/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/cpu.h" #include "libavutil/error.h" #include "libavutil/fifo.h" #include "libavutil/mathematics.h" #include "libavutil/mem.h" #include "libavutil/samplefmt.h" #include "objpool.h" #include "sync_queue.h" /* * How this works: * -------------- * time: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 * ------------------------------------------------------------------- * | | | | | | | | | | | | | | * | ┌───┐┌────────┐┌───┐┌─────────────┐ * stream 0| │d=1││ d=2 ││d=1││ d=3 │ * | └───┘└────────┘└───┘└─────────────┘ * ┌───┐ ┌───────────────────────┐ * stream 1│d=1│ │ d=5 │ * └───┘ └───────────────────────┘ * | ┌───┐┌───┐┌───┐┌───┐ * stream 2| │d=1││d=1││d=1││d=1│ <- stream 2 is the head stream of the queue * | └───┘└───┘└───┘└───┘ * ^ ^ * [stream 2 tail] [stream 2 head] * * We have N streams (N=3 in the diagram), each stream is a FIFO. The *tail* of * each FIFO is the frame with smallest end time, the *head* is the frame with * the largest end time. Frames submitted to the queue with sq_send() are placed * after the head, frames returned to the caller with sq_receive() are taken * from the tail. * * The head stream of the whole queue (SyncQueue.head_stream) is the limiting * stream with the *smallest* head timestamp, i.e. the stream whose source lags * furthest behind all other streams. It determines which frames can be output * from the queue. * * In the diagram, the head stream is 2, because it head time is t=5, while * streams 0 and 1 end at t=8 and t=9 respectively. All frames that _end_ at * or before t=5 can be output, i.e. the first 3 frames from stream 0, first * frame from stream 1, and all 4 frames from stream 2. */ typedef struct SyncQueueStream { AVFifo *fifo; AVRational tb; /* number of audio samples in fifo */ uint64_t samples_queued; /* stream head: largest timestamp seen */ int64_t head_ts; int limiting; /* no more frames will be sent for this stream */ int finished; uint64_t frames_sent; uint64_t samples_sent; uint64_t frames_max; int frame_samples; } SyncQueueStream; struct SyncQueue { enum SyncQueueType type; /* no more frames will be sent for any stream */ int finished; /* sync head: the stream with the _smallest_ head timestamp * this stream determines which frames can be output */ int head_stream; /* the finished stream with the smallest finish timestamp or -1 */ int head_finished_stream; // maximum buffering duration in microseconds int64_t buf_size_us; SyncQueueStream *streams; unsigned int nb_streams; // pool of preallocated frames to avoid constant allocations ObjPool *pool; int have_limiting; uintptr_t align_mask; }; static void frame_move(const SyncQueue *sq, SyncQueueFrame dst, SyncQueueFrame src) { if (sq->type == SYNC_QUEUE_PACKETS) av_packet_move_ref(dst.p, src.p); else av_frame_move_ref(dst.f, src.f); } /** * Compute the end timestamp of a frame. If nb_samples is provided, consider * the frame to have this number of audio samples, otherwise use frame duration. */ static int64_t frame_end(const SyncQueue *sq, SyncQueueFrame frame, int nb_samples) { if (nb_samples) { int64_t d = av_rescale_q(nb_samples, (AVRational){ 1, frame.f->sample_rate}, frame.f->time_base); return frame.f->pts + d; } return (sq->type == SYNC_QUEUE_PACKETS) ? frame.p->pts + frame.p->duration : frame.f->pts + frame.f->duration; } static int frame_samples(const SyncQueue *sq, SyncQueueFrame frame) { return (sq->type == SYNC_QUEUE_PACKETS) ? 0 : frame.f->nb_samples; } static int frame_null(const SyncQueue *sq, SyncQueueFrame frame) { return (sq->type == SYNC_QUEUE_PACKETS) ? (frame.p == NULL) : (frame.f == NULL); } static void tb_update(const SyncQueue *sq, SyncQueueStream *st, const SyncQueueFrame frame) { AVRational tb = (sq->type == SYNC_QUEUE_PACKETS) ? frame.p->time_base : frame.f->time_base; av_assert0(tb.num > 0 && tb.den > 0); if (tb.num == st->tb.num && tb.den == st->tb.den) return; // timebase should not change after the first frame av_assert0(!av_fifo_can_read(st->fifo)); if (st->head_ts != AV_NOPTS_VALUE) st->head_ts = av_rescale_q(st->head_ts, st->tb, tb); st->tb = tb; } static void finish_stream(SyncQueue *sq, unsigned int stream_idx) { SyncQueueStream *st = &sq->streams[stream_idx]; st->finished = 1; if (st->limiting && st->head_ts != AV_NOPTS_VALUE) { /* check if this stream is the new finished head */ if (sq->head_finished_stream < 0 || av_compare_ts(st->head_ts, st->tb, sq->streams[sq->head_finished_stream].head_ts, sq->streams[sq->head_finished_stream].tb) < 0) { sq->head_finished_stream = stream_idx; } /* mark as finished all streams that should no longer receive new frames, * due to them being ahead of some finished stream */ st = &sq->streams[sq->head_finished_stream]; for (unsigned int i = 0; i < sq->nb_streams; i++) { SyncQueueStream *st1 = &sq->streams[i]; if (st != st1 && st1->head_ts != AV_NOPTS_VALUE && av_compare_ts(st->head_ts, st->tb, st1->head_ts, st1->tb) <= 0) st1->finished = 1; } } /* mark the whole queue as finished if all streams are finished */ for (unsigned int i = 0; i < sq->nb_streams; i++) { if (!sq->streams[i].finished) return; } sq->finished = 1; } static void queue_head_update(SyncQueue *sq) { if (sq->head_stream < 0) { /* wait for one timestamp in each stream before determining * the queue head */ for (unsigned int i = 0; i < sq->nb_streams; i++) { SyncQueueStream *st = &sq->streams[i]; if (st->limiting && st->head_ts == AV_NOPTS_VALUE) return; } // placeholder value, correct one will be found below sq->head_stream = 0; } for (unsigned int i = 0; i < sq->nb_streams; i++) { SyncQueueStream *st_head = &sq->streams[sq->head_stream]; SyncQueueStream *st_other = &sq->streams[i]; if (st_other->limiting && st_other->head_ts != AV_NOPTS_VALUE && av_compare_ts(st_other->head_ts, st_other->tb, st_head->head_ts, st_head->tb) < 0) sq->head_stream = i; } } /* update this stream's head timestamp */ static void stream_update_ts(SyncQueue *sq, unsigned int stream_idx, int64_t ts) { SyncQueueStream *st = &sq->streams[stream_idx]; if (ts == AV_NOPTS_VALUE || (st->head_ts != AV_NOPTS_VALUE && st->head_ts >= ts)) return; st->head_ts = ts; /* if this stream is now ahead of some finished stream, then * this stream is also finished */ if (sq->head_finished_stream >= 0 && av_compare_ts(sq->streams[sq->head_finished_stream].head_ts, sq->streams[sq->head_finished_stream].tb, ts, st->tb) <= 0) finish_stream(sq, stream_idx); /* update the overall head timestamp if it could have changed */ if (st->limiting && (sq->head_stream < 0 || sq->head_stream == stream_idx)) queue_head_update(sq); } /* If the queue for the given stream (or all streams when stream_idx=-1) * is overflowing, trigger a fake heartbeat on lagging streams. * * @return 1 if heartbeat triggered, 0 otherwise */ static int overflow_heartbeat(SyncQueue *sq, int stream_idx) { SyncQueueStream *st; SyncQueueFrame frame; int64_t tail_ts = AV_NOPTS_VALUE; /* if no stream specified, pick the one that is most ahead */ if (stream_idx < 0) { int64_t ts = AV_NOPTS_VALUE; for (int i = 0; i < sq->nb_streams; i++) { st = &sq->streams[i]; if (st->head_ts != AV_NOPTS_VALUE && (ts == AV_NOPTS_VALUE || av_compare_ts(ts, sq->streams[stream_idx].tb, st->head_ts, st->tb) < 0)) { ts = st->head_ts; stream_idx = i; } } /* no stream has a timestamp yet -> nothing to do */ if (stream_idx < 0) return 0; } st = &sq->streams[stream_idx]; /* get the chosen stream's tail timestamp */ for (size_t i = 0; tail_ts == AV_NOPTS_VALUE && av_fifo_peek(st->fifo, &frame, 1, i) >= 0; i++) tail_ts = frame_end(sq, frame, 0); /* overflow triggers when the tail is over specified duration behind the head */ if (tail_ts == AV_NOPTS_VALUE || tail_ts >= st->head_ts || av_rescale_q(st->head_ts - tail_ts, st->tb, AV_TIME_BASE_Q) < sq->buf_size_us) return 0; /* signal a fake timestamp for all streams that prevent tail_ts from being output */ tail_ts++; for (unsigned int i = 0; i < sq->nb_streams; i++) { SyncQueueStream *st1 = &sq->streams[i]; int64_t ts; if (st == st1 || st1->finished || (st1->head_ts != AV_NOPTS_VALUE && av_compare_ts(tail_ts, st->tb, st1->head_ts, st1->tb) <= 0)) continue; ts = av_rescale_q(tail_ts, st->tb, st1->tb); if (st1->head_ts != AV_NOPTS_VALUE) ts = FFMAX(st1->head_ts + 1, ts); stream_update_ts(sq, i, ts); } return 1; } int sq_send(SyncQueue *sq, unsigned int stream_idx, SyncQueueFrame frame) { SyncQueueStream *st; SyncQueueFrame dst; int64_t ts; int ret, nb_samples; av_assert0(stream_idx < sq->nb_streams); st = &sq->streams[stream_idx]; if (frame_null(sq, frame)) { finish_stream(sq, stream_idx); return 0; } if (st->finished) return AVERROR_EOF; tb_update(sq, st, frame); ret = objpool_get(sq->pool, (void**)&dst); if (ret < 0) return ret; frame_move(sq, dst, frame); nb_samples = frame_samples(sq, dst); // make sure frame duration is consistent with sample count if (nb_samples) { av_assert0(dst.f->sample_rate > 0); dst.f->duration = av_rescale_q(nb_samples, (AVRational){ 1, dst.f->sample_rate }, dst.f->time_base); } ts = frame_end(sq, dst, 0); ret = av_fifo_write(st->fifo, &dst, 1); if (ret < 0) { frame_move(sq, frame, dst); objpool_release(sq->pool, (void**)&dst); return ret; } stream_update_ts(sq, stream_idx, ts); st->samples_queued += nb_samples; st->samples_sent += nb_samples; if (st->frame_samples) st->frames_sent = st->samples_sent / st->frame_samples; else st->frames_sent++; if (st->frames_sent >= st->frames_max) finish_stream(sq, stream_idx); return 0; } static void offset_audio(AVFrame *f, int nb_samples) { const int planar = av_sample_fmt_is_planar(f->format); const int planes = planar ? f->ch_layout.nb_channels : 1; const int bps = av_get_bytes_per_sample(f->format); const int offset = nb_samples * bps * (planar ? 1 : f->ch_layout.nb_channels); av_assert0(bps > 0); av_assert0(nb_samples < f->nb_samples); for (int i = 0; i < planes; i++) { f->extended_data[i] += offset; if (i < FF_ARRAY_ELEMS(f->data)) f->data[i] = f->extended_data[i]; } f->linesize[0] -= offset; f->nb_samples -= nb_samples; f->duration = av_rescale_q(f->nb_samples, (AVRational){ 1, f->sample_rate }, f->time_base); f->pts += av_rescale_q(nb_samples, (AVRational){ 1, f->sample_rate }, f->time_base); } static int frame_is_aligned(const SyncQueue *sq, const AVFrame *frame) { // only checks linesize[0], so only works for audio av_assert0(frame->nb_samples > 0); av_assert0(sq->align_mask); // only check data[0], because we always offset all data pointers // by the same offset, so if one is aligned, all are if (!((uintptr_t)frame->data[0] & sq->align_mask) && !(frame->linesize[0] & sq->align_mask) && frame->linesize[0] > sq->align_mask) return 1; return 0; } static int receive_samples(SyncQueue *sq, SyncQueueStream *st, AVFrame *dst, int nb_samples) { SyncQueueFrame src; int ret; av_assert0(st->samples_queued >= nb_samples); ret = av_fifo_peek(st->fifo, &src, 1, 0); av_assert0(ret >= 0); // peeked frame has enough samples and its data is aligned // -> we can just make a reference and limit its sample count if (src.f->nb_samples > nb_samples && frame_is_aligned(sq, src.f)) { ret = av_frame_ref(dst, src.f); if (ret < 0) return ret; dst->nb_samples = nb_samples; offset_audio(src.f, nb_samples); st->samples_queued -= nb_samples; goto finish; } // otherwise allocate a new frame and copy the data ret = av_channel_layout_copy(&dst->ch_layout, &src.f->ch_layout); if (ret < 0) return ret; dst->format = src.f->format; dst->nb_samples = nb_samples; ret = av_frame_get_buffer(dst, 0); if (ret < 0) goto fail; ret = av_frame_copy_props(dst, src.f); if (ret < 0) goto fail; dst->nb_samples = 0; while (dst->nb_samples < nb_samples) { int to_copy; ret = av_fifo_peek(st->fifo, &src, 1, 0); av_assert0(ret >= 0); to_copy = FFMIN(nb_samples - dst->nb_samples, src.f->nb_samples); av_samples_copy(dst->extended_data, src.f->extended_data, dst->nb_samples, 0, to_copy, dst->ch_layout.nb_channels, dst->format); if (to_copy < src.f->nb_samples) offset_audio(src.f, to_copy); else { av_frame_unref(src.f); objpool_release(sq->pool, (void**)&src); av_fifo_drain2(st->fifo, 1); } st->samples_queued -= to_copy; dst->nb_samples += to_copy; } finish: dst->duration = av_rescale_q(nb_samples, (AVRational){ 1, dst->sample_rate }, dst->time_base); return 0; fail: av_frame_unref(dst); return ret; } static int receive_for_stream(SyncQueue *sq, unsigned int stream_idx, SyncQueueFrame frame) { SyncQueueStream *st_head = sq->head_stream >= 0 ? &sq->streams[sq->head_stream] : NULL; SyncQueueStream *st; av_assert0(stream_idx < sq->nb_streams); st = &sq->streams[stream_idx]; if (av_fifo_can_read(st->fifo) && (st->frame_samples <= st->samples_queued || st->finished)) { int nb_samples = st->frame_samples; SyncQueueFrame peek; int64_t ts; int cmp = 1; if (st->finished) nb_samples = FFMIN(nb_samples, st->samples_queued); av_fifo_peek(st->fifo, &peek, 1, 0); ts = frame_end(sq, peek, nb_samples); /* check if this stream's tail timestamp does not overtake * the overall queue head */ if (ts != AV_NOPTS_VALUE && st_head) cmp = av_compare_ts(ts, st->tb, st_head->head_ts, st_head->tb); /* We can release frames that do not end after the queue head. * Frames with no timestamps are just passed through with no conditions. * Frames are also passed through when there are no limiting streams. */ if (cmp <= 0 || ts == AV_NOPTS_VALUE || !sq->have_limiting) { if (nb_samples && (nb_samples != peek.f->nb_samples || !frame_is_aligned(sq, peek.f))) { int ret = receive_samples(sq, st, frame.f, nb_samples); if (ret < 0) return ret; } else { frame_move(sq, frame, peek); objpool_release(sq->pool, (void**)&peek); av_fifo_drain2(st->fifo, 1); av_assert0(st->samples_queued >= frame_samples(sq, frame)); st->samples_queued -= frame_samples(sq, frame); } return 0; } } return (sq->finished || (st->finished && !av_fifo_can_read(st->fifo))) ? AVERROR_EOF : AVERROR(EAGAIN); } static int receive_internal(SyncQueue *sq, int stream_idx, SyncQueueFrame frame) { int nb_eof = 0; int ret; /* read a frame for a specific stream */ if (stream_idx >= 0) { ret = receive_for_stream(sq, stream_idx, frame); return (ret < 0) ? ret : stream_idx; } /* read a frame for any stream with available output */ for (unsigned int i = 0; i < sq->nb_streams; i++) { ret = receive_for_stream(sq, i, frame); if (ret == AVERROR_EOF || ret == AVERROR(EAGAIN)) { nb_eof += (ret == AVERROR_EOF); continue; } return (ret < 0) ? ret : i; } return (nb_eof == sq->nb_streams) ? AVERROR_EOF : AVERROR(EAGAIN); } int sq_receive(SyncQueue *sq, int stream_idx, SyncQueueFrame frame) { int ret = receive_internal(sq, stream_idx, frame); /* try again if the queue overflowed and triggered a fake heartbeat * for lagging streams */ if (ret == AVERROR(EAGAIN) && overflow_heartbeat(sq, stream_idx)) ret = receive_internal(sq, stream_idx, frame); return ret; } int sq_add_stream(SyncQueue *sq, int limiting) { SyncQueueStream *tmp, *st; tmp = av_realloc_array(sq->streams, sq->nb_streams + 1, sizeof(*sq->streams)); if (!tmp) return AVERROR(ENOMEM); sq->streams = tmp; st = &sq->streams[sq->nb_streams]; memset(st, 0, sizeof(*st)); st->fifo = av_fifo_alloc2(1, sizeof(SyncQueueFrame), AV_FIFO_FLAG_AUTO_GROW); if (!st->fifo) return AVERROR(ENOMEM); /* we set a valid default, so that a pathological stream that never * receives even a real timebase (and no frames) won't stall all other * streams forever; cf. overflow_heartbeat() */ st->tb = (AVRational){ 1, 1 }; st->head_ts = AV_NOPTS_VALUE; st->frames_max = UINT64_MAX; st->limiting = limiting; sq->have_limiting |= limiting; return sq->nb_streams++; } void sq_limit_frames(SyncQueue *sq, unsigned int stream_idx, uint64_t frames) { SyncQueueStream *st; av_assert0(stream_idx < sq->nb_streams); st = &sq->streams[stream_idx]; st->frames_max = frames; if (st->frames_sent >= st->frames_max) finish_stream(sq, stream_idx); } void sq_frame_samples(SyncQueue *sq, unsigned int stream_idx, int frame_samples) { SyncQueueStream *st; av_assert0(sq->type == SYNC_QUEUE_FRAMES); av_assert0(stream_idx < sq->nb_streams); st = &sq->streams[stream_idx]; st->frame_samples = frame_samples; sq->align_mask = av_cpu_max_align() - 1; } SyncQueue *sq_alloc(enum SyncQueueType type, int64_t buf_size_us) { SyncQueue *sq = av_mallocz(sizeof(*sq)); if (!sq) return NULL; sq->type = type; sq->buf_size_us = buf_size_us; sq->head_stream = -1; sq->head_finished_stream = -1; sq->pool = (type == SYNC_QUEUE_PACKETS) ? objpool_alloc_packets() : objpool_alloc_frames(); if (!sq->pool) { av_freep(&sq); return NULL; } return sq; } void sq_free(SyncQueue **psq) { SyncQueue *sq = *psq; if (!sq) return; for (unsigned int i = 0; i < sq->nb_streams; i++) { SyncQueueFrame frame; while (av_fifo_read(sq->streams[i].fifo, &frame, 1) >= 0) objpool_release(sq->pool, (void**)&frame); av_fifo_freep2(&sq->streams[i].fifo); } av_freep(&sq->streams); objpool_free(&sq->pool); av_freep(psq); }