/* * QuickTime RPZA Video Encoder * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file rpzaenc.c * QT RPZA Video Encoder by Todd Kirby and David Adler */ #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/opt.h" #include "avcodec.h" #include "codec_internal.h" #include "encode.h" #include "put_bits.h" typedef struct RpzaContext { AVClass *avclass; int skip_frame_thresh; int start_one_color_thresh; int continue_one_color_thresh; int sixteen_color_thresh; AVFrame *prev_frame; // buffer for previous source frame PutBitContext pb; // buffer for encoded frame data. int frame_width; // width in pixels of source frame int frame_height; // height in pixesl of source frame int first_frame; // flag set to one when the first frame is being processed // so that comparisons with previous frame data in not attempted } RpzaContext; typedef enum channel_offset { RED = 2, GREEN = 1, BLUE = 0, } channel_offset; typedef struct rgb { uint8_t r; uint8_t g; uint8_t b; } rgb; #define SQR(x) ((x) * (x)) /* 15 bit components */ #define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F) * 8) #define R(color) GET_CHAN(color, RED) #define G(color) GET_CHAN(color, GREEN) #define B(color) GET_CHAN(color, BLUE) typedef struct BlockInfo { int row; int col; int block_width; int block_height; int image_width; int image_height; int block_index; uint16_t start; int rowstride; int prev_rowstride; int blocks_per_row; int total_blocks; } BlockInfo; static void get_colors(const uint8_t *min, const uint8_t *max, uint8_t color4[4][3]) { uint8_t step; color4[0][0] = min[0]; color4[0][1] = min[1]; color4[0][2] = min[2]; color4[3][0] = max[0]; color4[3][1] = max[1]; color4[3][2] = max[2]; // red components step = (color4[3][0] - color4[0][0] + 1) / 3; color4[1][0] = color4[0][0] + step; color4[2][0] = color4[3][0] - step; // green components step = (color4[3][1] - color4[0][1] + 1) / 3; color4[1][1] = color4[0][1] + step; color4[2][1] = color4[3][1] - step; // blue components step = (color4[3][2] - color4[0][2] + 1) / 3; color4[1][2] = color4[0][2] + step; color4[2][2] = color4[3][2] - step; } /* Fill BlockInfo struct with information about a 4x4 block of the image */ static int get_block_info(BlockInfo *bi, int block, int prev_frame) { bi->row = block / bi->blocks_per_row; bi->col = block % bi->blocks_per_row; // test for right edge block if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) { bi->block_width = bi->image_width % 4; } else { bi->block_width = 4; } // test for bottom edge block if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) { bi->block_height = bi->image_height % 4; } else { bi->block_height = 4; } return block ? (bi->col * 4) + (bi->row * (prev_frame ? bi->prev_rowstride : bi->rowstride) * 4) : 0; } static uint16_t rgb24_to_rgb555(const uint8_t *rgb24) { uint16_t rgb555 = 0; uint32_t r, g, b; r = rgb24[0] >> 3; g = rgb24[1] >> 3; b = rgb24[2] >> 3; rgb555 |= (r << 10); rgb555 |= (g << 5); rgb555 |= (b << 0); return rgb555; } /* * Returns the total difference between two 24 bit color values */ static int diff_colors(const uint8_t *colorA, const uint8_t *colorB) { int tot; tot = SQR(colorA[0] - colorB[0]); tot += SQR(colorA[1] - colorB[1]); tot += SQR(colorA[2] - colorB[2]); return tot; } /* * Returns the maximum channel difference */ static int max_component_diff(const uint16_t *colorA, const uint16_t *colorB) { int diff, max = 0; diff = FFABS(R(colorA[0]) - R(colorB[0])); if (diff > max) { max = diff; } diff = FFABS(G(colorA[0]) - G(colorB[0])); if (diff > max) { max = diff; } diff = FFABS(B(colorA[0]) - B(colorB[0])); if (diff > max) { max = diff; } return max * 8; } /* * Find the channel that has the largest difference between minimum and maximum * color values. Put the minimum value in min, maximum in max and the channel * in chan. */ static void get_max_component_diff(const BlockInfo *bi, const uint16_t *block_ptr, uint8_t *min, uint8_t *max, channel_offset *chan) { int x, y; uint8_t min_r, max_r, min_g, max_g, min_b, max_b; uint8_t r, g, b; // fix warning about uninitialized vars min_r = min_g = min_b = UINT8_MAX; max_r = max_g = max_b = 0; // loop thru and compare pixels for (y = 0; y < bi->block_height; y++) { for (x = 0; x < bi->block_width; x++) { // TODO: optimize min_r = FFMIN(R(block_ptr[x]), min_r); min_g = FFMIN(G(block_ptr[x]), min_g); min_b = FFMIN(B(block_ptr[x]), min_b); max_r = FFMAX(R(block_ptr[x]), max_r); max_g = FFMAX(G(block_ptr[x]), max_g); max_b = FFMAX(B(block_ptr[x]), max_b); } block_ptr += bi->rowstride; } r = max_r - min_r; g = max_g - min_g; b = max_b - min_b; if (r > g && r > b) { *max = max_r; *min = min_r; *chan = RED; } else if (g > b && g >= r) { *max = max_g; *min = min_g; *chan = GREEN; } else { *max = max_b; *min = min_b; *chan = BLUE; } } /* * Compare two 4x4 blocks to determine if the total difference between the * blocks is greater than the thresh parameter. Returns -1 if difference * exceeds threshold or zero otherwise. */ static int compare_blocks(const uint16_t *block1, const uint16_t *block2, const BlockInfo *bi, int thresh) { int x, y, diff = 0; for (y = 0; y < bi->block_height; y++) { for (x = 0; x < bi->block_width; x++) { diff = max_component_diff(&block1[x], &block2[x]); if (diff >= thresh) { return -1; } } block1 += bi->prev_rowstride; block2 += bi->rowstride; } return 0; } /* * Determine the fit of one channel to another within a 4x4 block. This * is used to determine the best palette choices for 4-color encoding. */ static int leastsquares(const uint16_t *block_ptr, const BlockInfo *bi, channel_offset xchannel, channel_offset ychannel, double *slope, double *y_intercept, double *correlation_coef) { double sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0, sumx_sq = 0, sumy_sq = 0, tmp, tmp2; int i, j, count; uint8_t x, y; count = bi->block_height * bi->block_width; if (count < 2) return -1; for (i = 0; i < bi->block_height; i++) { for (j = 0; j < bi->block_width; j++) { x = GET_CHAN(block_ptr[j], xchannel); y = GET_CHAN(block_ptr[j], ychannel); sumx += x; sumy += y; sumx2 += x * x; sumy2 += y * y; sumxy += x * y; } block_ptr += bi->rowstride; } sumx_sq = sumx * sumx; tmp = (count * sumx2 - sumx_sq); // guard against div/0 if (tmp == 0) return -2; sumy_sq = sumy * sumy; *slope = (sumx * sumy - sumxy) / tmp; *y_intercept = (sumy - (*slope) * sumx) / count; tmp2 = count * sumy2 - sumy_sq; if (tmp2 == 0) { *correlation_coef = 0.0; } else { *correlation_coef = (count * sumxy - sumx * sumy) / sqrt(tmp * tmp2); } return 0; // success } /* * Determine the amount of error in the leastsquares fit. */ static int calc_lsq_max_fit_error(const uint16_t *block_ptr, const BlockInfo *bi, int min, int max, int tmp_min, int tmp_max, channel_offset xchannel, channel_offset ychannel) { int i, j, x, y; int err; int max_err = 0; for (i = 0; i < bi->block_height; i++) { for (j = 0; j < bi->block_width; j++) { int x_inc, lin_y, lin_x; x = GET_CHAN(block_ptr[j], xchannel); y = GET_CHAN(block_ptr[j], ychannel); /* calculate x_inc as the 4-color index (0..3) */ x_inc = floor( (x - min) * 3.0 / (max - min) + 0.5); x_inc = FFMAX(FFMIN(3, x_inc), 0); /* calculate lin_y corresponding to x_inc */ lin_y = (int)(tmp_min + (tmp_max - tmp_min) * x_inc / 3.0 + 0.5); err = FFABS(lin_y - y); if (err > max_err) max_err = err; /* calculate lin_x corresponding to x_inc */ lin_x = (int)(min + (max - min) * x_inc / 3.0 + 0.5); err = FFABS(lin_x - x); if (err > max_err) max_err += err; } block_ptr += bi->rowstride; } return max_err; } /* * Find the closest match to a color within the 4-color palette */ static int match_color(const uint16_t *color, uint8_t colors[4][3]) { int ret = 0; int smallest_variance = INT_MAX; uint8_t dithered_color[3]; for (int channel = 0; channel < 3; channel++) { dithered_color[channel] = GET_CHAN(color[0], channel); } for (int palette_entry = 0; palette_entry < 4; palette_entry++) { int variance = diff_colors(dithered_color, colors[palette_entry]); if (variance < smallest_variance) { smallest_variance = variance; ret = palette_entry; } } return ret; } /* * Encode a block using the 4-color opcode and palette. return number of * blocks encoded (until we implement multi-block 4 color runs this will * always be 1) */ static int encode_four_color_block(const uint8_t *min_color, const uint8_t *max_color, PutBitContext *pb, const uint16_t *block_ptr, const BlockInfo *bi) { const int y_size = FFMIN(4, bi->image_height - bi->row * 4); const int x_size = FFMIN(4, bi->image_width - bi->col * 4); uint8_t color4[4][3]; uint16_t rounded_max, rounded_min; int idx; // round min and max wider rounded_min = rgb24_to_rgb555(min_color); rounded_max = rgb24_to_rgb555(max_color); // put a and b colors // encode 4 colors = first 16 bit color with MSB zeroed and... put_bits(pb, 16, rounded_max & ~0x8000); // ...second 16 bit color with MSB on. put_bits(pb, 16, rounded_min | 0x8000); get_colors(min_color, max_color, color4); for (int y = 0; y < y_size; y++) { for (int x = 0; x < x_size; x++) { idx = match_color(&block_ptr[x], color4); put_bits(pb, 2, idx); } for (int x = x_size; x < 4; x++) put_bits(pb, 2, idx); block_ptr += bi->rowstride; } for (int y = y_size; y < 4; y++) { for (int x = 0; x < 4; x++) put_bits(pb, 2, 0); } return 1; // num blocks encoded } /* * Copy a 4x4 block from the current frame buffer to the previous frame buffer. */ static void update_block_in_prev_frame(const uint16_t *src_pixels, uint16_t *dest_pixels, const BlockInfo *bi, int block_counter) { const int y_size = FFMIN(4, bi->image_height - bi->row * 4); const int x_size = FFMIN(4, bi->image_width - bi->col * 4) * 2; for (int y = 0; y < y_size; y++) { memcpy(dest_pixels, src_pixels, x_size); dest_pixels += bi->prev_rowstride; src_pixels += bi->rowstride; } } /* * update statistics for the specified block. If first_block, * it initializes the statistics. Otherwise it updates the statistics IF THIS * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether * the range of colors (since the routine was called first_block != 0) are * all close enough intensities to be represented by a single color. * The routine returns 0 if this block is too different to be part of * the same run of 1-color blocks. The routine returns 1 if this * block can be part of the same 1-color block run. * If the routine returns 1, it also updates its arguments to include * the statistics of this block. Otherwise, the stats are unchanged * and don't include the current block. */ static int update_block_stats(RpzaContext *s, const BlockInfo *bi, const uint16_t *block, uint8_t min_color[3], uint8_t max_color[3], int *total_rgb, int *total_pixels, uint8_t avg_color[3], int first_block) { int x, y; int is_in_range; int total_pixels_blk; int threshold; uint8_t min_color_blk[3], max_color_blk[3]; int total_rgb_blk[3]; uint8_t avg_color_blk[3]; if (first_block) { min_color[0] = UINT8_MAX; min_color[1] = UINT8_MAX; min_color[2] = UINT8_MAX; max_color[0] = 0; max_color[1] = 0; max_color[2] = 0; total_rgb[0] = 0; total_rgb[1] = 0; total_rgb[2] = 0; *total_pixels = 0; threshold = s->start_one_color_thresh; } else { threshold = s->continue_one_color_thresh; } /* The *_blk variables will include the current block. Initialize them based on the blocks so far. */ min_color_blk[0] = min_color[0]; min_color_blk[1] = min_color[1]; min_color_blk[2] = min_color[2]; max_color_blk[0] = max_color[0]; max_color_blk[1] = max_color[1]; max_color_blk[2] = max_color[2]; total_rgb_blk[0] = total_rgb[0]; total_rgb_blk[1] = total_rgb[1]; total_rgb_blk[2] = total_rgb[2]; total_pixels_blk = *total_pixels + bi->block_height * bi->block_width; /* Update stats for this block's pixels */ for (y = 0; y < bi->block_height; y++) { for (x = 0; x < bi->block_width; x++) { total_rgb_blk[0] += R(block[x]); total_rgb_blk[1] += G(block[x]); total_rgb_blk[2] += B(block[x]); min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]); min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]); min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]); max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]); max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]); max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]); } block += bi->rowstride; } /* Calculate average color including current block. */ avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk; avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk; avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk; /* Are all the pixels within threshold of the average color? */ is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold && max_color_blk[1] - avg_color_blk[1] <= threshold && max_color_blk[2] - avg_color_blk[2] <= threshold && avg_color_blk[0] - min_color_blk[0] <= threshold && avg_color_blk[1] - min_color_blk[1] <= threshold && avg_color_blk[2] - min_color_blk[2] <= threshold); if (is_in_range) { /* Set the output variables to include this block. */ min_color[0] = min_color_blk[0]; min_color[1] = min_color_blk[1]; min_color[2] = min_color_blk[2]; max_color[0] = max_color_blk[0]; max_color[1] = max_color_blk[1]; max_color[2] = max_color_blk[2]; total_rgb[0] = total_rgb_blk[0]; total_rgb[1] = total_rgb_blk[1]; total_rgb[2] = total_rgb_blk[2]; *total_pixels = total_pixels_blk; avg_color[0] = avg_color_blk[0]; avg_color[1] = avg_color_blk[1]; avg_color[2] = avg_color_blk[2]; } return is_in_range; } static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict) { BlockInfo bi; int block_counter = 0; int n_blocks; int total_blocks; int prev_block_offset; int block_offset = 0; int pblock_offset = 0; uint8_t min = 0, max = 0; channel_offset chan; int i; int tmp_min, tmp_max; int total_rgb[3]; uint8_t avg_color[3]; int pixel_count; uint8_t min_color[3], max_color[3]; double slope, y_intercept, correlation_coef; const uint16_t *src_pixels = (const uint16_t *)pict->data[0]; uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0]; /* Number of 4x4 blocks in frame. */ total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4); bi.image_width = s->frame_width; bi.image_height = s->frame_height; bi.rowstride = pict->linesize[0] / 2; bi.prev_rowstride = s->prev_frame->linesize[0] / 2; bi.blocks_per_row = (s->frame_width + 3) / 4; while (block_counter < total_blocks) { // SKIP CHECK // make sure we have a valid previous frame and we're not writing // a key frame if (!s->first_frame) { n_blocks = 0; prev_block_offset = 0; while (n_blocks < 32 && block_counter + n_blocks < total_blocks) { block_offset = get_block_info(&bi, block_counter + n_blocks, 0); pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1); // multi-block opcodes cannot span multiple rows. // If we're starting a new row, break out and write the opcode /* TODO: Should eventually use bi.row here to determine when a row break occurs, but that is currently breaking the quicktime player. This is probably due to a bug in the way I'm calculating the current row. */ if (prev_block_offset && block_offset - prev_block_offset > 12) { break; } prev_block_offset = block_offset; if (compare_blocks(&prev_pixels[pblock_offset], &src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) { // write out skipable blocks if (n_blocks) { // write skip opcode put_bits(&s->pb, 8, 0x80 | (n_blocks - 1)); block_counter += n_blocks; goto post_skip; } break; } /* * NOTE: we don't update skipped blocks in the previous frame buffer * since skipped needs always to be compared against the first skipped * block to avoid artifacts during gradual fade in/outs. */ // update_block_in_prev_frame(&src_pixels[block_offset], // &prev_pixels[pblock_offset], &bi, block_counter + n_blocks); n_blocks++; } // we're either at the end of the frame or we've reached the maximum // of 32 blocks in a run. Write out the run. if (n_blocks) { // write skip opcode put_bits(&s->pb, 8, 0x80 | (n_blocks - 1)); block_counter += n_blocks; continue; } } else { block_offset = get_block_info(&bi, block_counter, 0); pblock_offset = get_block_info(&bi, block_counter, 1); } post_skip : // ONE COLOR CHECK if (update_block_stats(s, &bi, &src_pixels[block_offset], min_color, max_color, total_rgb, &pixel_count, avg_color, 1)) { prev_block_offset = block_offset; n_blocks = 1; /* update this block in the previous frame buffer */ update_block_in_prev_frame(&src_pixels[block_offset], &prev_pixels[pblock_offset], &bi, block_counter + n_blocks); // check for subsequent blocks with the same color while (n_blocks < 32 && block_counter + n_blocks < total_blocks) { block_offset = get_block_info(&bi, block_counter + n_blocks, 0); pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1); // multi-block opcodes cannot span multiple rows. // If we've hit end of a row, break out and write the opcode if (block_offset - prev_block_offset > 12) { break; } if (!update_block_stats(s, &bi, &src_pixels[block_offset], min_color, max_color, total_rgb, &pixel_count, avg_color, 0)) { break; } prev_block_offset = block_offset; /* update this block in the previous frame buffer */ update_block_in_prev_frame(&src_pixels[block_offset], &prev_pixels[pblock_offset], &bi, block_counter + n_blocks); n_blocks++; } // write one color opcode. put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1)); // write color to encode. put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color)); // skip past the blocks we've just encoded. block_counter += n_blocks; } else { // FOUR COLOR CHECK int err = 0; // get max component diff for block get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan); min_color[0] = 0; max_color[0] = 0; min_color[1] = 0; max_color[1] = 0; min_color[2] = 0; max_color[2] = 0; // run least squares against other two components for (i = 0; i < 3; i++) { if (i == chan) { min_color[i] = min; max_color[i] = max; continue; } slope = y_intercept = correlation_coef = 0; if (leastsquares(&src_pixels[block_offset], &bi, chan, i, &slope, &y_intercept, &correlation_coef)) { min_color[i] = GET_CHAN(src_pixels[block_offset], i); max_color[i] = GET_CHAN(src_pixels[block_offset], i); } else { tmp_min = (int)(0.5 + min * slope + y_intercept); tmp_max = (int)(0.5 + max * slope + y_intercept); av_assert0(tmp_min <= tmp_max); // clamp min and max color values tmp_min = av_clip_uint8(tmp_min); tmp_max = av_clip_uint8(tmp_max); err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi, min, max, tmp_min, tmp_max, chan, i), err); min_color[i] = tmp_min; max_color[i] = tmp_max; } } if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK const uint16_t *row_ptr; int y_size, rgb555; block_offset = get_block_info(&bi, block_counter, 0); pblock_offset = get_block_info(&bi, block_counter, 1); row_ptr = &src_pixels[block_offset]; y_size = FFMIN(4, bi.image_height - bi.row * 4); for (int y = 0; y < y_size; y++) { for (int x = 0; x < 4; x++) { rgb555 = row_ptr[x] & ~0x8000; put_bits(&s->pb, 16, rgb555); } row_ptr += bi.rowstride; } for (int y = y_size; y < 4; y++) { for (int x = 0; x < 4; x++) put_bits(&s->pb, 16, 0); } block_counter++; } else { // FOUR COLOR BLOCK block_counter += encode_four_color_block(min_color, max_color, &s->pb, &src_pixels[block_offset], &bi); } /* update this block in the previous frame buffer */ update_block_in_prev_frame(&src_pixels[block_offset], &prev_pixels[pblock_offset], &bi, block_counter); } } } static int rpza_encode_init(AVCodecContext *avctx) { RpzaContext *s = avctx->priv_data; s->frame_width = avctx->width; s->frame_height = avctx->height; s->prev_frame = av_frame_alloc(); if (!s->prev_frame) return AVERROR(ENOMEM); return 0; } static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { RpzaContext *s = avctx->priv_data; uint8_t *buf; int ret = ff_alloc_packet(avctx, pkt, 4LL + 6LL * avctx->height * avctx->width); if (ret < 0) return ret; init_put_bits(&s->pb, pkt->data, pkt->size); // skip 4 byte header, write it later once the size of the chunk is known put_bits32(&s->pb, 0x00); if (!s->prev_frame->data[0]) { s->first_frame = 1; s->prev_frame->format = pict->format; s->prev_frame->width = pict->width; s->prev_frame->height = pict->height; ret = av_frame_get_buffer(s->prev_frame, 0); if (ret < 0) return ret; } else { s->first_frame = 0; } rpza_encode_stream(s, pict); flush_put_bits(&s->pb); av_shrink_packet(pkt, put_bytes_output(&s->pb)); buf = pkt->data; // write header opcode buf[0] = 0xe1; // chunk opcode // write chunk length AV_WB24(buf + 1, pkt->size); *got_packet = 1; return 0; } static int rpza_encode_end(AVCodecContext *avctx) { RpzaContext *s = (RpzaContext *)avctx->priv_data; av_frame_free(&s->prev_frame); return 0; } #define OFFSET(x) offsetof(RpzaContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, { "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, { "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE}, { "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, { NULL }, }; static const AVClass rpza_class = { .class_name = "rpza", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_rpza_encoder = { .p.name = "rpza", CODEC_LONG_NAME("QuickTime video (RPZA)"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_RPZA, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, .priv_data_size = sizeof(RpzaContext), .p.priv_class = &rpza_class, .init = rpza_encode_init, FF_CODEC_ENCODE_CB(rpza_encode_frame), .close = rpza_encode_end, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555, AV_PIX_FMT_NONE}, };