/* * huffyuv decoder * * Copyright (c) 2002-2014 Michael Niedermayer * * see https://multimedia.cx/huffyuv.txt for a description of * the algorithm used * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA */ /** * @file * huffyuv decoder */ #define UNCHECKED_BITSTREAM_READER 1 #include "config_components.h" #include "avcodec.h" #include "bswapdsp.h" #include "codec_internal.h" #include "get_bits.h" #include "huffyuv.h" #include "huffyuvdsp.h" #include "lossless_videodsp.h" #include "thread.h" #include "libavutil/imgutils.h" #include "libavutil/pixdesc.h" #define VLC_BITS 12 typedef struct HYuvDecContext { GetBitContext gb; Predictor predictor; int interlaced; int decorrelate; int bitstream_bpp; int version; int yuy2; //use yuy2 instead of 422P int bgr32; //use bgr32 instead of bgr24 int bps; int n; // 1< n || get_bits_left(gb) < 0) { av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n"); return AVERROR_INVALIDDATA; } while (repeat--) dst[i++] = val; } return 0; } static int generate_joint_tables(HYuvDecContext *s) { int ret; uint16_t *symbols = av_mallocz(5 << VLC_BITS); uint16_t *bits; uint8_t *len; if (!symbols) return AVERROR(ENOMEM); bits = symbols + (1 << VLC_BITS); len = (uint8_t *)(bits + (1 << VLC_BITS)); if (s->bitstream_bpp < 24 || s->version > 2) { int p, i, y, u; for (p = 0; p < 4; p++) { int p0 = s->version > 2 ? p : 0; for (i = y = 0; y < s->vlc_n; y++) { int len0 = s->len[p0][y]; int limit = VLC_BITS - len0; if (limit <= 0 || !len0) continue; if ((sign_extend(y, 8) & (s->vlc_n-1)) != y) continue; for (u = 0; u < s->vlc_n; u++) { int len1 = s->len[p][u]; if (len1 > limit || !len1) continue; if ((sign_extend(u, 8) & (s->vlc_n-1)) != u) continue; av_assert0(i < (1 << VLC_BITS)); len[i] = len0 + len1; bits[i] = (s->bits[p0][y] << len1) + s->bits[p][u]; symbols[i] = (y << 8) + (u & 0xFF); i++; } } ff_free_vlc(&s->vlc[4 + p]); if ((ret = ff_init_vlc_sparse(&s->vlc[4 + p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0)) < 0) goto out; } } else { uint8_t (*map)[4] = (uint8_t(*)[4]) s->pix_bgr_map; int i, b, g, r, code; int p0 = s->decorrelate; int p1 = !s->decorrelate; /* Restrict the range to +/-16 because that's pretty much guaranteed * to cover all the combinations that fit in 11 bits total, and it * does not matter if we miss a few rare codes. */ for (i = 0, g = -16; g < 16; g++) { int len0 = s->len[p0][g & 255]; int limit0 = VLC_BITS - len0; if (limit0 < 2 || !len0) continue; for (b = -16; b < 16; b++) { int len1 = s->len[p1][b & 255]; int limit1 = limit0 - len1; if (limit1 < 1 || !len1) continue; code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255]; for (r = -16; r < 16; r++) { int len2 = s->len[2][r & 255]; if (len2 > limit1 || !len2) continue; av_assert0(i < (1 << VLC_BITS)); len[i] = len0 + len1 + len2; bits[i] = (code << len2) + s->bits[2][r & 255]; if (s->decorrelate) { map[i][G] = g; map[i][B] = g + b; map[i][R] = g + r; } else { map[i][B] = g; map[i][G] = b; map[i][R] = r; } i++; } } } ff_free_vlc(&s->vlc[4]); if ((ret = init_vlc(&s->vlc[4], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0)) < 0) goto out; } ret = 0; out: av_freep(&symbols); return ret; } static int read_huffman_tables(HYuvDecContext *s, const uint8_t *src, int length) { GetBitContext gb; int i, ret; int count = 3; if ((ret = init_get_bits(&gb, src, length * 8)) < 0) return ret; if (s->version > 2) count = 1 + s->alpha + 2*s->chroma; for (i = 0; i < count; i++) { if ((ret = read_len_table(s->len[i], &gb, s->vlc_n)) < 0) return ret; if ((ret = ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n)) < 0) return ret; ff_free_vlc(&s->vlc[i]); if ((ret = init_vlc(&s->vlc[i], VLC_BITS, s->vlc_n, s->len[i], 1, 1, s->bits[i], 4, 4, 0)) < 0) return ret; } if ((ret = generate_joint_tables(s)) < 0) return ret; return (get_bits_count(&gb) + 7) / 8; } static int read_old_huffman_tables(HYuvDecContext *s) { GetBitContext gb; int i, ret; init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size * 8); if ((ret = read_len_table(s->len[0], &gb, 256)) < 0) return ret; init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size * 8); if ((ret = read_len_table(s->len[1], &gb, 256)) < 0) return ret; for (i = 0; i < 256; i++) s->bits[0][i] = classic_add_luma[i]; for (i = 0; i < 256; i++) s->bits[1][i] = classic_add_chroma[i]; if (s->bitstream_bpp >= 24) { memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t)); memcpy(s->len[1], s->len[0], 256 * sizeof(uint8_t)); } memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t)); memcpy(s->len[2], s->len[1], 256 * sizeof(uint8_t)); for (i = 0; i < 4; i++) { ff_free_vlc(&s->vlc[i]); if ((ret = init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0)) < 0) return ret; } if ((ret = generate_joint_tables(s)) < 0) return ret; return 0; } static av_cold int decode_end(AVCodecContext *avctx) { HYuvDecContext *s = avctx->priv_data; int i; ff_huffyuv_common_end(s->temp, s->temp16); av_freep(&s->bitstream_buffer); for (i = 0; i < 8; i++) ff_free_vlc(&s->vlc[i]); return 0; } static av_cold int decode_init(AVCodecContext *avctx) { HYuvDecContext *s = avctx->priv_data; int ret; ret = av_image_check_size(avctx->width, avctx->height, 0, avctx); if (ret < 0) return ret; s->flags = avctx->flags; ff_bswapdsp_init(&s->bdsp); ff_huffyuvdsp_init(&s->hdsp, avctx->pix_fmt); ff_llviddsp_init(&s->llviddsp); memset(s->vlc, 0, 4 * sizeof(VLC)); s->interlaced = avctx->height > 288; s->bgr32 = 1; if (avctx->extradata_size) { if ((avctx->bits_per_coded_sample & 7) && avctx->bits_per_coded_sample != 12) s->version = 1; // do such files exist at all? else if (avctx->extradata_size > 3 && avctx->extradata[3] == 0) s->version = 2; else s->version = 3; } else s->version = 0; s->bps = 8; s->n = 1<bps; s->vlc_n = FFMIN(s->n, MAX_VLC_N); s->chroma = 1; if (s->version >= 2) { int method, interlace; if (avctx->extradata_size < 4) return AVERROR_INVALIDDATA; method = avctx->extradata[0]; s->decorrelate = method & 64 ? 1 : 0; s->predictor = method & 63; if (s->version == 2) { s->bitstream_bpp = avctx->extradata[1]; if (s->bitstream_bpp == 0) s->bitstream_bpp = avctx->bits_per_coded_sample & ~7; } else { s->bps = (avctx->extradata[1] >> 4) + 1; s->n = 1<bps; s->vlc_n = FFMIN(s->n, MAX_VLC_N); s->chroma_h_shift = avctx->extradata[1] & 3; s->chroma_v_shift = (avctx->extradata[1] >> 2) & 3; s->yuv = !!(avctx->extradata[2] & 1); s->chroma= !!(avctx->extradata[2] & 3); s->alpha = !!(avctx->extradata[2] & 4); } interlace = (avctx->extradata[2] & 0x30) >> 4; s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced; s->context = avctx->extradata[2] & 0x40 ? 1 : 0; if ((ret = read_huffman_tables(s, avctx->extradata + 4, avctx->extradata_size - 4)) < 0) return ret; } else { switch (avctx->bits_per_coded_sample & 7) { case 1: s->predictor = LEFT; s->decorrelate = 0; break; case 2: s->predictor = LEFT; s->decorrelate = 1; break; case 3: s->predictor = PLANE; s->decorrelate = avctx->bits_per_coded_sample >= 24; break; case 4: s->predictor = MEDIAN; s->decorrelate = 0; break; default: s->predictor = LEFT; // OLD s->decorrelate = 0; break; } s->bitstream_bpp = avctx->bits_per_coded_sample & ~7; s->context = 0; if ((ret = read_old_huffman_tables(s)) < 0) return ret; } if (s->version <= 2) { switch (s->bitstream_bpp) { case 12: avctx->pix_fmt = AV_PIX_FMT_YUV420P; s->yuv = 1; break; case 16: if (s->yuy2) avctx->pix_fmt = AV_PIX_FMT_YUYV422; else avctx->pix_fmt = AV_PIX_FMT_YUV422P; s->yuv = 1; break; case 24: if (s->bgr32) avctx->pix_fmt = AV_PIX_FMT_0RGB32; else avctx->pix_fmt = AV_PIX_FMT_BGR24; break; case 32: av_assert0(s->bgr32); avctx->pix_fmt = AV_PIX_FMT_RGB32; s->alpha = 1; break; default: return AVERROR_INVALIDDATA; } av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); } else { switch ( (s->chroma<<10) | (s->yuv<<9) | (s->alpha<<8) | ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2)) { case 0x070: avctx->pix_fmt = AV_PIX_FMT_GRAY8; break; case 0x0F0: avctx->pix_fmt = AV_PIX_FMT_GRAY16; break; case 0x470: avctx->pix_fmt = AV_PIX_FMT_GBRP; break; case 0x480: avctx->pix_fmt = AV_PIX_FMT_GBRP9; break; case 0x490: avctx->pix_fmt = AV_PIX_FMT_GBRP10; break; case 0x4B0: avctx->pix_fmt = AV_PIX_FMT_GBRP12; break; case 0x4D0: avctx->pix_fmt = AV_PIX_FMT_GBRP14; break; case 0x4F0: avctx->pix_fmt = AV_PIX_FMT_GBRP16; break; case 0x570: avctx->pix_fmt = AV_PIX_FMT_GBRAP; break; case 0x670: avctx->pix_fmt = AV_PIX_FMT_YUV444P; break; case 0x680: avctx->pix_fmt = AV_PIX_FMT_YUV444P9; break; case 0x690: avctx->pix_fmt = AV_PIX_FMT_YUV444P10; break; case 0x6B0: avctx->pix_fmt = AV_PIX_FMT_YUV444P12; break; case 0x6D0: avctx->pix_fmt = AV_PIX_FMT_YUV444P14; break; case 0x6F0: avctx->pix_fmt = AV_PIX_FMT_YUV444P16; break; case 0x671: avctx->pix_fmt = AV_PIX_FMT_YUV422P; break; case 0x681: avctx->pix_fmt = AV_PIX_FMT_YUV422P9; break; case 0x691: avctx->pix_fmt = AV_PIX_FMT_YUV422P10; break; case 0x6B1: avctx->pix_fmt = AV_PIX_FMT_YUV422P12; break; case 0x6D1: avctx->pix_fmt = AV_PIX_FMT_YUV422P14; break; case 0x6F1: avctx->pix_fmt = AV_PIX_FMT_YUV422P16; break; case 0x672: avctx->pix_fmt = AV_PIX_FMT_YUV411P; break; case 0x674: avctx->pix_fmt = AV_PIX_FMT_YUV440P; break; case 0x675: avctx->pix_fmt = AV_PIX_FMT_YUV420P; break; case 0x685: avctx->pix_fmt = AV_PIX_FMT_YUV420P9; break; case 0x695: avctx->pix_fmt = AV_PIX_FMT_YUV420P10; break; case 0x6B5: avctx->pix_fmt = AV_PIX_FMT_YUV420P12; break; case 0x6D5: avctx->pix_fmt = AV_PIX_FMT_YUV420P14; break; case 0x6F5: avctx->pix_fmt = AV_PIX_FMT_YUV420P16; break; case 0x67A: avctx->pix_fmt = AV_PIX_FMT_YUV410P; break; case 0x770: avctx->pix_fmt = AV_PIX_FMT_YUVA444P; break; case 0x780: avctx->pix_fmt = AV_PIX_FMT_YUVA444P9; break; case 0x790: avctx->pix_fmt = AV_PIX_FMT_YUVA444P10; break; case 0x7F0: avctx->pix_fmt = AV_PIX_FMT_YUVA444P16; break; case 0x771: avctx->pix_fmt = AV_PIX_FMT_YUVA422P; break; case 0x781: avctx->pix_fmt = AV_PIX_FMT_YUVA422P9; break; case 0x791: avctx->pix_fmt = AV_PIX_FMT_YUVA422P10; break; case 0x7F1: avctx->pix_fmt = AV_PIX_FMT_YUVA422P16; break; case 0x775: avctx->pix_fmt = AV_PIX_FMT_YUVA420P; break; case 0x785: avctx->pix_fmt = AV_PIX_FMT_YUVA420P9; break; case 0x795: avctx->pix_fmt = AV_PIX_FMT_YUVA420P10; break; case 0x7F5: avctx->pix_fmt = AV_PIX_FMT_YUVA420P16; break; default: return AVERROR_INVALIDDATA; } } if ((avctx->pix_fmt == AV_PIX_FMT_YUV422P || avctx->pix_fmt == AV_PIX_FMT_YUV420P) && avctx->width & 1) { av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n"); return AVERROR_INVALIDDATA; } if (s->predictor == MEDIAN && avctx->pix_fmt == AV_PIX_FMT_YUV422P && avctx->width % 4) { av_log(avctx, AV_LOG_ERROR, "width must be a multiple of 4 " "for this combination of colorspace and predictor type.\n"); return AVERROR_INVALIDDATA; } if ((ret = ff_huffyuv_alloc_temp(s->temp, s->temp16, avctx->width)) < 0) return ret; return 0; } /** Subset of GET_VLC for use in hand-roller VLC code */ #define VLC_INTERN(dst, table, gb, name, bits, max_depth) \ code = table[index].sym; \ n = table[index].len; \ if (max_depth > 1 && n < 0) { \ LAST_SKIP_BITS(name, gb, bits); \ UPDATE_CACHE(name, gb); \ \ nb_bits = -n; \ index = SHOW_UBITS(name, gb, nb_bits) + code; \ code = table[index].sym; \ n = table[index].len; \ if (max_depth > 2 && n < 0) { \ LAST_SKIP_BITS(name, gb, nb_bits); \ UPDATE_CACHE(name, gb); \ \ nb_bits = -n; \ index = SHOW_UBITS(name, gb, nb_bits) + code; \ code = table[index].sym; \ n = table[index].len; \ } \ } \ dst = code; \ LAST_SKIP_BITS(name, gb, n) #define GET_VLC_DUAL(dst0, dst1, name, gb, dtable, table1, table2, \ bits, max_depth, OP) \ do { \ unsigned int index = SHOW_UBITS(name, gb, bits); \ int code, n = dtable[index].len; \ \ if (n<=0) { \ int nb_bits; \ VLC_INTERN(dst0, table1, gb, name, bits, max_depth); \ \ UPDATE_CACHE(re, gb); \ index = SHOW_UBITS(name, gb, bits); \ VLC_INTERN(dst1, table2, gb, name, bits, max_depth); \ } else { \ code = dtable[index].sym; \ OP(dst0, dst1, code); \ LAST_SKIP_BITS(name, gb, n); \ } \ } while (0) #define OP8bits(dst0, dst1, code) dst0 = code>>8; dst1 = code #define READ_2PIX(dst0, dst1, plane1) \ UPDATE_CACHE(re, &s->gb); \ GET_VLC_DUAL(dst0, dst1, re, &s->gb, s->vlc[4+plane1].table, \ s->vlc[0].table, s->vlc[plane1].table, VLC_BITS, 3, OP8bits) static void decode_422_bitstream(HYuvDecContext *s, int count) { int i, icount; OPEN_READER(re, &s->gb); count /= 2; icount = get_bits_left(&s->gb) / (32 * 4); if (count >= icount) { for (i = 0; i < icount; i++) { READ_2PIX(s->temp[0][2 * i], s->temp[1][i], 1); READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2); } for (; i < count && BITS_LEFT(re, &s->gb) > 0; i++) { READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1); if (BITS_LEFT(re, &s->gb) <= 0) break; READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2); } for (; i < count; i++) s->temp[0][2 * i ] = s->temp[1][i] = s->temp[0][2 * i + 1] = s->temp[2][i] = 0; } else { for (i = 0; i < count; i++) { READ_2PIX(s->temp[0][2 * i], s->temp[1][i], 1); READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2); } } CLOSE_READER(re, &s->gb); } #define READ_2PIX_PLANE(dst0, dst1, plane, OP) \ UPDATE_CACHE(re, &s->gb); \ GET_VLC_DUAL(dst0, dst1, re, &s->gb, s->vlc[4+plane].table, \ s->vlc[plane].table, s->vlc[plane].table, VLC_BITS, 3, OP) #define OP14bits(dst0, dst1, code) dst0 = code>>8; dst1 = sign_extend(code, 8) /* TODO instead of restarting the read when the code isn't in the first level * of the joint table, jump into the 2nd level of the individual table. */ #define READ_2PIX_PLANE16(dst0, dst1, plane){\ dst0 = get_vlc2(&s->gb, s->vlc[plane].table, VLC_BITS, 3)*4;\ dst0 += get_bits(&s->gb, 2);\ dst1 = get_vlc2(&s->gb, s->vlc[plane].table, VLC_BITS, 3)*4;\ dst1 += get_bits(&s->gb, 2);\ } static void decode_plane_bitstream(HYuvDecContext *s, int width, int plane) { int i, count = width/2; if (s->bps <= 8) { OPEN_READER(re, &s->gb); if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && BITS_LEFT(re, &s->gb) > 0; i++) { READ_2PIX_PLANE(s->temp[0][2 * i], s->temp[0][2 * i + 1], plane, OP8bits); } } else { for(i=0; itemp[0][2 * i], s->temp[0][2 * i + 1], plane, OP8bits); } } if( width&1 && BITS_LEFT(re, &s->gb)>0 ) { unsigned int index; int nb_bits, code, n; UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp[0][width-1], s->vlc[plane].table, &s->gb, re, VLC_BITS, 3); } CLOSE_READER(re, &s->gb); } else if (s->bps <= 14) { OPEN_READER(re, &s->gb); if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && BITS_LEFT(re, &s->gb) > 0; i++) { READ_2PIX_PLANE(s->temp16[0][2 * i], s->temp16[0][2 * i + 1], plane, OP14bits); } } else { for(i=0; itemp16[0][2 * i], s->temp16[0][2 * i + 1], plane, OP14bits); } } if( width&1 && BITS_LEFT(re, &s->gb)>0 ) { unsigned int index; int nb_bits, code, n; UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp16[0][width-1], s->vlc[plane].table, &s->gb, re, VLC_BITS, 3); } CLOSE_READER(re, &s->gb); } else { if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX_PLANE16(s->temp16[0][2 * i], s->temp16[0][2 * i + 1], plane); } } else { for(i=0; itemp16[0][2 * i], s->temp16[0][2 * i + 1], plane); } } if( width&1 && get_bits_left(&s->gb)>0 ) { int dst = get_vlc2(&s->gb, s->vlc[plane].table, VLC_BITS, 3)<<2; s->temp16[0][width-1] = dst + get_bits(&s->gb, 2); } } } static void decode_gray_bitstream(HYuvDecContext *s, int count) { int i; OPEN_READER(re, &s->gb); count /= 2; if (count >= (get_bits_left(&s->gb)) / (32 * 2)) { for (i = 0; i < count && BITS_LEFT(re, &s->gb) > 0; i++) { READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0); } } else { for (i = 0; i < count; i++) { READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0); } } CLOSE_READER(re, &s->gb); } static av_always_inline void decode_bgr_1(HYuvDecContext *s, int count, int decorrelate, int alpha) { int i; OPEN_READER(re, &s->gb); for (i = 0; i < count && BITS_LEFT(re, &s->gb) > 0; i++) { unsigned int index; int code, n, nb_bits; UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); n = s->vlc[4].table[index].len; if (n>0) { code = s->vlc[4].table[index].sym; *(uint32_t *) &s->temp[0][4 * i] = s->pix_bgr_map[code]; LAST_SKIP_BITS(re, &s->gb, n); } else { if (decorrelate) { VLC_INTERN(s->temp[0][4 * i + G], s->vlc[1].table, &s->gb, re, VLC_BITS, 3); UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(code, s->vlc[0].table, &s->gb, re, VLC_BITS, 3); s->temp[0][4 * i + B] = code + s->temp[0][4 * i + G]; UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(code, s->vlc[2].table, &s->gb, re, VLC_BITS, 3); s->temp[0][4 * i + R] = code + s->temp[0][4 * i + G]; } else { VLC_INTERN(s->temp[0][4 * i + B], s->vlc[0].table, &s->gb, re, VLC_BITS, 3); UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp[0][4 * i + G], s->vlc[1].table, &s->gb, re, VLC_BITS, 3); UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp[0][4 * i + R], s->vlc[2].table, &s->gb, re, VLC_BITS, 3); } } if (alpha) { UPDATE_CACHE(re, &s->gb); index = SHOW_UBITS(re, &s->gb, VLC_BITS); VLC_INTERN(s->temp[0][4 * i + A], s->vlc[2].table, &s->gb, re, VLC_BITS, 3); } else s->temp[0][4 * i + A] = 0; } CLOSE_READER(re, &s->gb); } static void decode_bgr_bitstream(HYuvDecContext *s, int count) { if (s->decorrelate) { if (s->bitstream_bpp == 24) decode_bgr_1(s, count, 1, 0); else decode_bgr_1(s, count, 1, 1); } else { if (s->bitstream_bpp == 24) decode_bgr_1(s, count, 0, 0); else decode_bgr_1(s, count, 0, 1); } } static void draw_slice(HYuvDecContext *s, AVCodecContext *avctx, AVFrame *frame, int y) { int h, cy, i; int offset[AV_NUM_DATA_POINTERS]; if (!avctx->draw_horiz_band) return; h = y - s->last_slice_end; y -= h; if (s->bitstream_bpp == 12) cy = y >> 1; else cy = y; offset[0] = frame->linesize[0] * y; offset[1] = frame->linesize[1] * cy; offset[2] = frame->linesize[2] * cy; for (i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); avctx->draw_horiz_band(avctx, frame, offset, y, 3, h); s->last_slice_end = y + h; } static int left_prediction(HYuvDecContext *s, uint8_t *dst, const uint8_t *src, int w, int acc) { if (s->bps <= 8) { return s->llviddsp.add_left_pred(dst, src, w, acc); } else { return s->llviddsp.add_left_pred_int16(( uint16_t *)dst, (const uint16_t *)src, s->n-1, w, acc); } } static void add_bytes(HYuvDecContext *s, uint8_t *dst, uint8_t *src, int w) { if (s->bps <= 8) { s->llviddsp.add_bytes(dst, src, w); } else { s->hdsp.add_int16((uint16_t*)dst, (const uint16_t*)src, s->n - 1, w); } } static void add_median_prediction(HYuvDecContext *s, uint8_t *dst, const uint8_t *src, const uint8_t *diff, int w, int *left, int *left_top) { if (s->bps <= 8) { s->llviddsp.add_median_pred(dst, src, diff, w, left, left_top); } else { s->hdsp.add_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src, (const uint16_t *)diff, s->n-1, w, left, left_top); } } static int decode_slice(AVCodecContext *avctx, AVFrame *p, int height, int buf_size, int y_offset, int table_size) { HYuvDecContext *s = avctx->priv_data; int fake_ystride, fake_ustride, fake_vstride; const int width = avctx->width; const int width2 = avctx->width >> 1; int ret; if ((ret = init_get_bits8(&s->gb, s->bitstream_buffer + table_size, buf_size - table_size)) < 0) return ret; fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0]; fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1]; fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2]; if (s->version > 2) { int plane; for(plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) { int left, lefttop, y; int w = width; int h = height; int fake_stride = fake_ystride; if (s->chroma && (plane == 1 || plane == 2)) { w >>= s->chroma_h_shift; h >>= s->chroma_v_shift; fake_stride = plane == 1 ? fake_ustride : fake_vstride; } switch (s->predictor) { case LEFT: case PLANE: decode_plane_bitstream(s, w, plane); left = left_prediction(s, p->data[plane], s->temp[0], w, 0); for (y = 1; y < h; y++) { uint8_t *dst = p->data[plane] + p->linesize[plane]*y; decode_plane_bitstream(s, w, plane); left = left_prediction(s, dst, s->temp[0], w, left); if (s->predictor == PLANE) { if (y > s->interlaced) { add_bytes(s, dst, dst - fake_stride, w); } } } break; case MEDIAN: decode_plane_bitstream(s, w, plane); left= left_prediction(s, p->data[plane], s->temp[0], w, 0); y = 1; if (y >= h) break; /* second line is left predicted for interlaced case */ if (s->interlaced) { decode_plane_bitstream(s, w, plane); left = left_prediction(s, p->data[plane] + p->linesize[plane], s->temp[0], w, left); y++; if (y >= h) break; } lefttop = p->data[plane][0]; decode_plane_bitstream(s, w, plane); add_median_prediction(s, p->data[plane] + fake_stride, p->data[plane], s->temp[0], w, &left, &lefttop); y++; for (; ydata[plane] + p->linesize[plane] * y; add_median_prediction(s, dst, dst - fake_stride, s->temp[0], w, &left, &lefttop); } break; } } draw_slice(s, avctx, p, height); } else if (s->bitstream_bpp < 24) { int y, cy; int lefty, leftu, leftv; int lefttopy, lefttopu, lefttopv; if (s->yuy2) { p->data[0][3] = get_bits(&s->gb, 8); p->data[0][2] = get_bits(&s->gb, 8); p->data[0][1] = get_bits(&s->gb, 8); p->data[0][0] = get_bits(&s->gb, 8); av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n"); return AVERROR_PATCHWELCOME; } else { leftv = p->data[2][0 + y_offset * p->linesize[2]] = get_bits(&s->gb, 8); lefty = p->data[0][1 + y_offset * p->linesize[0]] = get_bits(&s->gb, 8); leftu = p->data[1][0 + y_offset * p->linesize[1]] = get_bits(&s->gb, 8); p->data[0][0 + y_offset * p->linesize[0]] = get_bits(&s->gb, 8); switch (s->predictor) { case LEFT: case PLANE: decode_422_bitstream(s, width - 2); lefty = s->llviddsp.add_left_pred(p->data[0] + p->linesize[0] * y_offset + 2, s->temp[0], width - 2, lefty); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { leftu = s->llviddsp.add_left_pred(p->data[1] + p->linesize[1] * y_offset + 1, s->temp[1], width2 - 1, leftu); leftv = s->llviddsp.add_left_pred(p->data[2] + p->linesize[2] * y_offset + 1, s->temp[2], width2 - 1, leftv); } for (cy = y = 1; y < height; y++, cy++) { uint8_t *ydst, *udst, *vdst; if (s->bitstream_bpp == 12) { decode_gray_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * (y + y_offset); lefty = s->llviddsp.add_left_pred(ydst, s->temp[0], width, lefty); if (s->predictor == PLANE) { if (y > s->interlaced) s->llviddsp.add_bytes(ydst, ydst - fake_ystride, width); } y++; if (y >= height) break; } draw_slice(s, avctx, p, y); ydst = p->data[0] + p->linesize[0] * (y + y_offset); udst = p->data[1] + p->linesize[1] * (cy + y_offset); vdst = p->data[2] + p->linesize[2] * (cy + y_offset); decode_422_bitstream(s, width); lefty = s->llviddsp.add_left_pred(ydst, s->temp[0], width, lefty); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { leftu = s->llviddsp.add_left_pred(udst, s->temp[1], width2, leftu); leftv = s->llviddsp.add_left_pred(vdst, s->temp[2], width2, leftv); } if (s->predictor == PLANE) { if (cy > s->interlaced) { s->llviddsp.add_bytes(ydst, ydst - fake_ystride, width); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { s->llviddsp.add_bytes(udst, udst - fake_ustride, width2); s->llviddsp.add_bytes(vdst, vdst - fake_vstride, width2); } } } } draw_slice(s, avctx, p, height); break; case MEDIAN: /* first line except first 2 pixels is left predicted */ decode_422_bitstream(s, width - 2); lefty = s->llviddsp.add_left_pred(p->data[0] + 2, s->temp[0], width - 2, lefty); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { leftu = s->llviddsp.add_left_pred(p->data[1] + 1, s->temp[1], width2 - 1, leftu); leftv = s->llviddsp.add_left_pred(p->data[2] + 1, s->temp[2], width2 - 1, leftv); } cy = y = 1; if (y >= height) break; /* second line is left predicted for interlaced case */ if (s->interlaced) { decode_422_bitstream(s, width); lefty = s->llviddsp.add_left_pred(p->data[0] + p->linesize[0], s->temp[0], width, lefty); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { leftu = s->llviddsp.add_left_pred(p->data[1] + p->linesize[2], s->temp[1], width2, leftu); leftv = s->llviddsp.add_left_pred(p->data[2] + p->linesize[1], s->temp[2], width2, leftv); } y++; cy++; if (y >= height) break; } /* next 4 pixels are left predicted too */ decode_422_bitstream(s, 4); lefty = s->llviddsp.add_left_pred(p->data[0] + fake_ystride, s->temp[0], 4, lefty); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { leftu = s->llviddsp.add_left_pred(p->data[1] + fake_ustride, s->temp[1], 2, leftu); leftv = s->llviddsp.add_left_pred(p->data[2] + fake_vstride, s->temp[2], 2, leftv); } /* next line except the first 4 pixels is median predicted */ lefttopy = p->data[0][3]; decode_422_bitstream(s, width - 4); s->llviddsp.add_median_pred(p->data[0] + fake_ystride + 4, p->data[0] + 4, s->temp[0], width - 4, &lefty, &lefttopy); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { lefttopu = p->data[1][1]; lefttopv = p->data[2][1]; s->llviddsp.add_median_pred(p->data[1] + fake_ustride + 2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu); s->llviddsp.add_median_pred(p->data[2] + fake_vstride + 2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv); } y++; cy++; for (; y < height; y++, cy++) { uint8_t *ydst, *udst, *vdst; if (s->bitstream_bpp == 12) { while (2 * cy > y) { decode_gray_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; s->llviddsp.add_median_pred(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); y++; } if (y >= height) break; } draw_slice(s, avctx, p, y); decode_422_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; udst = p->data[1] + p->linesize[1] * cy; vdst = p->data[2] + p->linesize[2] * cy; s->llviddsp.add_median_pred(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); if (!(s->flags & AV_CODEC_FLAG_GRAY)) { s->llviddsp.add_median_pred(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu); s->llviddsp.add_median_pred(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv); } } draw_slice(s, avctx, p, height); break; } } } else { int y; uint8_t left[4]; const int last_line = (y_offset + height - 1) * p->linesize[0]; if (s->bitstream_bpp == 32) { left[A] = p->data[0][last_line + A] = get_bits(&s->gb, 8); left[R] = p->data[0][last_line + R] = get_bits(&s->gb, 8); left[G] = p->data[0][last_line + G] = get_bits(&s->gb, 8); left[B] = p->data[0][last_line + B] = get_bits(&s->gb, 8); } else { left[R] = p->data[0][last_line + R] = get_bits(&s->gb, 8); left[G] = p->data[0][last_line + G] = get_bits(&s->gb, 8); left[B] = p->data[0][last_line + B] = get_bits(&s->gb, 8); left[A] = p->data[0][last_line + A] = 255; skip_bits(&s->gb, 8); } if (s->bgr32) { switch (s->predictor) { case LEFT: case PLANE: decode_bgr_bitstream(s, width - 1); s->hdsp.add_hfyu_left_pred_bgr32(p->data[0] + last_line + 4, s->temp[0], width - 1, left); for (y = height - 2; y >= 0; y--) { // Yes it is stored upside down. decode_bgr_bitstream(s, width); s->hdsp.add_hfyu_left_pred_bgr32(p->data[0] + p->linesize[0] * (y + y_offset), s->temp[0], width, left); if (s->predictor == PLANE) { if (s->bitstream_bpp != 32) left[A] = 0; if (y < height - 1 - s->interlaced) { s->llviddsp.add_bytes(p->data[0] + p->linesize[0] * (y + y_offset), p->data[0] + p->linesize[0] * (y + y_offset) + fake_ystride, 4 * width); } } } // just 1 large slice as this is not possible in reverse order draw_slice(s, avctx, p, height); break; default: av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n"); } } else { av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n"); return AVERROR_PATCHWELCOME; } } return 0; } static int decode_frame(AVCodecContext *avctx, AVFrame *p, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; HYuvDecContext *s = avctx->priv_data; const int width = avctx->width; const int height = avctx->height; int slice, table_size = 0, ret, nb_slices; unsigned slices_info_offset; int slice_height; if (buf_size < (width * height + 7)/8) return AVERROR_INVALIDDATA; av_fast_padded_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size); if (!s->bitstream_buffer) return AVERROR(ENOMEM); s->bdsp.bswap_buf((uint32_t *) s->bitstream_buffer, (const uint32_t *) buf, buf_size / 4); if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0) return ret; if (s->context) { table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size); if (table_size < 0) return table_size; } if ((unsigned) (buf_size - table_size) >= INT_MAX / 8) return AVERROR_INVALIDDATA; s->last_slice_end = 0; if (avctx->codec_id == AV_CODEC_ID_HYMT && (buf_size > 32 && AV_RL32(avpkt->data + buf_size - 16) == 0)) { slices_info_offset = AV_RL32(avpkt->data + buf_size - 4); slice_height = AV_RL32(avpkt->data + buf_size - 8); nb_slices = AV_RL32(avpkt->data + buf_size - 12); if (nb_slices * 8LL + slices_info_offset > buf_size - 16 || s->chroma_v_shift || slice_height <= 0 || nb_slices * (uint64_t)slice_height > height) return AVERROR_INVALIDDATA; } else { slice_height = height; nb_slices = 1; } for (slice = 0; slice < nb_slices; slice++) { int y_offset, slice_offset, slice_size; if (nb_slices > 1) { slice_offset = AV_RL32(avpkt->data + slices_info_offset + slice * 8); slice_size = AV_RL32(avpkt->data + slices_info_offset + slice * 8 + 4); if (slice_offset < 0 || slice_size <= 0 || (slice_offset&3) || slice_offset + (int64_t)slice_size > buf_size) return AVERROR_INVALIDDATA; y_offset = height - (slice + 1) * slice_height; s->bdsp.bswap_buf((uint32_t *)s->bitstream_buffer, (const uint32_t *)(buf + slice_offset), slice_size / 4); } else { y_offset = 0; slice_offset = 0; slice_size = buf_size; } ret = decode_slice(avctx, p, slice_height, slice_size, y_offset, table_size); emms_c(); if (ret < 0) return ret; } *got_frame = 1; return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size; } const FFCodec ff_huffyuv_decoder = { .p.name = "huffyuv", CODEC_LONG_NAME("Huffyuv / HuffYUV"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_HUFFYUV, .priv_data_size = sizeof(HYuvDecContext), .init = decode_init, .close = decode_end, FF_CODEC_DECODE_CB(decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | AV_CODEC_CAP_FRAME_THREADS, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #if CONFIG_FFVHUFF_DECODER const FFCodec ff_ffvhuff_decoder = { .p.name = "ffvhuff", CODEC_LONG_NAME("Huffyuv FFmpeg variant"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_FFVHUFF, .priv_data_size = sizeof(HYuvDecContext), .init = decode_init, .close = decode_end, FF_CODEC_DECODE_CB(decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | AV_CODEC_CAP_FRAME_THREADS, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #endif /* CONFIG_FFVHUFF_DECODER */ #if CONFIG_HYMT_DECODER const FFCodec ff_hymt_decoder = { .p.name = "hymt", CODEC_LONG_NAME("HuffYUV MT"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_HYMT, .priv_data_size = sizeof(HYuvDecContext), .init = decode_init, .close = decode_end, FF_CODEC_DECODE_CB(decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | AV_CODEC_CAP_FRAME_THREADS, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #endif /* CONFIG_HYMT_DECODER */