo_bit <= tbits_8ths) {
+ tbits_8ths -= intensitystereo_bit;
+ if (tbits_8ths >= 1 << 3) {
+ dualstereo_bit = 1 << 3;
+ tbits_8ths -= 1 << 3;
+ }
+ } else {
+ intensitystereo_bit = 0;
+ }
+ }
+
+ /* Trim offsets */
+ for (i = f->start_band; i < f->end_band; i++) {
+ int trim = f->alloc_trim - 5 - f->size;
+ int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
+ int duration = f->size + 3;
+ int scale = duration + f->channels - 1;
+
+ /* PVQ minimum allocation threshold, below this value the band is
+ * skipped */
+ threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
+ f->channels << 3);
+
+ trim_offset[i] = trim * (band << scale) >> 6;
+
+ if (ff_celt_freq_range[i] << f->size == 1)
+ trim_offset[i] -= f->channels << 3;
+ }
+
+ /* Bisection */
+ low = 1;
+ high = CELT_VECTORS - 1;
+ while (low <= high) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (i = f->end_band - 1; i >= f->start_band; i--) {
+ bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
+ << (f->channels - 1) << f->size >> 2;
+
+ if (bandbits)
+ bandbits = FFMAX(0, bandbits + trim_offset[i]);
+ bandbits += boost[i];
+
+ if (bandbits >= threshold[i] || done) {
+ done = 1;
+ total += FFMIN(bandbits, cap[i]);
+ } else if (bandbits >= f->channels << 3)
+ total += f->channels << 3;
+ }
+
+ if (total > tbits_8ths)
+ high = center - 1;
+ else
+ low = center + 1;
+ }
+ high = low--;
+
+ /* Bisection */
+ for (i = f->start_band; i < f->end_band; i++) {
+ bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
+ << (f->channels - 1) << f->size >> 2;
+ bits2[i] = high >= CELT_VECTORS ? cap[i] :
+ ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
+ << (f->channels - 1) << f->size >> 2;
+
+ if (bits1[i])
+ bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
+ if (bits2[i])
+ bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
+ if (low)
+ bits1[i] += boost[i];
+ bits2[i] += boost[i];
+
+ if (boost[i])
+ skip_startband = i;
+ bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
+ }
+
+ /* Bisection */
+ low = 0;
+ high = 1 << CELT_ALLOC_STEPS;
+ for (i = 0; i < CELT_ALLOC_STEPS; i++) {
+ int center = (low + high) >> 1;
+ done = total = 0;
+
+ for (j = f->end_band - 1; j >= f->start_band; j--) {
+ bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[j] || done) {
+ done = 1;
+ total += FFMIN(bandbits, cap[j]);
+ } else if (bandbits >= f->channels << 3)
+ total += f->channels << 3;
+ }
+ if (total > tbits_8ths)
+ high = center;
+ else
+ low = center;
+ }
+
+ /* Bisection */
+ done = total = 0;
+ for (i = f->end_band - 1; i >= f->start_band; i--) {
+ bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
+
+ if (bandbits >= threshold[i] || done)
+ done = 1;
+ else
+ bandbits = (bandbits >= f->channels << 3) ?
+ f->channels << 3 : 0;
+
+ bandbits = FFMIN(bandbits, cap[i]);
+ f->pulses[i] = bandbits;
+ total += bandbits;
+ }
+
+ /* Band skipping */
+ for (f->coded_bands = f->end_band; ; f->coded_bands--) {
+ int allocation;
+ j = f->coded_bands - 1;
+
+ if (j == skip_startband) {
+ /* all remaining bands are not skipped */
+ tbits_8ths += skip_bit;
+ break;
+ }
+
+ /* determine the number of bits available for coding "do not skip" markers */
+ remaining = tbits_8ths - total;
+ bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
+ remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
+ allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j]
+ + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
+
+ /* a "do not skip" marker is only coded if the allocation is
+ above the chosen threshold */
+ if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
+ const int do_not_skip = f->coded_bands <= f->skip_band_floor;
+ ff_opus_rc_enc_log(rc, do_not_skip, 1);
+ if (do_not_skip)
+ break;
+
+ total += 1 << 3;
+ allocation -= 1 << 3;
+ }
+
+ /* the band is skipped, so reclaim its bits */
+ total -= f->pulses[j];
+ if (intensitystereo_bit) {
+ total -= intensitystereo_bit;
+ intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
+ total += intensitystereo_bit;
+ }
+
+ total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
+ }
+
+ /* Encode stereo flags */
+ if (intensitystereo_bit) {
+ f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
+ ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
+ }
+ if (f->intensity_stereo <= f->start_band)
+ tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
+ else if (dualstereo_bit)
+ ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
+
+ /* Supply the remaining bits in this frame to lower bands */
+ remaining = tbits_8ths - total;
+ bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
+ remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
+ for (i = f->start_band; i < f->coded_bands; i++) {
+ int bits = FFMIN(remaining, ff_celt_freq_range[i]);
+
+ f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
+ remaining -= bits;
+ }
+
+ /* Finally determine the allocation */
+ for (i = f->start_band; i < f->coded_bands; i++) {
+ int N = ff_celt_freq_range[i] << f->size;
+ int prev_extra = extrabits;
+ f->pulses[i] += extrabits;
+
+ if (N > 1) {
+ int dof; // degrees of freedom
+ int temp; // dof * channels * log(dof)
+ int offset; // fine energy quantization offset, i.e.
+ // extra bits assigned over the standard
+ // totalbits/dof
+ int fine_bits, max_bits;
+
+ extrabits = FFMAX(0, f->pulses[i] - cap[i]);
+ f->pulses[i] -= extrabits;
+
+ /* intensity stereo makes use of an extra degree of freedom */
+ dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
+ temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
+ offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
+ if (N == 2) /* dof=2 is the only case that doesn't fit the model */
+ offset += dof << 1;
+
+ /* grant an additional bias for the first and second pulses */
+ if (f->pulses[i] + offset < 2 * (dof << 3))
+ offset += temp >> 2;
+ else if (f->pulses[i] + offset < 3 * (dof << 3))
+ offset += temp >> 3;
+
+ fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
+ max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
+
+ max_bits = FFMAX(max_bits, 0);
+
+ f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
+
+ /* if fine_bits was rounded down or capped,
+ give priority for the final fine energy pass */
+ f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
+
+ /* the remaining bits are assigned to PVQ */
+ f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
+ } else {
+ /* all bits go to fine energy except for the sign bit */
+ extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
+ f->pulses[i] -= extrabits;
+ f->fine_bits[i] = 0;
+ f->fine_priority[i] = 1;
+ }
+
+ /* hand back a limited number of extra fine energy bits to this band */
+ if (extrabits > 0) {
+ int fineextra = FFMIN(extrabits >> (f->channels + 2),
+ CELT_MAX_FINE_BITS - f->fine_bits[i]);
+ f->fine_bits[i] += fineextra;
+
+ fineextra <<= f->channels + 2;
+ f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
+ extrabits -= fineextra;
+ }
+ }
+ f->remaining = extrabits;
+
+ /* skipped bands dedicate all of their bits for fine energy */
+ for (; i < f->end_band; i++) {
+ f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
+ f->pulses[i] = 0;
+ f->fine_priority[i] = f->fine_bits[i] < 1;
+ }
+}
+
+static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f)
+{
+ float gain = f->pf_gain;
+ int i, txval, octave = f->pf_octave, period = f->pf_period, tapset = f->pf_tapset;
+
+ ff_opus_rc_enc_log(rc, f->pfilter, 1);
+ if (!f->pfilter)
+ return;
+
+ /* Octave */
+ txval = FFMIN(octave, 6);
+ ff_opus_rc_enc_uint(rc, txval, 6);
+ octave = txval;
+ /* Period */
+ txval = av_clip(period - (16 << octave) + 1, 0, (1 << (4 + octave)) - 1);
+ ff_opus_rc_put_raw(rc, period, 4 + octave);
+ period = txval + (16 << octave) - 1;
+ /* Gain */
+ txval = FFMIN(((int)(gain / 0.09375f)) - 1, 7);
+ ff_opus_rc_put_raw(rc, txval, 3);
+ gain = 0.09375f * (txval + 1);
+ /* Tapset */
+ if ((opus_rc_tell(rc) + 2) <= f->framebits)
+ ff_opus_rc_enc_cdf(rc, tapset, ff_celt_model_tapset);
+ else
+ tapset = 0;
+ /* Finally create the coeffs */
+ for (i = 0; i < 2; i++) {
+ CeltBlock *block = &f->block[i];
+
+ block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
+ block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
+ block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
+ block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
+ }
+}
+
+static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f,
+ float last_energy[][CELT_MAX_BANDS], int intra)
+{
+ int i, ch;
+ float alpha, beta, prev[2] = { 0, 0 };
+ const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][intra];
+
+ /* Inter is really just differential coding */
+ if (opus_rc_tell(rc) + 3 <= f->framebits)
+ ff_opus_rc_enc_log(rc, intra, 3);
+ else
+ intra = 0;
+
+ if (intra) {
+ alpha = 0.0f;
+ beta = 1.0f - (4915.0f/32768.0f);
+ } else {
+ alpha = ff_celt_alpha_coef[f->size];
+ beta = ff_celt_beta_coef[f->size];
+ }
+
+ for (i = f->start_band; i < f->end_band; i++) {
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *block = &f->block[ch];
+ const int left = f->framebits - opus_rc_tell(rc);
+ const float last = FFMAX(-9.0f, last_energy[ch][i]);
+ float diff = block->energy[i] - prev[ch] - last*alpha;
+ int q_en = lrintf(diff);
+ if (left >= 15) {
+ ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6);
+ } else if (left >= 2) {
+ q_en = av_clip(q_en, -1, 1);
+ ff_opus_rc_enc_cdf(rc, 2*q_en + 3*(q_en < 0), ff_celt_model_energy_small);
+ } else if (left >= 1) {
+ q_en = av_clip(q_en, -1, 0);
+ ff_opus_rc_enc_log(rc, (q_en & 1), 1);
+ } else q_en = -1;
+
+ block->error_energy[i] = q_en - diff;
+ prev[ch] += beta * q_en;
+ }
+ }
+}
+
+static void celt_quant_coarse(OpusRangeCoder *rc, CeltFrame *f,
+ float last_energy[][CELT_MAX_BANDS])
+{
+ uint32_t inter, intra;
+ OPUS_RC_CHECKPOINT_SPAWN(rc);
+
+ exp_quant_coarse(rc, f, last_energy, 1);
+ intra = OPUS_RC_CHECKPOINT_BITS(rc);
+
+ OPUS_RC_CHECKPOINT_ROLLBACK(rc);
+
+ exp_quant_coarse(rc, f, last_energy, 0);
+ inter = OPUS_RC_CHECKPOINT_BITS(rc);
+
+ if (inter > intra) { /* Unlikely */
+ OPUS_RC_CHECKPOINT_ROLLBACK(rc);
+ exp_quant_coarse(rc, f, last_energy, 1);
+ }
+}
+
+static void celt_quant_fine(OpusRangeCoder *rc, CeltFrame *f)
+{
+ int i, ch;
+ for (i = f->start_band; i < f->end_band; i++) {
+ if (!f->fine_bits[i])
+ continue;
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *block = &f->block[ch];
+ int quant, lim = (1 << f->fine_bits[i]);
+ float offset, diff = 0.5f - block->error_energy[i];
+ quant = av_clip(floor(diff*lim), 0, lim - 1);
+ ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]);
+ offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f);
+ block->error_energy[i] -= offset;
+ }
+ }
+}
+
+static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
+{
+ int i, ch, priority;
+ for (priority = 0; priority < 2; priority++) {
+ for (i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) {
+ if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
+ continue;
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *block = &f->block[ch];
+ const float err = block->error_energy[i];
+ const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
+ const int sign = FFABS(err + offset) < FFABS(err - offset);
+ ff_opus_rc_put_raw(rc, sign, 1);
+ block->error_energy[i] -= offset*(1 - 2*sign);
+ }
+ }
+ }
+}
+
+static void celt_quant_bands(OpusRangeCoder *rc, CeltFrame *f)
+{
+ float lowband_scratch[8 * 22];
+ float norm[2 * 8 * 100];
+
+ int totalbits = (f->framebits << 3) - f->anticollapse_needed;
+
+ int update_lowband = 1;
+ int lowband_offset = 0;
+
+ int i, j;
+
+ for (i = f->start_band; i < f->end_band; i++) {
+ uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
+ int band_offset = ff_celt_freq_bands[i] << f->size;
+ int band_size = ff_celt_freq_range[i] << f->size;
+ float *X = f->block[0].coeffs + band_offset;
+ float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
+
+ int consumed = opus_rc_tell_frac(rc);
+ float *norm2 = norm + 8 * 100;
+ int effective_lowband = -1;
+ int b = 0;
+
+ /* Compute how many bits we want to allocate to this band */
+ if (i != f->start_band)
+ f->remaining -= consumed;
+ f->remaining2 = totalbits - consumed - 1;
+ if (i <= f->coded_bands - 1) {
+ int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
+ b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
+ }
+
+ if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] &&
+ (update_lowband || lowband_offset == 0))
+ lowband_offset = i;
+
+ /* Get a conservative estimate of the collapse_mask's for the bands we're
+ going to be folding from. */
+ if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
+ f->blocks > 1 || f->tf_change[i] < 0)) {
+ int foldstart, foldend;
+
+ /* This ensures we never repeat spectral content within one band */
+ effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
+ ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
+ foldstart = lowband_offset;
+ while (ff_celt_freq_bands[--foldstart] > effective_lowband);
+ foldend = lowband_offset - 1;
+ while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]);
+
+ cm[0] = cm[1] = 0;
+ for (j = foldstart; j < foldend; j++) {
+ cm[0] |= f->block[0].collapse_masks[j];
+ cm[1] |= f->block[f->channels - 1].collapse_masks[j];
+ }
+ }
+
+ if (f->dual_stereo && i == f->intensity_stereo) {
+ /* Switch off dual stereo to do intensity */
+ f->dual_stereo = 0;
+ for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
+ norm[j] = (norm[j] + norm2[j]) / 2;
+ }
+
+ if (f->dual_stereo) {
+ cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
+
+ cm[1] = f->pvq->encode_band(f->pvq, f, rc, i, Y, NULL, band_size, b / 2, f->blocks,
+ effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
+ norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
+ } else {
+ cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
+ cm[1] = cm[0];
+ }
+
+ f->block[0].collapse_masks[i] = (uint8_t)cm[0];
+ f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
+ f->remaining += f->pulses[i] + consumed;
+
+ /* Update the folding position only as long as we have 1 bit/sample depth */
+ update_lowband = (b > band_size << 3);
+ }
+}
+
+static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc,
+ CeltFrame *f, int index)
+{
+ int i, ch;
+
+ ff_opus_rc_enc_init(rc);
+
+ ff_opus_psy_celt_frame_init(&s->psyctx, f, index);
+
+ celt_frame_setup_input(s, f);
+
+ if (f->silence) {
+ if (f->framebits >= 16)
+ ff_opus_rc_enc_log(rc, 1, 15); /* Silence (if using explicit singalling) */
+ for (ch = 0; ch < s->channels; ch++)
+ memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
+ return;
+ }
+
+ /* Filters */
+ celt_apply_preemph_filter(s, f);
+ if (f->pfilter) {
+ ff_opus_rc_enc_log(rc, 0, 15);
+ celt_enc_quant_pfilter(rc, f);
+ }
+
+ /* Transform */
+ celt_frame_mdct(s, f);
+
+ /* Need to handle transient/non-transient switches at any point during analysis */
+ while (ff_opus_psy_celt_frame_process(&s->psyctx, f, index))
+ celt_frame_mdct(s, f);
+
+ ff_opus_rc_enc_init(rc);
+
+ /* Silence */
+ ff_opus_rc_enc_log(rc, 0, 15);
+
+ /* Pitch filter */
+ if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits)
+ celt_enc_quant_pfilter(rc, f);
+
+ /* Transient flag */
+ if (f->size && opus_rc_tell(rc) + 3 <= f->framebits)
+ ff_opus_rc_enc_log(rc, f->transient, 3);
+
+ /* Main encoding */
+ celt_quant_coarse(rc, f, s->last_quantized_energy);
+ celt_enc_tf (rc, f);
+ ff_celt_enc_bitalloc(rc, f);
+ celt_quant_fine (rc, f);
+ celt_quant_bands (rc, f);
+
+ /* Anticollapse bit */
+ if (f->anticollapse_needed)
+ ff_opus_rc_put_raw(rc, f->anticollapse, 1);
+
+ /* Final per-band energy adjustments from leftover bits */
+ celt_quant_final(s, rc, f);
+
+ for (ch = 0; ch < f->channels; ch++) {
+ CeltBlock *block = &f->block[ch];
+ for (i = 0; i < CELT_MAX_BANDS; i++)
+ s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i];
+ }
+}
+
+static inline int write_opuslacing(uint8_t *dst, int v)
+{
+ dst[0] = FFMIN(v - FFALIGN(v - 255, 4), v);
+ dst[1] = v - dst[0] >> 2;
+ return 1 + (v >= 252);
+}
+
+static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
+{
+ int i, offset, fsize_needed;
+
+ /* Write toc */
+ opus_gen_toc(s, avpkt->data, &offset, &fsize_needed);
+
+ /* Frame sizes if needed */
+ if (fsize_needed) {
+ for (i = 0; i < s->packet.frames - 1; i++) {
+ offset += write_opuslacing(avpkt->data + offset,
+ s->frame[i].framebits >> 3);
+ }
+ }
+
+ /* Packets */
+ for (i = 0; i < s->packet.frames; i++) {
+ ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset,
+ s->frame[i].framebits >> 3);
+ offset += s->frame[i].framebits >> 3;
+ }
+
+ avpkt->size = offset;
+}
+
+/* Used as overlap for the first frame and padding for the last encoded packet */
+static AVFrame *spawn_empty_frame(OpusEncContext *s)
+{
+ int i;
+ AVFrame *f = av_frame_alloc();
+ if (!f)
+ return NULL;
+ f->format = s->avctx->sample_fmt;
+ f->nb_samples = s->avctx->frame_size;
+ f->channel_layout = s->avctx->channel_layout;
+ if (av_frame_get_buffer(f, 4)) {
+ av_frame_free(&f);
+ return NULL;
+ }
+ for (i = 0; i < s->channels; i++) {
+ size_t bps = av_get_bytes_per_sample(f->format);
+ memset(f->extended_data[i], 0, bps*f->nb_samples);
+ }
+ return f;
+}
+
+static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
+ const AVFrame *frame, int *got_packet_ptr)
+{
+ OpusEncContext *s = avctx->priv_data;
+ int i, ret, frame_size, alloc_size = 0;
+
+ if (frame) { /* Add new frame to queue */
+ if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
+ return ret;
+ ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame));
+ } else {
+ ff_opus_psy_signal_eof(&s->psyctx);
+ if (!s->afq.remaining_samples)
+ return 0; /* We've been flushed and there's nothing left to encode */
+ }
+
+ /* Run the psychoacoustic system */
+ if (ff_opus_psy_process(&s->psyctx, &s->packet))
+ return 0;
+
+ frame_size = OPUS_BLOCK_SIZE(s->packet.framesize);
+
+ if (!frame) {
+ /* This can go negative, that's not a problem, we only pad if positive */
+ int pad_empty = s->packet.frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1;
+ /* Pad with empty 2.5 ms frames to whatever framesize was decided,
+ * this should only happen at the very last flush frame. The frames
+ * allocated here will be freed (because they have no other references)
+ * after they get used by celt_frame_setup_input() */
+ for (i = 0; i < pad_empty; i++) {
+ AVFrame *empty = spawn_empty_frame(s);
+ if (!empty)
+ return AVERROR(ENOMEM);
+ ff_bufqueue_add(avctx, &s->bufqueue, empty);
+ }
+ }
+
+ for (i = 0; i < s->packet.frames; i++) {
+ celt_encode_frame(s, &s->rc[i], &s->frame[i], i);
+ alloc_size += s->frame[i].framebits >> 3;
+ }
+
+ /* Worst case toc + the frame lengths if needed */
+ alloc_size += 2 + s->packet.frames*2;
+
+ if ((ret = ff_alloc_packet2(avctx, avpkt, alloc_size, 0)) < 0)
+ return ret;
+
+ /* Assemble packet */
+ opus_packet_assembler(s, avpkt);
+
+ /* Update the psychoacoustic system */
+ ff_opus_psy_postencode_update(&s->psyctx, s->frame, s->rc);
+
+ /* Remove samples from queue and skip if needed */
+ ff_af_queue_remove(&s->afq, s->packet.frames*frame_size, &avpkt->pts, &avpkt->duration);
+ if (s->packet.frames*frame_size > avpkt->duration) {
+ uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
+ if (!side)
+ return AVERROR(ENOMEM);
+ AV_WL32(&side[4], s->packet.frames*frame_size - avpkt->duration + 120);
+ }
+
+ *got_packet_ptr = 1;
+
+ return 0;
+}
+
+static av_cold int opus_encode_end(AVCodecContext *avctx)
+{
+ int i;
+ OpusEncContext *s = avctx->priv_data;
+
+ for (i = 0; i < CELT_BLOCK_NB; i++)
+ ff_mdct15_uninit(&s->mdct[i]);
+
+ ff_celt_pvq_uninit(&s->pvq);
+ av_freep(&s->dsp);
+ av_freep(&s->frame);
+ av_freep(&s->rc);
+ ff_af_queue_close(&s->afq);
+ ff_opus_psy_end(&s->psyctx);
+ ff_bufqueue_discard_all(&s->bufqueue);
+ av_freep(&avctx->extradata);
+
+ return 0;
+}
+
+static av_cold int opus_encode_init(AVCodecContext *avctx)
+{
+ int i, ch, ret, max_frames;
+ OpusEncContext *s = avctx->priv_data;
+
+ s->avctx = avctx;
+ s->channels = avctx->channels;
+
+ /* Opus allows us to change the framesize on each packet (and each packet may
+ * have multiple frames in it) but we can't change the codec's frame size on
+ * runtime, so fix it to the lowest possible number of samples and use a queue
+ * to accumulate AVFrames until we have enough to encode whatever the encoder
+ * decides is the best */
+ avctx->frame_size = 120;
+ /* Initial padding will change if SILK is ever supported */
+ avctx->initial_padding = 120;
+
+ if (!avctx->bit_rate) {
+ int coupled = ff_opus_default_coupled_streams[s->channels - 1];
+ avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000);
+ } else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) {
+ int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels);
+ av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %"PRId64" kbps, clipping to %"PRId64" kbps\n",
+ avctx->bit_rate/1000, clipped_rate/1000);
+ avctx->bit_rate = clipped_rate;
+ }
+
+ /* Extradata */
+ avctx->extradata_size = 19;
+ avctx->extradata = av_malloc(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
+ if (!avctx->extradata)
+ return AVERROR(ENOMEM);
+ opus_write_extradata(avctx);
+
+ ff_af_queue_init(avctx, &s->afq);
+
+ if ((ret = ff_celt_pvq_init(&s->pvq)) < 0)
+ return ret;
+
+ if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
+ return AVERROR(ENOMEM);
+
+ /* I have no idea why a base scaling factor of 68 works, could be the twiddles */
+ for (i = 0; i < CELT_BLOCK_NB; i++)
+ if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i))))
+ return AVERROR(ENOMEM);
+
+ /* Zero out previous energy (matters for inter first frame) */
+ for (ch = 0; ch < s->channels; ch++)
+ memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
+
+ /* Allocate an empty frame to use as overlap for the first frame of audio */
+ ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s));
+ if (!ff_bufqueue_peek(&s->bufqueue, 0))
+ return AVERROR(ENOMEM);
+
+ if ((ret = ff_opus_psy_init(&s->psyctx, s->avctx, &s->bufqueue, &s->options)))
+ return ret;
+
+ /* Frame structs and range coder buffers */
+ max_frames = ceilf(FFMIN(s->options.max_delay_ms, 120.0f)/2.5f);
+ s->frame = av_malloc(max_frames*sizeof(CeltFrame));
+ if (!s->frame)
+ return AVERROR(ENOMEM);
+ s->rc = av_malloc(max_frames*sizeof(OpusRangeCoder));
+ if (!s->rc)
+ return AVERROR(ENOMEM);
+
+ for (i = 0; i < max_frames; i++) {
+ s->frame[i].dsp = s->dsp;
+ s->frame[i].avctx = s->avctx;
+ s->frame[i].seed = 0;
+ s->frame[i].pvq = s->pvq;
+ s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f;
+ }
+
+ return 0;
+}
+
+#define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
+static const AVOption opusenc_options[] = {
+ { "opus_delay", "Maximum delay in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS, "max_delay_ms" },
+ { NULL },
+};
+
+static const AVClass opusenc_class = {
+ .class_name = "Opus encoder",
+ .item_name = av_default_item_name,
+ .option = opusenc_options,
+ .version = LIBAVUTIL_VERSION_INT,
+};
+
+static const AVCodecDefault opusenc_defaults[] = {
+ { "b", "0" },
+ { "compression_level", "10" },
+ { NULL },
+};
+
+AVCodec ff_opus_encoder = {
+ .name = "opus",
+ .long_name = NULL_IF_CONFIG_SMALL("Opus"),
+ .type = AVMEDIA_TYPE_AUDIO,
+ .id = AV_CODEC_ID_OPUS,
+ .defaults = opusenc_defaults,
+ .priv_class = &opusenc_class,
+ .priv_data_size = sizeof(OpusEncContext),
+ .init = opus_encode_init,
+ .encode2 = opus_encode_frame,
+ .close = opus_encode_end,
+ .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
+ .capabilities = AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
+ .supported_samplerates = (const int []){ 48000, 0 },
+ .channel_layouts = (const uint64_t []){ AV_CH_LAYOUT_MONO,
+ AV_CH_LAYOUT_STEREO, 0 },
+ .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
+ AV_SAMPLE_FMT_NONE },
+};