/* * Copyright (c) 2021 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * OpenEXR encoder */ #include #include #include "libavutil/avassert.h" #include "libavutil/opt.h" #include "libavutil/intreadwrite.h" #include "libavutil/imgutils.h" #include "libavutil/pixdesc.h" #include "libavutil/float2half.h" #include "avcodec.h" #include "bytestream.h" #include "codec_internal.h" #include "encode.h" enum ExrCompr { EXR_RAW, EXR_RLE, EXR_ZIP1, EXR_ZIP16, EXR_NBCOMPR, }; enum ExrPixelType { EXR_UINT, EXR_HALF, EXR_FLOAT, EXR_UNKNOWN, }; static const char abgr_chlist[4] = { 'A', 'B', 'G', 'R' }; static const char bgr_chlist[4] = { 'B', 'G', 'R', 'A' }; static const char y_chlist[4] = { 'Y' }; static const uint8_t gbra_order[4] = { 3, 1, 0, 2 }; static const uint8_t gbr_order[4] = { 1, 0, 2, 0 }; static const uint8_t y_order[4] = { 0 }; typedef struct EXRScanlineData { uint8_t *compressed_data; unsigned int compressed_size; uint8_t *uncompressed_data; unsigned int uncompressed_size; uint8_t *tmp; unsigned int tmp_size; int64_t actual_size; } EXRScanlineData; typedef struct EXRContext { const AVClass *class; int compression; int pixel_type; int planes; int nb_scanlines; int scanline_height; float gamma; const char *ch_names; const uint8_t *ch_order; PutByteContext pb; EXRScanlineData *scanline; Float2HalfTables f2h_tables; } EXRContext; static av_cold int encode_init(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; ff_init_float2half_tables(&s->f2h_tables); switch (avctx->pix_fmt) { case AV_PIX_FMT_GBRPF32: s->planes = 3; s->ch_names = bgr_chlist; s->ch_order = gbr_order; break; case AV_PIX_FMT_GBRAPF32: s->planes = 4; s->ch_names = abgr_chlist; s->ch_order = gbra_order; break; case AV_PIX_FMT_GRAYF32: s->planes = 1; s->ch_names = y_chlist; s->ch_order = y_order; break; default: av_assert0(0); } switch (s->compression) { case EXR_RAW: case EXR_RLE: case EXR_ZIP1: s->scanline_height = 1; s->nb_scanlines = avctx->height; break; case EXR_ZIP16: s->scanline_height = 16; s->nb_scanlines = (avctx->height + s->scanline_height - 1) / s->scanline_height; break; default: av_assert0(0); } s->scanline = av_calloc(s->nb_scanlines, sizeof(*s->scanline)); if (!s->scanline) return AVERROR(ENOMEM); return 0; } static av_cold int encode_close(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; for (int y = 0; y < s->nb_scanlines && s->scanline; y++) { EXRScanlineData *scanline = &s->scanline[y]; av_freep(&scanline->tmp); av_freep(&scanline->compressed_data); av_freep(&scanline->uncompressed_data); } av_freep(&s->scanline); return 0; } static void reorder_pixels(uint8_t *dst, const uint8_t *src, ptrdiff_t size) { const ptrdiff_t half_size = (size + 1) / 2; uint8_t *t1 = dst; uint8_t *t2 = dst + half_size; for (ptrdiff_t i = 0; i < half_size; i++) { t1[i] = *(src++); t2[i] = *(src++); } } static void predictor(uint8_t *src, ptrdiff_t size) { int p = src[0]; for (ptrdiff_t i = 1; i < size; i++) { int d = src[i] - p + 384; p = src[i]; src[i] = d; } } static int64_t rle_compress(uint8_t *out, int64_t out_size, const uint8_t *in, int64_t in_size) { int64_t i = 0, o = 0, run = 1, copy = 0; while (i < in_size) { while (i + run < in_size && in[i] == in[i + run] && run < 128) run++; if (run >= 3) { if (o + 2 >= out_size) return -1; out[o++] = run - 1; out[o++] = in[i]; i += run; } else { if (i + run < in_size) copy += run; while (i + copy < in_size && copy < 127 && in[i + copy] != in[i + copy - 1]) copy++; if (o + 1 + copy >= out_size) return -1; out[o++] = -copy; for (int x = 0; x < copy; x++) out[o + x] = in[i + x]; o += copy; i += copy; copy = 0; } run = 1; } return o; } static int encode_scanline_rle(EXRContext *s, const AVFrame *frame) { const int64_t element_size = s->pixel_type == EXR_HALF ? 2LL : 4LL; for (int y = 0; y < frame->height; y++) { EXRScanlineData *scanline = &s->scanline[y]; int64_t tmp_size = element_size * s->planes * frame->width; int64_t max_compressed_size = tmp_size * 3 / 2; av_fast_padded_malloc(&scanline->uncompressed_data, &scanline->uncompressed_size, tmp_size); if (!scanline->uncompressed_data) return AVERROR(ENOMEM); av_fast_padded_malloc(&scanline->tmp, &scanline->tmp_size, tmp_size); if (!scanline->tmp) return AVERROR(ENOMEM); av_fast_padded_malloc(&scanline->compressed_data, &scanline->compressed_size, max_compressed_size); if (!scanline->compressed_data) return AVERROR(ENOMEM); switch (s->pixel_type) { case EXR_FLOAT: for (int p = 0; p < s->planes; p++) { int ch = s->ch_order[p]; memcpy(scanline->uncompressed_data + frame->width * 4 * p, frame->data[ch] + y * frame->linesize[ch], frame->width * 4); } break; case EXR_HALF: for (int p = 0; p < s->planes; p++) { int ch = s->ch_order[p]; uint16_t *dst = (uint16_t *)(scanline->uncompressed_data + frame->width * 2 * p); const uint32_t *src = (const uint32_t *)(frame->data[ch] + y * frame->linesize[ch]); for (int x = 0; x < frame->width; x++) dst[x] = float2half(src[x], &s->f2h_tables); } break; } reorder_pixels(scanline->tmp, scanline->uncompressed_data, tmp_size); predictor(scanline->tmp, tmp_size); scanline->actual_size = rle_compress(scanline->compressed_data, max_compressed_size, scanline->tmp, tmp_size); if (scanline->actual_size <= 0 || scanline->actual_size >= tmp_size) { FFSWAP(uint8_t *, scanline->uncompressed_data, scanline->compressed_data); FFSWAP(int, scanline->uncompressed_size, scanline->compressed_size); scanline->actual_size = tmp_size; } } return 0; } static int encode_scanline_zip(EXRContext *s, const AVFrame *frame) { const int64_t element_size = s->pixel_type == EXR_HALF ? 2LL : 4LL; for (int y = 0; y < s->nb_scanlines; y++) { EXRScanlineData *scanline = &s->scanline[y]; const int scanline_height = FFMIN(s->scanline_height, frame->height - y * s->scanline_height); int64_t tmp_size = element_size * s->planes * frame->width * scanline_height; int64_t max_compressed_size = tmp_size * 3 / 2; unsigned long actual_size, source_size; av_fast_padded_malloc(&scanline->uncompressed_data, &scanline->uncompressed_size, tmp_size); if (!scanline->uncompressed_data) return AVERROR(ENOMEM); av_fast_padded_malloc(&scanline->tmp, &scanline->tmp_size, tmp_size); if (!scanline->tmp) return AVERROR(ENOMEM); av_fast_padded_malloc(&scanline->compressed_data, &scanline->compressed_size, max_compressed_size); if (!scanline->compressed_data) return AVERROR(ENOMEM); switch (s->pixel_type) { case EXR_FLOAT: for (int l = 0; l < scanline_height; l++) { const int scanline_size = frame->width * 4 * s->planes; for (int p = 0; p < s->planes; p++) { int ch = s->ch_order[p]; memcpy(scanline->uncompressed_data + scanline_size * l + p * frame->width * 4, frame->data[ch] + (y * s->scanline_height + l) * frame->linesize[ch], frame->width * 4); } } break; case EXR_HALF: for (int l = 0; l < scanline_height; l++) { const int scanline_size = frame->width * 2 * s->planes; for (int p = 0; p < s->planes; p++) { int ch = s->ch_order[p]; uint16_t *dst = (uint16_t *)(scanline->uncompressed_data + scanline_size * l + p * frame->width * 2); const uint32_t *src = (const uint32_t *)(frame->data[ch] + (y * s->scanline_height + l) * frame->linesize[ch]); for (int x = 0; x < frame->width; x++) dst[x] = float2half(src[x], &s->f2h_tables); } } break; } reorder_pixels(scanline->tmp, scanline->uncompressed_data, tmp_size); predictor(scanline->tmp, tmp_size); source_size = tmp_size; actual_size = max_compressed_size; compress(scanline->compressed_data, &actual_size, scanline->tmp, source_size); scanline->actual_size = actual_size; if (scanline->actual_size >= tmp_size) { FFSWAP(uint8_t *, scanline->uncompressed_data, scanline->compressed_data); FFSWAP(int, scanline->uncompressed_size, scanline->compressed_size); scanline->actual_size = tmp_size; } } return 0; } static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { EXRContext *s = avctx->priv_data; PutByteContext *pb = &s->pb; int64_t offset; int ret; int64_t out_size = 2048LL + avctx->height * 16LL + av_image_get_buffer_size(avctx->pix_fmt, avctx->width, avctx->height, 64) * 3LL / 2; if ((ret = ff_get_encode_buffer(avctx, pkt, out_size, 0)) < 0) return ret; bytestream2_init_writer(pb, pkt->data, pkt->size); bytestream2_put_le32(pb, 20000630); bytestream2_put_byte(pb, 2); bytestream2_put_le24(pb, 0); bytestream2_put_buffer(pb, "channels\0chlist\0", 16); bytestream2_put_le32(pb, s->planes * 18 + 1); for (int p = 0; p < s->planes; p++) { bytestream2_put_byte(pb, s->ch_names[p]); bytestream2_put_byte(pb, 0); bytestream2_put_le32(pb, s->pixel_type); bytestream2_put_le32(pb, 0); bytestream2_put_le32(pb, 1); bytestream2_put_le32(pb, 1); } bytestream2_put_byte(pb, 0); bytestream2_put_buffer(pb, "compression\0compression\0", 24); bytestream2_put_le32(pb, 1); bytestream2_put_byte(pb, s->compression); bytestream2_put_buffer(pb, "dataWindow\0box2i\0", 17); bytestream2_put_le32(pb, 16); bytestream2_put_le32(pb, 0); bytestream2_put_le32(pb, 0); bytestream2_put_le32(pb, avctx->width - 1); bytestream2_put_le32(pb, avctx->height - 1); bytestream2_put_buffer(pb, "displayWindow\0box2i\0", 20); bytestream2_put_le32(pb, 16); bytestream2_put_le32(pb, 0); bytestream2_put_le32(pb, 0); bytestream2_put_le32(pb, avctx->width - 1); bytestream2_put_le32(pb, avctx->height - 1); bytestream2_put_buffer(pb, "lineOrder\0lineOrder\0", 20); bytestream2_put_le32(pb, 1); bytestream2_put_byte(pb, 0); bytestream2_put_buffer(pb, "screenWindowCenter\0v2f\0", 23); bytestream2_put_le32(pb, 8); bytestream2_put_le64(pb, 0); bytestream2_put_buffer(pb, "screenWindowWidth\0float\0", 24); bytestream2_put_le32(pb, 4); bytestream2_put_le32(pb, av_float2int(1.f)); if (avctx->sample_aspect_ratio.num && avctx->sample_aspect_ratio.den) { bytestream2_put_buffer(pb, "pixelAspectRatio\0float\0", 23); bytestream2_put_le32(pb, 4); bytestream2_put_le32(pb, av_float2int(av_q2d(avctx->sample_aspect_ratio))); } if (avctx->framerate.num && avctx->framerate.den) { bytestream2_put_buffer(pb, "framesPerSecond\0rational\0", 25); bytestream2_put_le32(pb, 8); bytestream2_put_le32(pb, avctx->framerate.num); bytestream2_put_le32(pb, avctx->framerate.den); } bytestream2_put_buffer(pb, "gamma\0float\0", 12); bytestream2_put_le32(pb, 4); bytestream2_put_le32(pb, av_float2int(s->gamma)); bytestream2_put_buffer(pb, "writer\0string\0", 14); bytestream2_put_le32(pb, 4); bytestream2_put_buffer(pb, "lavc", 4); bytestream2_put_byte(pb, 0); switch (s->compression) { case EXR_RAW: /* nothing to do */ break; case EXR_RLE: encode_scanline_rle(s, frame); break; case EXR_ZIP16: case EXR_ZIP1: encode_scanline_zip(s, frame); break; default: av_assert0(0); } switch (s->compression) { case EXR_RAW: offset = bytestream2_tell_p(pb) + avctx->height * 8LL; if (s->pixel_type == EXR_FLOAT) { for (int y = 0; y < avctx->height; y++) { bytestream2_put_le64(pb, offset); offset += avctx->width * s->planes * 4 + 8; } for (int y = 0; y < avctx->height; y++) { bytestream2_put_le32(pb, y); bytestream2_put_le32(pb, s->planes * avctx->width * 4); for (int p = 0; p < s->planes; p++) { int ch = s->ch_order[p]; bytestream2_put_buffer(pb, frame->data[ch] + y * frame->linesize[ch], avctx->width * 4); } } } else { for (int y = 0; y < avctx->height; y++) { bytestream2_put_le64(pb, offset); offset += avctx->width * s->planes * 2 + 8; } for (int y = 0; y < avctx->height; y++) { bytestream2_put_le32(pb, y); bytestream2_put_le32(pb, s->planes * avctx->width * 2); for (int p = 0; p < s->planes; p++) { int ch = s->ch_order[p]; const uint32_t *src = (const uint32_t *)(frame->data[ch] + y * frame->linesize[ch]); for (int x = 0; x < frame->width; x++) bytestream2_put_le16(pb, float2half(src[x], &s->f2h_tables)); } } } break; case EXR_ZIP16: case EXR_ZIP1: case EXR_RLE: offset = bytestream2_tell_p(pb) + s->nb_scanlines * 8LL; for (int y = 0; y < s->nb_scanlines; y++) { EXRScanlineData *scanline = &s->scanline[y]; bytestream2_put_le64(pb, offset); offset += scanline->actual_size + 8; } for (int y = 0; y < s->nb_scanlines; y++) { EXRScanlineData *scanline = &s->scanline[y]; bytestream2_put_le32(pb, y * s->scanline_height); bytestream2_put_le32(pb, scanline->actual_size); bytestream2_put_buffer(pb, scanline->compressed_data, scanline->actual_size); } break; default: av_assert0(0); } av_shrink_packet(pkt, bytestream2_tell_p(pb)); *got_packet = 1; return 0; } #define OFFSET(x) offsetof(EXRContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "compression", "set compression type", OFFSET(compression), AV_OPT_TYPE_INT, {.i64=0}, 0, EXR_NBCOMPR-1, VE, "compr" }, { "none", "none", 0, AV_OPT_TYPE_CONST, {.i64=EXR_RAW}, 0, 0, VE, "compr" }, { "rle" , "RLE", 0, AV_OPT_TYPE_CONST, {.i64=EXR_RLE}, 0, 0, VE, "compr" }, { "zip1", "ZIP1", 0, AV_OPT_TYPE_CONST, {.i64=EXR_ZIP1}, 0, 0, VE, "compr" }, { "zip16", "ZIP16", 0, AV_OPT_TYPE_CONST, {.i64=EXR_ZIP16}, 0, 0, VE, "compr" }, { "format", "set pixel type", OFFSET(pixel_type), AV_OPT_TYPE_INT, {.i64=EXR_FLOAT}, EXR_HALF, EXR_UNKNOWN-1, VE, "pixel" }, { "half" , NULL, 0, AV_OPT_TYPE_CONST, {.i64=EXR_HALF}, 0, 0, VE, "pixel" }, { "float", NULL, 0, AV_OPT_TYPE_CONST, {.i64=EXR_FLOAT}, 0, 0, VE, "pixel" }, { "gamma", "set gamma", OFFSET(gamma), AV_OPT_TYPE_FLOAT, {.dbl=1.f}, 0.001, FLT_MAX, VE }, { NULL}, }; static const AVClass exr_class = { .class_name = "exr", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_exr_encoder = { .p.name = "exr", CODEC_LONG_NAME("OpenEXR image"), .priv_data_size = sizeof(EXRContext), .p.priv_class = &exr_class, .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_EXR, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, .init = encode_init, FF_CODEC_ENCODE_CB(encode_frame), .close = encode_close, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_GRAYF32, AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32, AV_PIX_FMT_NONE }, };