/* * HEVC video decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * Copyright (C) 2012 - 2013 Mickael Raulet * Copyright (C) 2012 - 2013 Gildas Cocherel * Copyright (C) 2012 - 2013 Wassim Hamidouche * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/attributes.h" #include "libavutil/common.h" #include "libavutil/display.h" #include "libavutil/internal.h" #include "libavutil/md5.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/stereo3d.h" #include "bswapdsp.h" #include "bytestream.h" #include "cabac_functions.h" #include "golomb.h" #include "hevc.h" const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 }; const uint8_t ff_hevc_qpel_extra_after[4] = { 0, 3, 4, 4 }; const uint8_t ff_hevc_qpel_extra[4] = { 0, 6, 7, 6 }; static const uint8_t scan_1x1[1] = { 0 }; static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 }; static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 }; static const uint8_t horiz_scan4x4_x[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, }; static const uint8_t horiz_scan4x4_y[16] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, }; static const uint8_t horiz_scan8x8_inv[8][8] = { { 0, 1, 2, 3, 16, 17, 18, 19, }, { 4, 5, 6, 7, 20, 21, 22, 23, }, { 8, 9, 10, 11, 24, 25, 26, 27, }, { 12, 13, 14, 15, 28, 29, 30, 31, }, { 32, 33, 34, 35, 48, 49, 50, 51, }, { 36, 37, 38, 39, 52, 53, 54, 55, }, { 40, 41, 42, 43, 56, 57, 58, 59, }, { 44, 45, 46, 47, 60, 61, 62, 63, }, }; static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 }; static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 }; static const uint8_t diag_scan2x2_inv[2][2] = { { 0, 2, }, { 1, 3, }, }; const uint8_t ff_hevc_diag_scan4x4_x[16] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 2, 3, 3, }; const uint8_t ff_hevc_diag_scan4x4_y[16] = { 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 3, 2, 3, }; static const uint8_t diag_scan4x4_inv[4][4] = { { 0, 2, 5, 9, }, { 1, 4, 8, 12, }, { 3, 7, 11, 14, }, { 6, 10, 13, 15, }, }; const uint8_t ff_hevc_diag_scan8x8_x[64] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 5, 6, 7, 6, 7, 7, }; const uint8_t ff_hevc_diag_scan8x8_y[64] = { 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 7, 6, 5, 4, 3, 7, 6, 5, 4, 7, 6, 5, 7, 6, 7, }; static const uint8_t diag_scan8x8_inv[8][8] = { { 0, 2, 5, 9, 14, 20, 27, 35, }, { 1, 4, 8, 13, 19, 26, 34, 42, }, { 3, 7, 12, 18, 25, 33, 41, 48, }, { 6, 11, 17, 24, 32, 40, 47, 53, }, { 10, 16, 23, 31, 39, 46, 52, 57, }, { 15, 22, 30, 38, 45, 51, 56, 60, }, { 21, 29, 37, 44, 50, 55, 59, 62, }, { 28, 36, 43, 49, 54, 58, 61, 63, }, }; /** * NOTE: Each function hls_foo correspond to the function foo in the * specification (HLS stands for High Level Syntax). */ /** * Section 5.7 */ /* free everything allocated by pic_arrays_init() */ static void pic_arrays_free(HEVCContext *s) { av_freep(&s->sao); av_freep(&s->deblock); av_freep(&s->skip_flag); av_freep(&s->tab_ct_depth); av_freep(&s->tab_ipm); av_freep(&s->cbf_luma); av_freep(&s->is_pcm); av_freep(&s->qp_y_tab); av_freep(&s->tab_slice_address); av_freep(&s->filter_slice_edges); av_freep(&s->horizontal_bs); av_freep(&s->vertical_bs); av_buffer_pool_uninit(&s->tab_mvf_pool); av_buffer_pool_uninit(&s->rpl_tab_pool); } /* allocate arrays that depend on frame dimensions */ static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps) { int log2_min_cb_size = sps->log2_min_cb_size; int width = sps->width; int height = sps->height; int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) * ((height >> log2_min_cb_size) + 1); int ctb_count = sps->ctb_width * sps->ctb_height; int min_pu_size = sps->min_pu_width * sps->min_pu_height; s->bs_width = width >> 3; s->bs_height = height >> 3; s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao)); s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock)); if (!s->sao || !s->deblock) goto fail; s->skip_flag = av_malloc(pic_size_in_ctb); s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width); if (!s->skip_flag || !s->tab_ct_depth) goto fail; s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height); s->tab_ipm = av_mallocz(min_pu_size); s->is_pcm = av_malloc(min_pu_size); if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm) goto fail; s->filter_slice_edges = av_malloc(ctb_count); s->tab_slice_address = av_malloc(pic_size_in_ctb * sizeof(*s->tab_slice_address)); s->qp_y_tab = av_malloc(pic_size_in_ctb * sizeof(*s->qp_y_tab)); if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address) goto fail; s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1)); s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1)); if (!s->horizontal_bs || !s->vertical_bs) goto fail; s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField), av_buffer_alloc); s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab), av_buffer_allocz); if (!s->tab_mvf_pool || !s->rpl_tab_pool) goto fail; return 0; fail: pic_arrays_free(s); return AVERROR(ENOMEM); } static void pred_weight_table(HEVCContext *s, GetBitContext *gb) { int i = 0; int j = 0; uint8_t luma_weight_l0_flag[16]; uint8_t chroma_weight_l0_flag[16]; uint8_t luma_weight_l1_flag[16]; uint8_t chroma_weight_l1_flag[16]; s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb); if (s->sps->chroma_format_idc != 0) { int delta = get_se_golomb(gb); s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7); } for (i = 0; i < s->sh.nb_refs[L0]; i++) { luma_weight_l0_flag[i] = get_bits1(gb); if (!luma_weight_l0_flag[i]) { s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom; s->sh.luma_offset_l0[i] = 0; } } if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for" for (i = 0; i < s->sh.nb_refs[L0]; i++) chroma_weight_l0_flag[i] = get_bits1(gb); } else { for (i = 0; i < s->sh.nb_refs[L0]; i++) chroma_weight_l0_flag[i] = 0; } for (i = 0; i < s->sh.nb_refs[L0]; i++) { if (luma_weight_l0_flag[i]) { int delta_luma_weight_l0 = get_se_golomb(gb); s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0; s->sh.luma_offset_l0[i] = get_se_golomb(gb); } if (chroma_weight_l0_flag[i]) { for (j = 0; j < 2; j++) { int delta_chroma_weight_l0 = get_se_golomb(gb); int delta_chroma_offset_l0 = get_se_golomb(gb); s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0; s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j]) >> s->sh.chroma_log2_weight_denom) + 128), -128, 127); } } else { s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l0[i][0] = 0; s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l0[i][1] = 0; } } if (s->sh.slice_type == B_SLICE) { for (i = 0; i < s->sh.nb_refs[L1]; i++) { luma_weight_l1_flag[i] = get_bits1(gb); if (!luma_weight_l1_flag[i]) { s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom; s->sh.luma_offset_l1[i] = 0; } } if (s->sps->chroma_format_idc != 0) { for (i = 0; i < s->sh.nb_refs[L1]; i++) chroma_weight_l1_flag[i] = get_bits1(gb); } else { for (i = 0; i < s->sh.nb_refs[L1]; i++) chroma_weight_l1_flag[i] = 0; } for (i = 0; i < s->sh.nb_refs[L1]; i++) { if (luma_weight_l1_flag[i]) { int delta_luma_weight_l1 = get_se_golomb(gb); s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1; s->sh.luma_offset_l1[i] = get_se_golomb(gb); } if (chroma_weight_l1_flag[i]) { for (j = 0; j < 2; j++) { int delta_chroma_weight_l1 = get_se_golomb(gb); int delta_chroma_offset_l1 = get_se_golomb(gb); s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1; s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j]) >> s->sh.chroma_log2_weight_denom) + 128), -128, 127); } } else { s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l1[i][0] = 0; s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom; s->sh.chroma_offset_l1[i][1] = 0; } } } } static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb) { const HEVCSPS *sps = s->sps; int max_poc_lsb = 1 << sps->log2_max_poc_lsb; int prev_delta_msb = 0; unsigned int nb_sps = 0, nb_sh; int i; rps->nb_refs = 0; if (!sps->long_term_ref_pics_present_flag) return 0; if (sps->num_long_term_ref_pics_sps > 0) nb_sps = get_ue_golomb_long(gb); nb_sh = get_ue_golomb_long(gb); if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc)) return AVERROR_INVALIDDATA; rps->nb_refs = nb_sh + nb_sps; for (i = 0; i < rps->nb_refs; i++) { uint8_t delta_poc_msb_present; if (i < nb_sps) { uint8_t lt_idx_sps = 0; if (sps->num_long_term_ref_pics_sps > 1) lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps)); rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps]; rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps]; } else { rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb); rps->used[i] = get_bits1(gb); } delta_poc_msb_present = get_bits1(gb); if (delta_poc_msb_present) { int delta = get_ue_golomb_long(gb); if (i && i != nb_sps) delta += prev_delta_msb; rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb; prev_delta_msb = delta; } } return 0; } static int set_sps(HEVCContext *s, const HEVCSPS *sps) { int ret; unsigned int num = 0, den = 0; pic_arrays_free(s); ret = pic_arrays_init(s, sps); if (ret < 0) goto fail; s->avctx->coded_width = sps->width; s->avctx->coded_height = sps->height; s->avctx->width = sps->output_width; s->avctx->height = sps->output_height; s->avctx->pix_fmt = sps->pix_fmt; s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics; ff_set_sar(s->avctx, sps->vui.sar); if (sps->vui.video_signal_type_present_flag) s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; else s->avctx->color_range = AVCOL_RANGE_MPEG; if (sps->vui.colour_description_present_flag) { s->avctx->color_primaries = sps->vui.colour_primaries; s->avctx->color_trc = sps->vui.transfer_characteristic; s->avctx->colorspace = sps->vui.matrix_coeffs; } else { s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED; s->avctx->color_trc = AVCOL_TRC_UNSPECIFIED; s->avctx->colorspace = AVCOL_SPC_UNSPECIFIED; } ff_hevc_pred_init(&s->hpc, sps->bit_depth); ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth); ff_videodsp_init (&s->vdsp, sps->bit_depth); if (sps->sao_enabled) { av_frame_unref(s->tmp_frame); ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF); if (ret < 0) goto fail; s->frame = s->tmp_frame; } s->sps = sps; s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data; if (s->vps->vps_timing_info_present_flag) { num = s->vps->vps_num_units_in_tick; den = s->vps->vps_time_scale; } else if (sps->vui.vui_timing_info_present_flag) { num = sps->vui.vui_num_units_in_tick; den = sps->vui.vui_time_scale; } if (num != 0 && den != 0) av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, num, den, 1 << 30); return 0; fail: pic_arrays_free(s); s->sps = NULL; return ret; } static int hls_slice_header(HEVCContext *s) { GetBitContext *gb = &s->HEVClc.gb; SliceHeader *sh = &s->sh; int i, ret; // Coded parameters sh->first_slice_in_pic_flag = get_bits1(gb); if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) { s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; if (IS_IDR(s)) ff_hevc_clear_refs(s); } if (IS_IRAP(s)) sh->no_output_of_prior_pics_flag = get_bits1(gb); sh->pps_id = get_ue_golomb_long(gb); if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) { av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id); return AVERROR_INVALIDDATA; } if (!sh->first_slice_in_pic_flag && s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) { av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n"); return AVERROR_INVALIDDATA; } s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data; if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) { s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data; ff_hevc_clear_refs(s); ret = set_sps(s, s->sps); if (ret < 0) return ret; s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; } s->avctx->profile = s->sps->ptl.general_ptl.profile_idc; s->avctx->level = s->sps->ptl.general_ptl.level_idc; sh->dependent_slice_segment_flag = 0; if (!sh->first_slice_in_pic_flag) { int slice_address_length; if (s->pps->dependent_slice_segments_enabled_flag) sh->dependent_slice_segment_flag = get_bits1(gb); slice_address_length = av_ceil_log2(s->sps->ctb_width * s->sps->ctb_height); sh->slice_segment_addr = get_bits(gb, slice_address_length); if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) { av_log(s->avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n", sh->slice_segment_addr); return AVERROR_INVALIDDATA; } if (!sh->dependent_slice_segment_flag) { sh->slice_addr = sh->slice_segment_addr; s->slice_idx++; } } else { sh->slice_segment_addr = sh->slice_addr = 0; s->slice_idx = 0; s->slice_initialized = 0; } if (!sh->dependent_slice_segment_flag) { s->slice_initialized = 0; for (i = 0; i < s->pps->num_extra_slice_header_bits; i++) skip_bits(gb, 1); // slice_reserved_undetermined_flag[] sh->slice_type = get_ue_golomb_long(gb); if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE || sh->slice_type == B_SLICE)) { av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", sh->slice_type); return AVERROR_INVALIDDATA; } if (IS_IRAP(s) && sh->slice_type != I_SLICE) { av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n"); return AVERROR_INVALIDDATA; } // when flag is not present, picture is inferred to be output sh->pic_output_flag = 1; if (s->pps->output_flag_present_flag) sh->pic_output_flag = get_bits1(gb); if (s->sps->separate_colour_plane_flag) sh->colour_plane_id = get_bits(gb, 2); if (!IS_IDR(s)) { int short_term_ref_pic_set_sps_flag, poc; sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb); poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb); if (!sh->first_slice_in_pic_flag && poc != s->poc) { av_log(s->avctx, AV_LOG_WARNING, "Ignoring POC change between slices: %d -> %d\n", s->poc, poc); if (s->avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; poc = s->poc; } s->poc = poc; short_term_ref_pic_set_sps_flag = get_bits1(gb); if (!short_term_ref_pic_set_sps_flag) { ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1); if (ret < 0) return ret; sh->short_term_rps = &sh->slice_rps; } else { int numbits, rps_idx; if (!s->sps->nb_st_rps) { av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n"); return AVERROR_INVALIDDATA; } numbits = av_ceil_log2(s->sps->nb_st_rps); rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0; sh->short_term_rps = &s->sps->st_rps[rps_idx]; } ret = decode_lt_rps(s, &sh->long_term_rps, gb); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n"); if (s->avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; } if (s->sps->sps_temporal_mvp_enabled_flag) sh->slice_temporal_mvp_enabled_flag = get_bits1(gb); else sh->slice_temporal_mvp_enabled_flag = 0; } else { s->sh.short_term_rps = NULL; s->poc = 0; } /* 8.3.1 */ if (s->temporal_id == 0 && s->nal_unit_type != NAL_TRAIL_N && s->nal_unit_type != NAL_TSA_N && s->nal_unit_type != NAL_STSA_N && s->nal_unit_type != NAL_RADL_N && s->nal_unit_type != NAL_RADL_R && s->nal_unit_type != NAL_RASL_N && s->nal_unit_type != NAL_RASL_R) s->pocTid0 = s->poc; if (s->sps->sao_enabled) { sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb); sh->slice_sample_adaptive_offset_flag[1] = sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb); } else { sh->slice_sample_adaptive_offset_flag[0] = 0; sh->slice_sample_adaptive_offset_flag[1] = 0; sh->slice_sample_adaptive_offset_flag[2] = 0; } sh->nb_refs[L0] = sh->nb_refs[L1] = 0; if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) { int nb_refs; sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active; if (sh->slice_type == B_SLICE) sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active; if (get_bits1(gb)) { // num_ref_idx_active_override_flag sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1; if (sh->slice_type == B_SLICE) sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1; } if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) { av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n", sh->nb_refs[L0], sh->nb_refs[L1]); return AVERROR_INVALIDDATA; } sh->rpl_modification_flag[0] = 0; sh->rpl_modification_flag[1] = 0; nb_refs = ff_hevc_frame_nb_refs(s); if (!nb_refs) { av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n"); return AVERROR_INVALIDDATA; } if (s->pps->lists_modification_present_flag && nb_refs > 1) { sh->rpl_modification_flag[0] = get_bits1(gb); if (sh->rpl_modification_flag[0]) { for (i = 0; i < sh->nb_refs[L0]; i++) sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs)); } if (sh->slice_type == B_SLICE) { sh->rpl_modification_flag[1] = get_bits1(gb); if (sh->rpl_modification_flag[1] == 1) for (i = 0; i < sh->nb_refs[L1]; i++) sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs)); } } if (sh->slice_type == B_SLICE) sh->mvd_l1_zero_flag = get_bits1(gb); if (s->pps->cabac_init_present_flag) sh->cabac_init_flag = get_bits1(gb); else sh->cabac_init_flag = 0; sh->collocated_ref_idx = 0; if (sh->slice_temporal_mvp_enabled_flag) { sh->collocated_list = L0; if (sh->slice_type == B_SLICE) sh->collocated_list = !get_bits1(gb); if (sh->nb_refs[sh->collocated_list] > 1) { sh->collocated_ref_idx = get_ue_golomb_long(gb); if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) { av_log(s->avctx, AV_LOG_ERROR, "Invalid collocated_ref_idx: %d.\n", sh->collocated_ref_idx); return AVERROR_INVALIDDATA; } } } if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) || (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) { pred_weight_table(s, gb); } sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb); if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) { av_log(s->avctx, AV_LOG_ERROR, "Invalid number of merging MVP candidates: %d.\n", sh->max_num_merge_cand); return AVERROR_INVALIDDATA; } } sh->slice_qp_delta = get_se_golomb(gb); if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) { sh->slice_cb_qp_offset = get_se_golomb(gb); sh->slice_cr_qp_offset = get_se_golomb(gb); } else { sh->slice_cb_qp_offset = 0; sh->slice_cr_qp_offset = 0; } if (s->pps->deblocking_filter_control_present_flag) { int deblocking_filter_override_flag = 0; if (s->pps->deblocking_filter_override_enabled_flag) deblocking_filter_override_flag = get_bits1(gb); if (deblocking_filter_override_flag) { sh->disable_deblocking_filter_flag = get_bits1(gb); if (!sh->disable_deblocking_filter_flag) { sh->beta_offset = get_se_golomb(gb) * 2; sh->tc_offset = get_se_golomb(gb) * 2; } } else { sh->disable_deblocking_filter_flag = s->pps->disable_dbf; sh->beta_offset = s->pps->beta_offset; sh->tc_offset = s->pps->tc_offset; } } else { sh->disable_deblocking_filter_flag = 0; sh->beta_offset = 0; sh->tc_offset = 0; } if (s->pps->seq_loop_filter_across_slices_enabled_flag && (sh->slice_sample_adaptive_offset_flag[0] || sh->slice_sample_adaptive_offset_flag[1] || !sh->disable_deblocking_filter_flag)) { sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb); } else { sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag; } } else if (!s->slice_initialized) { av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n"); return AVERROR_INVALIDDATA; } sh->num_entry_point_offsets = 0; if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) { sh->num_entry_point_offsets = get_ue_golomb_long(gb); if (sh->num_entry_point_offsets > 0) { int offset_len = get_ue_golomb_long(gb) + 1; for (i = 0; i < sh->num_entry_point_offsets; i++) skip_bits(gb, offset_len); } } if (s->pps->slice_header_extension_present_flag) { unsigned int length = get_ue_golomb_long(gb); for (i = 0; i < length; i++) skip_bits(gb, 8); // slice_header_extension_data_byte } // Inferred parameters sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta; if (sh->slice_qp > 51 || sh->slice_qp < -s->sps->qp_bd_offset) { av_log(s->avctx, AV_LOG_ERROR, "The slice_qp %d is outside the valid range " "[%d, 51].\n", sh->slice_qp, -s->sps->qp_bd_offset); return AVERROR_INVALIDDATA; } sh->slice_ctb_addr_rs = sh->slice_segment_addr; if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) { av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n"); return AVERROR_INVALIDDATA; } s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag; if (!s->pps->cu_qp_delta_enabled_flag) s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset, 52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset; s->slice_initialized = 1; return 0; } #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)]) #define SET_SAO(elem, value) \ do { \ if (!sao_merge_up_flag && !sao_merge_left_flag) \ sao->elem = value; \ else if (sao_merge_left_flag) \ sao->elem = CTB(s->sao, rx-1, ry).elem; \ else if (sao_merge_up_flag) \ sao->elem = CTB(s->sao, rx, ry-1).elem; \ else \ sao->elem = 0; \ } while (0) static void hls_sao_param(HEVCContext *s, int rx, int ry) { HEVCLocalContext *lc = &s->HEVClc; int sao_merge_left_flag = 0; int sao_merge_up_flag = 0; int shift = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10); SAOParams *sao = &CTB(s->sao, rx, ry); int c_idx, i; if (s->sh.slice_sample_adaptive_offset_flag[0] || s->sh.slice_sample_adaptive_offset_flag[1]) { if (rx > 0) { if (lc->ctb_left_flag) sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s); } if (ry > 0 && !sao_merge_left_flag) { if (lc->ctb_up_flag) sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s); } } for (c_idx = 0; c_idx < 3; c_idx++) { if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) { sao->type_idx[c_idx] = SAO_NOT_APPLIED; continue; } if (c_idx == 2) { sao->type_idx[2] = sao->type_idx[1]; sao->eo_class[2] = sao->eo_class[1]; } else { SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s)); } if (sao->type_idx[c_idx] == SAO_NOT_APPLIED) continue; for (i = 0; i < 4; i++) SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s)); if (sao->type_idx[c_idx] == SAO_BAND) { for (i = 0; i < 4; i++) { if (sao->offset_abs[c_idx][i]) { SET_SAO(offset_sign[c_idx][i], ff_hevc_sao_offset_sign_decode(s)); } else { sao->offset_sign[c_idx][i] = 0; } } SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s)); } else if (c_idx != 2) { SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s)); } // Inferred parameters sao->offset_val[c_idx][0] = 0; for (i = 0; i < 4; i++) { sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift; if (sao->type_idx[c_idx] == SAO_EDGE) { if (i > 1) sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; } else if (sao->offset_sign[c_idx][i]) { sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; } } } } #undef SET_SAO #undef CTB static void hls_residual_coding(HEVCContext *s, int x0, int y0, int log2_trafo_size, enum ScanType scan_idx, int c_idx) { #define GET_COORD(offset, n) \ do { \ x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n]; \ y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n]; \ } while (0) HEVCLocalContext *lc = &s->HEVClc; int transform_skip_flag = 0; int last_significant_coeff_x, last_significant_coeff_y; int last_scan_pos; int n_end; int num_coeff = 0; int greater1_ctx = 1; int num_last_subset; int x_cg_last_sig, y_cg_last_sig; const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off; ptrdiff_t stride = s->frame->linesize[c_idx]; int hshift = s->sps->hshift[c_idx]; int vshift = s->sps->vshift[c_idx]; uint8_t *dst = &s->frame->data[c_idx][(y0 >> vshift) * stride + ((x0 >> hshift) << s->sps->pixel_shift)]; DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 }; DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } }; int trafo_size = 1 << log2_trafo_size; int i, qp, shift, add, scale, scale_m; const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 }; const uint8_t *scale_matrix; uint8_t dc_scale; // Derive QP for dequant if (!lc->cu.cu_transquant_bypass_flag) { static const int qp_c[] = { 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37 }; static const uint8_t rem6[51 + 2 * 6 + 1] = { 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, }; static const uint8_t div6[51 + 2 * 6 + 1] = { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, }; int qp_y = lc->qp_y; if (c_idx == 0) { qp = qp_y + s->sps->qp_bd_offset; } else { int qp_i, offset; if (c_idx == 1) offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset; else offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset; qp_i = av_clip_c(qp_y + offset, -s->sps->qp_bd_offset, 57); if (qp_i < 30) qp = qp_i; else if (qp_i > 43) qp = qp_i - 6; else qp = qp_c[qp_i - 30]; qp += s->sps->qp_bd_offset; } shift = s->sps->bit_depth + log2_trafo_size - 5; add = 1 << (shift - 1); scale = level_scale[rem6[qp]] << (div6[qp]); scale_m = 16; // default when no custom scaling lists. dc_scale = 16; if (s->sps->scaling_list_enable_flag) { const ScalingList *sl = s->pps->scaling_list_data_present_flag ? &s->pps->scaling_list : &s->sps->scaling_list; int matrix_id = lc->cu.pred_mode != MODE_INTRA; if (log2_trafo_size != 5) matrix_id = 3 * matrix_id + c_idx; scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id]; if (log2_trafo_size >= 4) dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id]; } } if (s->pps->transform_skip_enabled_flag && !lc->cu.cu_transquant_bypass_flag && log2_trafo_size == 2) { transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx); } last_significant_coeff_x = ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size); last_significant_coeff_y = ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size); if (last_significant_coeff_x > 3) { int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x); last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) * (2 + (last_significant_coeff_x & 1)) + suffix; } if (last_significant_coeff_y > 3) { int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y); last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) * (2 + (last_significant_coeff_y & 1)) + suffix; } if (scan_idx == SCAN_VERT) FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y); x_cg_last_sig = last_significant_coeff_x >> 2; y_cg_last_sig = last_significant_coeff_y >> 2; switch (scan_idx) { case SCAN_DIAG: { int last_x_c = last_significant_coeff_x & 3; int last_y_c = last_significant_coeff_y & 3; scan_x_off = ff_hevc_diag_scan4x4_x; scan_y_off = ff_hevc_diag_scan4x4_y; num_coeff = diag_scan4x4_inv[last_y_c][last_x_c]; if (trafo_size == 4) { scan_x_cg = scan_1x1; scan_y_cg = scan_1x1; } else if (trafo_size == 8) { num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4; scan_x_cg = diag_scan2x2_x; scan_y_cg = diag_scan2x2_y; } else if (trafo_size == 16) { num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4; scan_x_cg = ff_hevc_diag_scan4x4_x; scan_y_cg = ff_hevc_diag_scan4x4_y; } else { // trafo_size == 32 num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4; scan_x_cg = ff_hevc_diag_scan8x8_x; scan_y_cg = ff_hevc_diag_scan8x8_y; } break; } case SCAN_HORIZ: scan_x_cg = horiz_scan2x2_x; scan_y_cg = horiz_scan2x2_y; scan_x_off = horiz_scan4x4_x; scan_y_off = horiz_scan4x4_y; num_coeff = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x]; break; default: //SCAN_VERT scan_x_cg = horiz_scan2x2_y; scan_y_cg = horiz_scan2x2_x; scan_x_off = horiz_scan4x4_y; scan_y_off = horiz_scan4x4_x; num_coeff = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y]; break; } num_coeff++; num_last_subset = (num_coeff - 1) >> 4; for (i = num_last_subset; i >= 0; i--) { int n, m; int x_cg, y_cg, x_c, y_c; int implicit_non_zero_coeff = 0; int64_t trans_coeff_level; int prev_sig = 0; int offset = i << 4; uint8_t significant_coeff_flag_idx[16]; uint8_t nb_significant_coeff_flag = 0; x_cg = scan_x_cg[i]; y_cg = scan_y_cg[i]; if (i < num_last_subset && i > 0) { int ctx_cg = 0; if (x_cg < (1 << (log2_trafo_size - 2)) - 1) ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg]; if (y_cg < (1 << (log2_trafo_size - 2)) - 1) ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1]; significant_coeff_group_flag[x_cg][y_cg] = ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg); implicit_non_zero_coeff = 1; } else { significant_coeff_group_flag[x_cg][y_cg] = ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) || (x_cg == 0 && y_cg == 0)); } last_scan_pos = num_coeff - offset - 1; if (i == num_last_subset) { n_end = last_scan_pos - 1; significant_coeff_flag_idx[0] = last_scan_pos; nb_significant_coeff_flag = 1; } else { n_end = 15; } if (x_cg < ((1 << log2_trafo_size) - 1) >> 2) prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg]; if (y_cg < ((1 << log2_trafo_size) - 1) >> 2) prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1; for (n = n_end; n >= 0; n--) { GET_COORD(offset, n); if (significant_coeff_group_flag[x_cg][y_cg] && (n > 0 || implicit_non_zero_coeff == 0)) { if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c, log2_trafo_size, scan_idx, prev_sig) == 1) { significant_coeff_flag_idx[nb_significant_coeff_flag] = n; nb_significant_coeff_flag++; implicit_non_zero_coeff = 0; } } else { int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2)); if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) { significant_coeff_flag_idx[nb_significant_coeff_flag] = n; nb_significant_coeff_flag++; } } } n_end = nb_significant_coeff_flag; if (n_end) { int first_nz_pos_in_cg = 16; int last_nz_pos_in_cg = -1; int c_rice_param = 0; int first_greater1_coeff_idx = -1; uint8_t coeff_abs_level_greater1_flag[16] = { 0 }; uint16_t coeff_sign_flag; int sum_abs = 0; int sign_hidden = 0; // initialize first elem of coeff_bas_level_greater1_flag int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0; if (!(i == num_last_subset) && greater1_ctx == 0) ctx_set++; greater1_ctx = 1; last_nz_pos_in_cg = significant_coeff_flag_idx[0]; for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) { int n_idx = significant_coeff_flag_idx[m]; int inc = (ctx_set << 2) + greater1_ctx; coeff_abs_level_greater1_flag[n_idx] = ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc); if (coeff_abs_level_greater1_flag[n_idx]) { greater1_ctx = 0; } else if (greater1_ctx > 0 && greater1_ctx < 3) { greater1_ctx++; } if (coeff_abs_level_greater1_flag[n_idx] && first_greater1_coeff_idx == -1) first_greater1_coeff_idx = n_idx; } first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1]; sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 && !lc->cu.cu_transquant_bypass_flag; if (first_greater1_coeff_idx != -1) { coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set); } if (!s->pps->sign_data_hiding_flag || !sign_hidden) { coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag); } else { coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1)); } for (m = 0; m < n_end; m++) { n = significant_coeff_flag_idx[m]; GET_COORD(offset, n); trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n]; if (trans_coeff_level == ((m < 8) ? ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) { int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param); trans_coeff_level += last_coeff_abs_level_remaining; if ((trans_coeff_level) > (3 * (1 << c_rice_param))) c_rice_param = FFMIN(c_rice_param + 1, 4); } if (s->pps->sign_data_hiding_flag && sign_hidden) { sum_abs += trans_coeff_level; if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1)) trans_coeff_level = -trans_coeff_level; } if (coeff_sign_flag >> 15) trans_coeff_level = -trans_coeff_level; coeff_sign_flag <<= 1; if (!lc->cu.cu_transquant_bypass_flag) { if (s->sps->scaling_list_enable_flag) { if (y_c || x_c || log2_trafo_size < 4) { int pos; switch (log2_trafo_size) { case 3: pos = (y_c << 3) + x_c; break; case 4: pos = ((y_c >> 1) << 3) + (x_c >> 1); break; case 5: pos = ((y_c >> 2) << 3) + (x_c >> 2); break; default: pos = (y_c << 2) + x_c; } scale_m = scale_matrix[pos]; } else { scale_m = dc_scale; } } trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift; if(trans_coeff_level < 0) { if((~trans_coeff_level) & 0xFffffffffff8000) trans_coeff_level = -32768; } else { if (trans_coeff_level & 0xffffffffffff8000) trans_coeff_level = 32767; } } coeffs[y_c * trafo_size + x_c] = trans_coeff_level; } } } if (lc->cu.cu_transquant_bypass_flag) { s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride); } else { if (transform_skip_flag) s->hevcdsp.transform_skip(dst, coeffs, stride); else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 && log2_trafo_size == 2) s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride); else s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride); } } static int hls_transform_unit(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr) { HEVCLocalContext *lc = &s->HEVClc; if (lc->cu.pred_mode == MODE_INTRA) { int trafo_size = 1 << log2_trafo_size; ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size); s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0); if (log2_trafo_size > 2) { trafo_size = trafo_size << (s->sps->hshift[1] - 1); ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size); s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1); s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2); } else if (blk_idx == 3) { trafo_size = trafo_size << s->sps->hshift[1]; ff_hevc_set_neighbour_available(s, xBase, yBase, trafo_size, trafo_size); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1); s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2); } } if (cbf_luma || cbf_cb || cbf_cr) { int scan_idx = SCAN_DIAG; int scan_idx_c = SCAN_DIAG; if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) { lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s); if (lc->tu.cu_qp_delta != 0) if (ff_hevc_cu_qp_delta_sign_flag(s) == 1) lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta; lc->tu.is_cu_qp_delta_coded = 1; if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) || lc->tu.cu_qp_delta > (25 + s->sps->qp_bd_offset / 2)) { av_log(s->avctx, AV_LOG_ERROR, "The cu_qp_delta %d is outside the valid range " "[%d, %d].\n", lc->tu.cu_qp_delta, -(26 + s->sps->qp_bd_offset / 2), (25 + s->sps->qp_bd_offset / 2)); return AVERROR_INVALIDDATA; } ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size); } if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) { if (lc->tu.cur_intra_pred_mode >= 6 && lc->tu.cur_intra_pred_mode <= 14) { scan_idx = SCAN_VERT; } else if (lc->tu.cur_intra_pred_mode >= 22 && lc->tu.cur_intra_pred_mode <= 30) { scan_idx = SCAN_HORIZ; } if (lc->pu.intra_pred_mode_c >= 6 && lc->pu.intra_pred_mode_c <= 14) { scan_idx_c = SCAN_VERT; } else if (lc->pu.intra_pred_mode_c >= 22 && lc->pu.intra_pred_mode_c <= 30) { scan_idx_c = SCAN_HORIZ; } } if (cbf_luma) hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0); if (log2_trafo_size > 2) { if (cbf_cb) hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1); if (cbf_cr) hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2); } else if (blk_idx == 3) { if (cbf_cb) hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1); if (cbf_cr) hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2); } } return 0; } static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size) { int cb_size = 1 << log2_cb_size; int log2_min_pu_size = s->sps->log2_min_pu_size; int min_pu_width = s->sps->min_pu_width; int x_end = FFMIN(x0 + cb_size, s->sps->width); int y_end = FFMIN(y0 + cb_size, s->sps->height); int i, j; for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++) for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++) s->is_pcm[i + j * min_pu_width] = 2; } static int hls_transform_tree(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx, int cbf_cb, int cbf_cr) { HEVCLocalContext *lc = &s->HEVClc; uint8_t split_transform_flag; int ret; if (lc->cu.intra_split_flag) { if (trafo_depth == 1) lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx]; } else { lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0]; } if (log2_trafo_size <= s->sps->log2_max_trafo_size && log2_trafo_size > s->sps->log2_min_tb_size && trafo_depth < lc->cu.max_trafo_depth && !(lc->cu.intra_split_flag && trafo_depth == 0)) { split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size); } else { int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 && lc->cu.pred_mode == MODE_INTER && lc->cu.part_mode != PART_2Nx2N && trafo_depth == 0; split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size || (lc->cu.intra_split_flag && trafo_depth == 0) || inter_split; } if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb)) cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); else if (log2_trafo_size > 2 || trafo_depth == 0) cbf_cb = 0; if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr)) cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); else if (log2_trafo_size > 2 || trafo_depth == 0) cbf_cr = 0; if (split_transform_flag) { const int trafo_size_split = 1 << (log2_trafo_size - 1); const int x1 = x0 + trafo_size_split; const int y1 = y0 + trafo_size_split; #define SUBDIVIDE(x, y, idx) \ do { \ ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \ log2_trafo_size - 1, trafo_depth + 1, idx, \ cbf_cb, cbf_cr); \ if (ret < 0) \ return ret; \ } while (0) SUBDIVIDE(x0, y0, 0); SUBDIVIDE(x1, y0, 1); SUBDIVIDE(x0, y1, 2); SUBDIVIDE(x1, y1, 3); #undef SUBDIVIDE } else { int min_tu_size = 1 << s->sps->log2_min_tb_size; int log2_min_tu_size = s->sps->log2_min_tb_size; int min_tu_width = s->sps->min_tb_width; int cbf_luma = 1; if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 || cbf_cb || cbf_cr) cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth); ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase, log2_cb_size, log2_trafo_size, trafo_depth, blk_idx, cbf_luma, cbf_cb, cbf_cr); if (ret < 0) return ret; // TODO: store cbf_luma somewhere else if (cbf_luma) { int i, j; for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size) for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) { int x_tu = (x0 + j) >> log2_min_tu_size; int y_tu = (y0 + i) >> log2_min_tu_size; s->cbf_luma[y_tu * min_tu_width + x_tu] = 1; } } if (!s->sh.disable_deblocking_filter_flag) { ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size); if (s->pps->transquant_bypass_enable_flag && lc->cu.cu_transquant_bypass_flag) set_deblocking_bypass(s, x0, y0, log2_trafo_size); } } return 0; } static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size) { //TODO: non-4:2:0 support HEVCLocalContext *lc = &s->HEVClc; GetBitContext gb; int cb_size = 1 << log2_cb_size; int stride0 = s->frame->linesize[0]; uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)]; int stride1 = s->frame->linesize[1]; uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)]; int stride2 = s->frame->linesize[2]; uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)]; int length = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma; const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3); int ret; if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); ret = init_get_bits(&gb, pcm, length); if (ret < 0) return ret; s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->sps->pcm.bit_depth); s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma); s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma); return 0; } static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size) { HEVCLocalContext *lc = &s->HEVClc; int x = ff_hevc_abs_mvd_greater0_flag_decode(s); int y = ff_hevc_abs_mvd_greater0_flag_decode(s); if (x) x += ff_hevc_abs_mvd_greater1_flag_decode(s); if (y) y += ff_hevc_abs_mvd_greater1_flag_decode(s); switch (x) { case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s); break; case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break; case 0: lc->pu.mvd.x = 0; break; } switch (y) { case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s); break; case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break; case 0: lc->pu.mvd.y = 0; break; } } /** * 8.5.3.2.2.1 Luma sample interpolation process * * @param s HEVC decoding context * @param dst target buffer for block data at block position * @param dststride stride of the dst buffer * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block */ static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride, AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h) { HEVCLocalContext *lc = &s->HEVClc; uint8_t *src = ref->data[0]; ptrdiff_t srcstride = ref->linesize[0]; int pic_width = s->sps->width; int pic_height = s->sps->height; int mx = mv->x & 3; int my = mv->y & 3; int extra_left = ff_hevc_qpel_extra_before[mx]; int extra_top = ff_hevc_qpel_extra_before[my]; x_off += mv->x >> 2; y_off += mv->y >> 2; src += y_off * srcstride + (x_off << s->sps->pixel_shift); if (x_off < extra_left || y_off < extra_top || x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] || y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift); int buf_offset = extra_top * edge_emu_stride + (extra_left << s->sps->pixel_shift); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset, edge_emu_stride, srcstride, block_w + ff_hevc_qpel_extra[mx], block_h + ff_hevc_qpel_extra[my], x_off - extra_left, y_off - extra_top, pic_width, pic_height); src = lc->edge_emu_buffer + buf_offset; srcstride = edge_emu_stride; } s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w, block_h, lc->mc_buffer); } /** * 8.5.3.2.2.2 Chroma sample interpolation process * * @param s HEVC decoding context * @param dst1 target buffer for block data at block position (U plane) * @param dst2 target buffer for block data at block position (V plane) * @param dststride stride of the dst1 and dst2 buffers * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block */ static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2, ptrdiff_t dststride, AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h) { HEVCLocalContext *lc = &s->HEVClc; uint8_t *src1 = ref->data[1]; uint8_t *src2 = ref->data[2]; ptrdiff_t src1stride = ref->linesize[1]; ptrdiff_t src2stride = ref->linesize[2]; int pic_width = s->sps->width >> 1; int pic_height = s->sps->height >> 1; int mx = mv->x & 7; int my = mv->y & 7; x_off += mv->x >> 3; y_off += mv->y >> 3; src1 += y_off * src1stride + (x_off << s->sps->pixel_shift); src2 += y_off * src2stride + (x_off << s->sps->pixel_shift); if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER || x_off >= pic_width - block_w - EPEL_EXTRA_AFTER || y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift)); int buf_offset1 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << s->sps->pixel_shift)); int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift)); int buf_offset2 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << s->sps->pixel_shift)); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1, edge_emu_stride, src1stride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off - EPEL_EXTRA_BEFORE, y_off - EPEL_EXTRA_BEFORE, pic_width, pic_height); src1 = lc->edge_emu_buffer + buf_offset1; src1stride = edge_emu_stride; s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride, block_w, block_h, mx, my, lc->mc_buffer); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2, edge_emu_stride, src2stride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off - EPEL_EXTRA_BEFORE, y_off - EPEL_EXTRA_BEFORE, pic_width, pic_height); src2 = lc->edge_emu_buffer + buf_offset2; src2stride = edge_emu_stride; s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride, block_w, block_h, mx, my, lc->mc_buffer); } else { s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride, block_w, block_h, mx, my, lc->mc_buffer); s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride, block_w, block_h, mx, my, lc->mc_buffer); } } static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref, const Mv *mv, int y0, int height) { int y = (mv->y >> 2) + y0 + height + 9; ff_thread_await_progress(&ref->tf, y, 0); } static void hls_prediction_unit(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int partIdx) { #define POS(c_idx, x, y) \ &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \ (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)] HEVCLocalContext *lc = &s->HEVClc; int merge_idx = 0; struct MvField current_mv = {{{ 0 }}}; int min_pu_width = s->sps->min_pu_width; MvField *tab_mvf = s->ref->tab_mvf; RefPicList *refPicList = s->ref->refPicList; HEVCFrame *ref0, *ref1; int tmpstride = MAX_PB_SIZE; uint8_t *dst0 = POS(0, x0, y0); uint8_t *dst1 = POS(1, x0, y0); uint8_t *dst2 = POS(2, x0, y0); int log2_min_cb_size = s->sps->log2_min_cb_size; int min_cb_width = s->sps->min_cb_width; int x_cb = x0 >> log2_min_cb_size; int y_cb = y0 >> log2_min_cb_size; int ref_idx[2]; int mvp_flag[2]; int x_pu, y_pu; int i, j; if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { if (s->sh.max_num_merge_cand > 1) merge_idx = ff_hevc_merge_idx_decode(s); else merge_idx = 0; ff_hevc_luma_mv_merge_mode(s, x0, y0, 1 << log2_cb_size, 1 << log2_cb_size, log2_cb_size, partIdx, merge_idx, ¤t_mv); x_pu = x0 >> s->sps->log2_min_pu_size; y_pu = y0 >> s->sps->log2_min_pu_size; for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; } else { /* MODE_INTER */ lc->pu.merge_flag = ff_hevc_merge_flag_decode(s); if (lc->pu.merge_flag) { if (s->sh.max_num_merge_cand > 1) merge_idx = ff_hevc_merge_idx_decode(s); else merge_idx = 0; ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv); x_pu = x0 >> s->sps->log2_min_pu_size; y_pu = y0 >> s->sps->log2_min_pu_size; for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; } else { enum InterPredIdc inter_pred_idc = PRED_L0; ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH); if (s->sh.slice_type == B_SLICE) inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH); if (inter_pred_idc != PRED_L1) { if (s->sh.nb_refs[L0]) { ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]); current_mv.ref_idx[0] = ref_idx[0]; } current_mv.pred_flag[0] = 1; hls_mvd_coding(s, x0, y0, 0); mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s); ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv, mvp_flag[0], 0); current_mv.mv[0].x += lc->pu.mvd.x; current_mv.mv[0].y += lc->pu.mvd.y; } if (inter_pred_idc != PRED_L0) { if (s->sh.nb_refs[L1]) { ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]); current_mv.ref_idx[1] = ref_idx[1]; } if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) { AV_ZERO32(&lc->pu.mvd); } else { hls_mvd_coding(s, x0, y0, 1); } current_mv.pred_flag[1] = 1; mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s); ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv, mvp_flag[1], 1); current_mv.mv[1].x += lc->pu.mvd.x; current_mv.mv[1].y += lc->pu.mvd.y; } x_pu = x0 >> s->sps->log2_min_pu_size; y_pu = y0 >> s->sps->log2_min_pu_size; for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; } } if (current_mv.pred_flag[0]) { ref0 = refPicList[0].ref[current_mv.ref_idx[0]]; if (!ref0) return; hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH); } if (current_mv.pred_flag[1]) { ref1 = refPicList[1].ref[current_mv.ref_idx[1]]; if (!ref1) return; hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH); } if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) { DECLARE_ALIGNED(16, int16_t, tmp[MAX_PB_SIZE * MAX_PB_SIZE]); DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]); luma_mc(s, tmp, tmpstride, ref0->frame, ¤t_mv.mv[0], x0, y0, nPbW, nPbH); if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) { s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom, s->sh.luma_weight_l0[current_mv.ref_idx[0]], s->sh.luma_offset_l0[current_mv.ref_idx[0]], dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH); } else { s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH); } chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame, ¤t_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2); if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) { s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0], dst1, s->frame->linesize[1], tmp, tmpstride, nPbW / 2, nPbH / 2); s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1], dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW / 2, nPbH / 2); } else { s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2); s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2); } } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) { DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]); DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]); if (!ref1) return; luma_mc(s, tmp, tmpstride, ref1->frame, ¤t_mv.mv[1], x0, y0, nPbW, nPbH); if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) { s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom, s->sh.luma_weight_l1[current_mv.ref_idx[1]], s->sh.luma_offset_l1[current_mv.ref_idx[1]], dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH); } else { s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH); } chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame, ¤t_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2); if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) { s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0], dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2); s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1], dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2); } else { s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2); s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2); } } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) { DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]); DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]); DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]); DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]); HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]]; HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]]; if (!ref0 || !ref1) return; luma_mc(s, tmp, tmpstride, ref0->frame, ¤t_mv.mv[0], x0, y0, nPbW, nPbH); luma_mc(s, tmp2, tmpstride, ref1->frame, ¤t_mv.mv[1], x0, y0, nPbW, nPbH); if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) { s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom, s->sh.luma_weight_l0[current_mv.ref_idx[0]], s->sh.luma_weight_l1[current_mv.ref_idx[1]], s->sh.luma_offset_l0[current_mv.ref_idx[0]], s->sh.luma_offset_l1[current_mv.ref_idx[1]], dst0, s->frame->linesize[0], tmp, tmp2, tmpstride, nPbW, nPbH); } else { s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0], tmp, tmp2, tmpstride, nPbW, nPbH); } chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame, ¤t_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2); chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame, ¤t_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2); if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) { s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0], dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW / 2, nPbH / 2); s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1], dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW / 2, nPbH / 2); } else { s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2); s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2); } } } /** * 8.4.1 */ static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size, int prev_intra_luma_pred_flag) { HEVCLocalContext *lc = &s->HEVClc; int x_pu = x0 >> s->sps->log2_min_pu_size; int y_pu = y0 >> s->sps->log2_min_pu_size; int min_pu_width = s->sps->min_pu_width; int size_in_pus = pu_size >> s->sps->log2_min_pu_size; int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); int cand_up = (lc->ctb_up_flag || y0b) ? s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC; int cand_left = (lc->ctb_left_flag || x0b) ? s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC; int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size); MvField *tab_mvf = s->ref->tab_mvf; int intra_pred_mode; int candidate[3]; int i, j; // intra_pred_mode prediction does not cross vertical CTB boundaries if ((y0 - 1) < y_ctb) cand_up = INTRA_DC; if (cand_left == cand_up) { if (cand_left < 2) { candidate[0] = INTRA_PLANAR; candidate[1] = INTRA_DC; candidate[2] = INTRA_ANGULAR_26; } else { candidate[0] = cand_left; candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31); candidate[2] = 2 + ((cand_left - 2 + 1) & 31); } } else { candidate[0] = cand_left; candidate[1] = cand_up; if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) { candidate[2] = INTRA_PLANAR; } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) { candidate[2] = INTRA_DC; } else { candidate[2] = INTRA_ANGULAR_26; } } if (prev_intra_luma_pred_flag) { intra_pred_mode = candidate[lc->pu.mpm_idx]; } else { if (candidate[0] > candidate[1]) FFSWAP(uint8_t, candidate[0], candidate[1]); if (candidate[0] > candidate[2]) FFSWAP(uint8_t, candidate[0], candidate[2]); if (candidate[1] > candidate[2]) FFSWAP(uint8_t, candidate[1], candidate[2]); intra_pred_mode = lc->pu.rem_intra_luma_pred_mode; for (i = 0; i < 3; i++) if (intra_pred_mode >= candidate[i]) intra_pred_mode++; } /* write the intra prediction units into the mv array */ if (!size_in_pus) size_in_pus = 1; for (i = 0; i < size_in_pus; i++) { memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu], intra_pred_mode, size_in_pus); for (j = 0; j < size_in_pus; j++) { tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra = 1; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0] = 0; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1] = 0; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x = 0; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y = 0; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x = 0; tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y = 0; } } return intra_pred_mode; } static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0, int log2_cb_size, int ct_depth) { int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size; int x_cb = x0 >> s->sps->log2_min_cb_size; int y_cb = y0 >> s->sps->log2_min_cb_size; int y; for (y = 0; y < length; y++) memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb], ct_depth, length); } static void intra_prediction_unit(HEVCContext *s, int x0, int y0, int log2_cb_size) { HEVCLocalContext *lc = &s->HEVClc; static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 }; uint8_t prev_intra_luma_pred_flag[4]; int split = lc->cu.part_mode == PART_NxN; int pb_size = (1 << log2_cb_size) >> split; int side = split + 1; int chroma_mode; int i, j; for (i = 0; i < side; i++) for (j = 0; j < side; j++) prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s); for (i = 0; i < side; i++) { for (j = 0; j < side; j++) { if (prev_intra_luma_pred_flag[2 * i + j]) lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s); else lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s); lc->pu.intra_pred_mode[2 * i + j] = luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size, prev_intra_luma_pred_flag[2 * i + j]); } } chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); if (chroma_mode != 4) { if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) lc->pu.intra_pred_mode_c = 34; else lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode]; } else { lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0]; } } static void intra_prediction_unit_default_value(HEVCContext *s, int x0, int y0, int log2_cb_size) { HEVCLocalContext *lc = &s->HEVClc; int pb_size = 1 << log2_cb_size; int size_in_pus = pb_size >> s->sps->log2_min_pu_size; int min_pu_width = s->sps->min_pu_width; MvField *tab_mvf = s->ref->tab_mvf; int x_pu = x0 >> s->sps->log2_min_pu_size; int y_pu = y0 >> s->sps->log2_min_pu_size; int j, k; if (size_in_pus == 0) size_in_pus = 1; for (j = 0; j < size_in_pus; j++) { memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus); for (k = 0; k < size_in_pus; k++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA; } } static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size) { int cb_size = 1 << log2_cb_size; HEVCLocalContext *lc = &s->HEVClc; int log2_min_cb_size = s->sps->log2_min_cb_size; int length = cb_size >> log2_min_cb_size; int min_cb_width = s->sps->min_cb_width; int x_cb = x0 >> log2_min_cb_size; int y_cb = y0 >> log2_min_cb_size; int x, y, ret; lc->cu.x = x0; lc->cu.y = y0; lc->cu.rqt_root_cbf = 1; lc->cu.pred_mode = MODE_INTRA; lc->cu.part_mode = PART_2Nx2N; lc->cu.intra_split_flag = 0; lc->cu.pcm_flag = 0; SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0; for (x = 0; x < 4; x++) lc->pu.intra_pred_mode[x] = 1; if (s->pps->transquant_bypass_enable_flag) { lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s); if (lc->cu.cu_transquant_bypass_flag) set_deblocking_bypass(s, x0, y0, log2_cb_size); } else lc->cu.cu_transquant_bypass_flag = 0; if (s->sh.slice_type != I_SLICE) { uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb); lc->cu.pred_mode = MODE_SKIP; x = y_cb * min_cb_width + x_cb; for (y = 0; y < length; y++) { memset(&s->skip_flag[x], skip_flag, length); x += min_cb_width; } lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER; } if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0); intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); } else { if (s->sh.slice_type != I_SLICE) lc->cu.pred_mode = ff_hevc_pred_mode_decode(s); if (lc->cu.pred_mode != MODE_INTRA || log2_cb_size == s->sps->log2_min_cb_size) { lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size); lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN && lc->cu.pred_mode == MODE_INTRA; } if (lc->cu.pred_mode == MODE_INTRA) { if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag && log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size && log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) { lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s); } if (lc->cu.pcm_flag) { intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); ret = hls_pcm_sample(s, x0, y0, log2_cb_size); if (s->sps->pcm.loop_filter_disable_flag) set_deblocking_bypass(s, x0, y0, log2_cb_size); if (ret < 0) return ret; } else { intra_prediction_unit(s, x0, y0, log2_cb_size); } } else { intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); switch (lc->cu.part_mode) { case PART_2Nx2N: hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0); break; case PART_2NxN: hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0); hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1); break; case PART_Nx2N: hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0); hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1); break; case PART_2NxnU: hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0); hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1); break; case PART_2NxnD: hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0); hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1); break; case PART_nLx2N: hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0); hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1); break; case PART_nRx2N: hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0); hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1); break; case PART_NxN: hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0); hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1); hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2); hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3); break; } } if (!lc->cu.pcm_flag) { if (lc->cu.pred_mode != MODE_INTRA && !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) { lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s); } if (lc->cu.rqt_root_cbf) { lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ? s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag : s->sps->max_transform_hierarchy_depth_inter; ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0, log2_cb_size, log2_cb_size, 0, 0, 0, 0); if (ret < 0) return ret; } else { if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); } } } if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0) ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size); x = y_cb * min_cb_width + x_cb; for (y = 0; y < length; y++) { memset(&s->qp_y_tab[x], lc->qp_y, length); x += min_cb_width; } set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth); return 0; } static int hls_coding_quadtree(HEVCContext *s, int x0, int y0, int log2_cb_size, int cb_depth) { HEVCLocalContext *lc = &s->HEVClc; const int cb_size = 1 << log2_cb_size; int split_cu; lc->ct.depth = cb_depth; if (x0 + cb_size <= s->sps->width && y0 + cb_size <= s->sps->height && log2_cb_size > s->sps->log2_min_cb_size) { split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0); } else { split_cu = (log2_cb_size > s->sps->log2_min_cb_size); } if (s->pps->cu_qp_delta_enabled_flag && log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) { lc->tu.is_cu_qp_delta_coded = 0; lc->tu.cu_qp_delta = 0; } if (split_cu) { const int cb_size_split = cb_size >> 1; const int x1 = x0 + cb_size_split; const int y1 = y0 + cb_size_split; log2_cb_size--; cb_depth++; #define SUBDIVIDE(x, y) \ do { \ if (x < s->sps->width && y < s->sps->height) { \ int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\ if (ret < 0) \ return ret; \ } \ } while (0) SUBDIVIDE(x0, y0); SUBDIVIDE(x1, y0); SUBDIVIDE(x0, y1); SUBDIVIDE(x1, y1); } else { int ret = hls_coding_unit(s, x0, y0, log2_cb_size); if (ret < 0) return ret; } return 0; } static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, int ctb_addr_ts) { HEVCLocalContext *lc = &s->HEVClc; int ctb_size = 1 << s->sps->log2_ctb_size; int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr; s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr; if (s->pps->entropy_coding_sync_enabled_flag) { if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0) lc->first_qp_group = 1; lc->end_of_tiles_x = s->sps->width; } else if (s->pps->tiles_enabled_flag) { if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) { int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size]; lc->start_of_tiles_x = x_ctb; lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size); lc->first_qp_group = 1; } } else { lc->end_of_tiles_x = s->sps->width; } lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height); lc->boundary_flags = 0; if (s->pps->tiles_enabled_flag) { if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]]) lc->boundary_flags |= BOUNDARY_LEFT_TILE; if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1]) lc->boundary_flags |= BOUNDARY_LEFT_SLICE; if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]]) lc->boundary_flags |= BOUNDARY_UPPER_TILE; if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width]) lc->boundary_flags |= BOUNDARY_UPPER_SLICE; } else { if (!ctb_addr_in_slice > 0) lc->boundary_flags |= BOUNDARY_LEFT_SLICE; if (ctb_addr_in_slice < s->sps->ctb_width) lc->boundary_flags |= BOUNDARY_UPPER_SLICE; } lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE)); lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE)); lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]])); lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]])); } static int hls_slice_data(HEVCContext *s) { int ctb_size = 1 << s->sps->log2_ctb_size; int more_data = 1; int x_ctb = 0; int y_ctb = 0; int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]; int ret; while (more_data && ctb_addr_ts < s->sps->ctb_size) { int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size; y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size; hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts); ff_hevc_cabac_init(s, ctb_addr_ts); hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size); s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset; s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset; s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag; ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0); if (ret < 0) return ret; more_data = !ff_hevc_end_of_slice_flag_decode(s); ctb_addr_ts++; ff_hevc_save_states(s, ctb_addr_ts); ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size); } if (x_ctb + ctb_size >= s->sps->width && y_ctb + ctb_size >= s->sps->height) ff_hevc_hls_filter(s, x_ctb, y_ctb); return ctb_addr_ts; } /** * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit, * 0 if the unit should be skipped, 1 otherwise */ static int hls_nal_unit(HEVCContext *s) { GetBitContext *gb = &s->HEVClc.gb; int nuh_layer_id; if (get_bits1(gb) != 0) return AVERROR_INVALIDDATA; s->nal_unit_type = get_bits(gb, 6); nuh_layer_id = get_bits(gb, 6); s->temporal_id = get_bits(gb, 3) - 1; if (s->temporal_id < 0) return AVERROR_INVALIDDATA; av_log(s->avctx, AV_LOG_DEBUG, "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n", s->nal_unit_type, nuh_layer_id, s->temporal_id); return nuh_layer_id == 0; } static void restore_tqb_pixels(HEVCContext *s) { int min_pu_size = 1 << s->sps->log2_min_pu_size; int x, y, c_idx; for (c_idx = 0; c_idx < 3; c_idx++) { ptrdiff_t stride = s->frame->linesize[c_idx]; int hshift = s->sps->hshift[c_idx]; int vshift = s->sps->vshift[c_idx]; for (y = 0; y < s->sps->min_pu_height; y++) { for (x = 0; x < s->sps->min_pu_width; x++) { if (s->is_pcm[y * s->sps->min_pu_width + x]) { int n; int len = min_pu_size >> hshift; uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)]; uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)]; for (n = 0; n < (min_pu_size >> vshift); n++) { memcpy(dst, src, len); src += stride; dst += stride; } } } } } } static int set_side_data(HEVCContext *s) { AVFrame *out = s->ref->frame; if (s->sei_frame_packing_present && s->frame_packing_arrangement_type >= 3 && s->frame_packing_arrangement_type <= 5 && s->content_interpretation_type > 0 && s->content_interpretation_type < 3) { AVStereo3D *stereo = av_stereo3d_create_side_data(out); if (!stereo) return AVERROR(ENOMEM); switch (s->frame_packing_arrangement_type) { case 3: if (s->quincunx_subsampling) stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX; else stereo->type = AV_STEREO3D_SIDEBYSIDE; break; case 4: stereo->type = AV_STEREO3D_TOPBOTTOM; break; case 5: stereo->type = AV_STEREO3D_FRAMESEQUENCE; break; } if (s->content_interpretation_type == 2) stereo->flags = AV_STEREO3D_FLAG_INVERT; } if (s->sei_display_orientation_present && (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) { double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16); AVFrameSideData *rotation = av_frame_new_side_data(out, AV_FRAME_DATA_DISPLAYMATRIX, sizeof(int32_t) * 9); if (!rotation) return AVERROR(ENOMEM); av_display_rotation_set((int32_t *)rotation->data, angle); av_display_matrix_flip((int32_t *)rotation->data, s->sei_vflip, s->sei_hflip); } return 0; } static int hevc_frame_start(HEVCContext *s) { HEVCLocalContext *lc = &s->HEVClc; int ret; memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1)); memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1)); memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height); memset(s->is_pcm, 0, s->sps->min_pu_width * s->sps->min_pu_height); lc->start_of_tiles_x = 0; s->is_decoded = 0; s->first_nal_type = s->nal_unit_type; if (s->pps->tiles_enabled_flag) lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size; ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame, s->poc); if (ret < 0) goto fail; ret = ff_hevc_frame_rps(s); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n"); goto fail; } s->ref->frame->key_frame = IS_IRAP(s); ret = set_side_data(s); if (ret < 0) goto fail; av_frame_unref(s->output_frame); ret = ff_hevc_output_frame(s, s->output_frame, 0); if (ret < 0) goto fail; ff_thread_finish_setup(s->avctx); return 0; fail: if (s->ref) ff_thread_report_progress(&s->ref->tf, INT_MAX, 0); s->ref = NULL; return ret; } static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length) { HEVCLocalContext *lc = &s->HEVClc; GetBitContext *gb = &lc->gb; int ctb_addr_ts, ret; ret = init_get_bits8(gb, nal, length); if (ret < 0) return ret; ret = hls_nal_unit(s); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n", s->nal_unit_type); goto fail; } else if (!ret) return 0; switch (s->nal_unit_type) { case NAL_VPS: ret = ff_hevc_decode_nal_vps(s); if (ret < 0) goto fail; break; case NAL_SPS: ret = ff_hevc_decode_nal_sps(s); if (ret < 0) goto fail; break; case NAL_PPS: ret = ff_hevc_decode_nal_pps(s); if (ret < 0) goto fail; break; case NAL_SEI_PREFIX: case NAL_SEI_SUFFIX: ret = ff_hevc_decode_nal_sei(s); if (ret < 0) goto fail; break; case NAL_TRAIL_R: case NAL_TRAIL_N: case NAL_TSA_N: case NAL_TSA_R: case NAL_STSA_N: case NAL_STSA_R: case NAL_BLA_W_LP: case NAL_BLA_W_RADL: case NAL_BLA_N_LP: case NAL_IDR_W_RADL: case NAL_IDR_N_LP: case NAL_CRA_NUT: case NAL_RADL_N: case NAL_RADL_R: case NAL_RASL_N: case NAL_RASL_R: ret = hls_slice_header(s); if (ret < 0) return ret; if (s->max_ra == INT_MAX) { if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) { s->max_ra = s->poc; } else { if (IS_IDR(s)) s->max_ra = INT_MIN; } } if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) && s->poc <= s->max_ra) { s->is_decoded = 0; break; } else { if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra) s->max_ra = INT_MIN; } if (s->sh.first_slice_in_pic_flag) { ret = hevc_frame_start(s); if (ret < 0) return ret; } else if (!s->ref) { av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n"); goto fail; } if (s->nal_unit_type != s->first_nal_type) { av_log(s->avctx, AV_LOG_ERROR, "Non-matching NAL types of the VCL NALUs: %d %d\n", s->first_nal_type, s->nal_unit_type); return AVERROR_INVALIDDATA; } if (!s->sh.dependent_slice_segment_flag && s->sh.slice_type != I_SLICE) { ret = ff_hevc_slice_rpl(s); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Error constructing the reference lists for the current slice.\n"); goto fail; } } ctb_addr_ts = hls_slice_data(s); if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) { s->is_decoded = 1; if ((s->pps->transquant_bypass_enable_flag || (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) && s->sps->sao_enabled) restore_tqb_pixels(s); } if (ctb_addr_ts < 0) { ret = ctb_addr_ts; goto fail; } break; case NAL_EOS_NUT: case NAL_EOB_NUT: s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; break; case NAL_AUD: case NAL_FD_NUT: break; default: av_log(s->avctx, AV_LOG_INFO, "Skipping NAL unit %d\n", s->nal_unit_type); } return 0; fail: if (s->avctx->err_recognition & AV_EF_EXPLODE) return ret; return 0; } /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication * between these functions would be nice. */ static int extract_rbsp(const uint8_t *src, int length, HEVCNAL *nal) { int i, si, di; uint8_t *dst; #define STARTCODE_TEST \ if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \ if (src[i + 2] != 3) { \ /* startcode, so we must be past the end */ \ length = i; \ } \ break; \ } #if HAVE_FAST_UNALIGNED #define FIND_FIRST_ZERO \ if (i > 0 && !src[i]) \ i--; \ while (src[i]) \ i++ #if HAVE_FAST_64BIT for (i = 0; i + 1 < length; i += 9) { if (!((~AV_RN64A(src + i) & (AV_RN64A(src + i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 7; } #else for (i = 0; i + 1 < length; i += 5) { if (!((~AV_RN32A(src + i) & (AV_RN32A(src + i) - 0x01000101U)) & 0x80008080U)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 3; } #endif /* HAVE_FAST_64BIT */ #else for (i = 0; i + 1 < length; i += 2) { if (src[i]) continue; if (i > 0 && src[i - 1] == 0) i--; STARTCODE_TEST; } #endif /* HAVE_FAST_UNALIGNED */ if (i >= length - 1) { // no escaped 0 nal->data = src; nal->size = length; return length; } av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size, length + FF_INPUT_BUFFER_PADDING_SIZE); if (!nal->rbsp_buffer) return AVERROR(ENOMEM); dst = nal->rbsp_buffer; memcpy(dst, src, i); si = di = i; while (si + 2 < length) { // remove escapes (very rare 1:2^22) if (src[si + 2] > 3) { dst[di++] = src[si++]; dst[di++] = src[si++]; } else if (src[si] == 0 && src[si + 1] == 0) { if (src[si + 2] == 3) { // escape dst[di++] = 0; dst[di++] = 0; si += 3; continue; } else // next start code goto nsc; } dst[di++] = src[si++]; } while (si < length) dst[di++] = src[si++]; nsc: memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE); nal->data = dst; nal->size = di; return si; } static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length) { int i, consumed, ret = 0; s->ref = NULL; s->eos = 0; /* split the input packet into NAL units, so we know the upper bound on the * number of slices in the frame */ s->nb_nals = 0; while (length >= 4) { HEVCNAL *nal; int extract_length = 0; if (s->is_nalff) { int i; for (i = 0; i < s->nal_length_size; i++) extract_length = (extract_length << 8) | buf[i]; buf += s->nal_length_size; length -= s->nal_length_size; if (extract_length > length) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n"); ret = AVERROR_INVALIDDATA; goto fail; } } else { if (buf[2] == 0) { length--; buf++; continue; } if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) { ret = AVERROR_INVALIDDATA; goto fail; } buf += 3; length -= 3; extract_length = length; } if (s->nals_allocated < s->nb_nals + 1) { int new_size = s->nals_allocated + 1; HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp)); if (!tmp) { ret = AVERROR(ENOMEM); goto fail; } s->nals = tmp; memset(s->nals + s->nals_allocated, 0, (new_size - s->nals_allocated) * sizeof(*tmp)); s->nals_allocated = new_size; } nal = &s->nals[s->nb_nals++]; consumed = extract_rbsp(buf, extract_length, nal); if (consumed < 0) { ret = consumed; goto fail; } ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size); if (ret < 0) goto fail; hls_nal_unit(s); if (s->nal_unit_type == NAL_EOB_NUT || s->nal_unit_type == NAL_EOS_NUT) s->eos = 1; buf += consumed; length -= consumed; } /* parse the NAL units */ for (i = 0; i < s->nb_nals; i++) { int ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Error parsing NAL unit #%d.\n", i); goto fail; } } fail: if (s->ref) ff_thread_report_progress(&s->ref->tf, INT_MAX, 0); return ret; } static void print_md5(void *log_ctx, int level, uint8_t md5[16]) { int i; for (i = 0; i < 16; i++) av_log(log_ctx, level, "%02"PRIx8, md5[i]); } static int verify_md5(HEVCContext *s, AVFrame *frame) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format); int pixel_shift; int i, j; if (!desc) return AVERROR(EINVAL); pixel_shift = desc->comp[0].depth_minus1 > 7; av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ", s->poc); /* the checksums are LE, so we have to byteswap for >8bpp formats * on BE arches */ #if HAVE_BIGENDIAN if (pixel_shift && !s->checksum_buf) { av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size, FFMAX3(frame->linesize[0], frame->linesize[1], frame->linesize[2])); if (!s->checksum_buf) return AVERROR(ENOMEM); } #endif for (i = 0; frame->data[i]; i++) { int width = s->avctx->coded_width; int height = s->avctx->coded_height; int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width; int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height; uint8_t md5[16]; av_md5_init(s->md5_ctx); for (j = 0; j < h; j++) { const uint8_t *src = frame->data[i] + j * frame->linesize[i]; #if HAVE_BIGENDIAN if (pixel_shift) { s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf, (const uint16_t *) src, w); src = s->checksum_buf; } #endif av_md5_update(s->md5_ctx, src, w << pixel_shift); } av_md5_final(s->md5_ctx, md5); if (!memcmp(md5, s->md5[i], 16)) { av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i); print_md5(s->avctx, AV_LOG_DEBUG, md5); av_log (s->avctx, AV_LOG_DEBUG, "; "); } else { av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i); print_md5(s->avctx, AV_LOG_ERROR, md5); av_log (s->avctx, AV_LOG_ERROR, " != "); print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]); av_log (s->avctx, AV_LOG_ERROR, "\n"); return AVERROR_INVALIDDATA; } } av_log(s->avctx, AV_LOG_DEBUG, "\n"); return 0; } static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output, AVPacket *avpkt) { int ret; HEVCContext *s = avctx->priv_data; if (!avpkt->size) { ret = ff_hevc_output_frame(s, data, 1); if (ret < 0) return ret; *got_output = ret; return 0; } s->ref = NULL; ret = decode_nal_units(s, avpkt->data, avpkt->size); if (ret < 0) return ret; /* verify the SEI checksum */ if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded && s->is_md5) { ret = verify_md5(s, s->ref->frame); if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) { ff_hevc_unref_frame(s, s->ref, ~0); return ret; } } s->is_md5 = 0; if (s->is_decoded) { av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc); s->is_decoded = 0; } if (s->output_frame->buf[0]) { av_frame_move_ref(data, s->output_frame); *got_output = 1; } return avpkt->size; } static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src) { int ret = ff_thread_ref_frame(&dst->tf, &src->tf); if (ret < 0) return ret; dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf); if (!dst->tab_mvf_buf) goto fail; dst->tab_mvf = src->tab_mvf; dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf); if (!dst->rpl_tab_buf) goto fail; dst->rpl_tab = src->rpl_tab; dst->rpl_buf = av_buffer_ref(src->rpl_buf); if (!dst->rpl_buf) goto fail; dst->poc = src->poc; dst->ctb_count = src->ctb_count; dst->window = src->window; dst->flags = src->flags; dst->sequence = src->sequence; return 0; fail: ff_hevc_unref_frame(s, dst, ~0); return AVERROR(ENOMEM); } static av_cold int hevc_decode_free(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int i; pic_arrays_free(s); av_freep(&s->md5_ctx); av_frame_free(&s->tmp_frame); av_frame_free(&s->output_frame); for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { ff_hevc_unref_frame(s, &s->DPB[i], ~0); av_frame_free(&s->DPB[i].frame); } for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) av_buffer_unref(&s->vps_list[i]); for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) av_buffer_unref(&s->sps_list[i]); for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) av_buffer_unref(&s->pps_list[i]); for (i = 0; i < s->nals_allocated; i++) av_freep(&s->nals[i].rbsp_buffer); av_freep(&s->nals); s->nals_allocated = 0; return 0; } static av_cold int hevc_init_context(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int i; s->avctx = avctx; s->tmp_frame = av_frame_alloc(); if (!s->tmp_frame) goto fail; s->output_frame = av_frame_alloc(); if (!s->output_frame) goto fail; for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { s->DPB[i].frame = av_frame_alloc(); if (!s->DPB[i].frame) goto fail; s->DPB[i].tf.f = s->DPB[i].frame; } s->max_ra = INT_MAX; s->md5_ctx = av_md5_alloc(); if (!s->md5_ctx) goto fail; ff_bswapdsp_init(&s->bdsp); s->context_initialized = 1; return 0; fail: hevc_decode_free(avctx); return AVERROR(ENOMEM); } static int hevc_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { HEVCContext *s = dst->priv_data; HEVCContext *s0 = src->priv_data; int i, ret; if (!s->context_initialized) { ret = hevc_init_context(dst); if (ret < 0) return ret; } for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { ff_hevc_unref_frame(s, &s->DPB[i], ~0); if (s0->DPB[i].frame->buf[0]) { ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]); if (ret < 0) return ret; } } for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) { av_buffer_unref(&s->vps_list[i]); if (s0->vps_list[i]) { s->vps_list[i] = av_buffer_ref(s0->vps_list[i]); if (!s->vps_list[i]) return AVERROR(ENOMEM); } } for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) { av_buffer_unref(&s->sps_list[i]); if (s0->sps_list[i]) { s->sps_list[i] = av_buffer_ref(s0->sps_list[i]); if (!s->sps_list[i]) return AVERROR(ENOMEM); } } for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) { av_buffer_unref(&s->pps_list[i]); if (s0->pps_list[i]) { s->pps_list[i] = av_buffer_ref(s0->pps_list[i]); if (!s->pps_list[i]) return AVERROR(ENOMEM); } } if (s->sps != s0->sps) ret = set_sps(s, s0->sps); s->seq_decode = s0->seq_decode; s->seq_output = s0->seq_output; s->pocTid0 = s0->pocTid0; s->max_ra = s0->max_ra; s->is_nalff = s0->is_nalff; s->nal_length_size = s0->nal_length_size; if (s0->eos) { s->seq_decode = (s->seq_decode + 1) & 0xff; s->max_ra = INT_MAX; } return 0; } static int hevc_decode_extradata(HEVCContext *s) { AVCodecContext *avctx = s->avctx; GetByteContext gb; int ret; bytestream2_init(&gb, avctx->extradata, avctx->extradata_size); if (avctx->extradata_size > 3 && (avctx->extradata[0] || avctx->extradata[1] || avctx->extradata[2] > 1)) { /* It seems the extradata is encoded as hvcC format. * Temporarily, we support configurationVersion==0 until 14496-15 3rd * is finalized. When finalized, configurationVersion will be 1 and we * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */ int i, j, num_arrays, nal_len_size; s->is_nalff = 1; bytestream2_skip(&gb, 21); nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1; num_arrays = bytestream2_get_byte(&gb); /* nal units in the hvcC always have length coded with 2 bytes, * so put a fake nal_length_size = 2 while parsing them */ s->nal_length_size = 2; /* Decode nal units from hvcC. */ for (i = 0; i < num_arrays; i++) { int type = bytestream2_get_byte(&gb) & 0x3f; int cnt = bytestream2_get_be16(&gb); for (j = 0; j < cnt; j++) { // +2 for the nal size field int nalsize = bytestream2_peek_be16(&gb) + 2; if (bytestream2_get_bytes_left(&gb) < nalsize) { av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size in extradata.\n"); return AVERROR_INVALIDDATA; } ret = decode_nal_units(s, gb.buffer, nalsize); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding nal unit %d %d from hvcC failed\n", type, i); return ret; } bytestream2_skip(&gb, nalsize); } } /* Now store right nal length size, that will be used to parse * all other nals */ s->nal_length_size = nal_len_size; } else { s->is_nalff = 0; ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size); if (ret < 0) return ret; } return 0; } static av_cold int hevc_decode_init(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int ret; ff_init_cabac_states(); avctx->internal->allocate_progress = 1; ret = hevc_init_context(avctx); if (ret < 0) return ret; if (avctx->extradata_size > 0 && avctx->extradata) { ret = hevc_decode_extradata(s); if (ret < 0) { hevc_decode_free(avctx); return ret; } } return 0; } static av_cold int hevc_init_thread_copy(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int ret; memset(s, 0, sizeof(*s)); ret = hevc_init_context(avctx); if (ret < 0) return ret; return 0; } static void hevc_decode_flush(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; ff_hevc_flush_dpb(s); s->max_ra = INT_MAX; } #define OFFSET(x) offsetof(HEVCContext, x) #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) static const AVProfile profiles[] = { { FF_PROFILE_HEVC_MAIN, "Main" }, { FF_PROFILE_HEVC_MAIN_10, "Main 10" }, { FF_PROFILE_HEVC_MAIN_STILL_PICTURE, "Main Still Picture" }, { FF_PROFILE_UNKNOWN }, }; static const AVOption options[] = { { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR }, { NULL }, }; static const AVClass hevc_decoder_class = { .class_name = "HEVC decoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_hevc_decoder = { .name = "hevc", .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_HEVC, .priv_data_size = sizeof(HEVCContext), .priv_class = &hevc_decoder_class, .init = hevc_decode_init, .close = hevc_decode_free, .decode = hevc_decode_frame, .flush = hevc_decode_flush, .update_thread_context = hevc_update_thread_context, .init_thread_copy = hevc_init_thread_copy, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_FRAME_THREADS, .profiles = NULL_IF_CONFIG_SMALL(profiles), };