/* * Copyright (C) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen and others * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Lookahead limiter filter */ #include "libavutil/channel_layout.h" #include "libavutil/common.h" #include "libavutil/fifo.h" #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "formats.h" #include "internal.h" typedef struct MetaItem { int64_t pts; int nb_samples; } MetaItem; typedef struct AudioLimiterContext { const AVClass *class; double limit; double attack; double release; double att; double level_in; double level_out; int auto_release; int auto_level; double asc; int asc_c; int asc_pos; double asc_coeff; double *buffer; int buffer_size; int pos; int *nextpos; double *nextdelta; int in_trim; int out_pad; int64_t next_in_pts; int64_t next_out_pts; int latency; AVFifo *fifo; double delta; int nextiter; int nextlen; int asc_changed; } AudioLimiterContext; #define OFFSET(x) offsetof(AudioLimiterContext, x) #define AF AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM static const AVOption alimiter_options[] = { { "level_in", "set input level", OFFSET(level_in), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, AF }, { "level_out", "set output level", OFFSET(level_out), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, AF }, { "limit", "set limit", OFFSET(limit), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.0625, 1, AF }, { "attack", "set attack", OFFSET(attack), AV_OPT_TYPE_DOUBLE, {.dbl=5}, 0.1, 80, AF }, { "release", "set release", OFFSET(release), AV_OPT_TYPE_DOUBLE, {.dbl=50}, 1, 8000, AF }, { "asc", "enable asc", OFFSET(auto_release), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, AF }, { "asc_level", "set asc level", OFFSET(asc_coeff), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 1, AF }, { "level", "auto level", OFFSET(auto_level), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, AF }, { "latency", "compensate delay", OFFSET(latency), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, AF }, { NULL } }; AVFILTER_DEFINE_CLASS(alimiter); static av_cold int init(AVFilterContext *ctx) { AudioLimiterContext *s = ctx->priv; s->attack /= 1000.; s->release /= 1000.; s->att = 1.; s->asc_pos = -1; s->asc_coeff = pow(0.5, s->asc_coeff - 0.5) * 2 * -1; return 0; } static double get_rdelta(AudioLimiterContext *s, double release, int sample_rate, double peak, double limit, double patt, int asc) { double rdelta = (1.0 - patt) / (sample_rate * release); if (asc && s->auto_release && s->asc_c > 0) { double a_att = limit / (s->asc_coeff * s->asc) * (double)s->asc_c; if (a_att > patt) { double delta = FFMAX((a_att - patt) / (sample_rate * release), rdelta / 10); if (delta < rdelta) rdelta = delta; } } return rdelta; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AudioLimiterContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; const double *src = (const double *)in->data[0]; const int channels = inlink->ch_layout.nb_channels; const int buffer_size = s->buffer_size; double *dst, *buffer = s->buffer; const double release = s->release; const double limit = s->limit; double *nextdelta = s->nextdelta; double level = s->auto_level ? 1 / limit : 1; const double level_out = s->level_out; const double level_in = s->level_in; int *nextpos = s->nextpos; AVFrame *out; double *buf; int n, c, i; int new_out_samples; int64_t out_duration; int64_t in_duration; int64_t in_pts; MetaItem meta; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } dst = (double *)out->data[0]; for (n = 0; n < in->nb_samples; n++) { double peak = 0; for (c = 0; c < channels; c++) { double sample = src[c] * level_in; buffer[s->pos + c] = sample; peak = FFMAX(peak, fabs(sample)); } if (s->auto_release && peak > limit) { s->asc += peak; s->asc_c++; } if (peak > limit) { double patt = FFMIN(limit / peak, 1.); double rdelta = get_rdelta(s, release, inlink->sample_rate, peak, limit, patt, 0); double delta = (limit / peak - s->att) / buffer_size * channels; int found = 0; if (delta < s->delta) { s->delta = delta; nextpos[0] = s->pos; nextpos[1] = -1; nextdelta[0] = rdelta; s->nextlen = 1; s->nextiter= 0; } else { for (i = s->nextiter; i < s->nextiter + s->nextlen; i++) { int j = i % buffer_size; double ppeak = 0, pdelta; for (c = 0; c < channels; c++) { ppeak = FFMAX(ppeak, fabs(buffer[nextpos[j] + c])); } pdelta = (limit / peak - limit / ppeak) / (((buffer_size - nextpos[j] + s->pos) % buffer_size) / channels); if (pdelta < nextdelta[j]) { nextdelta[j] = pdelta; found = 1; break; } } if (found) { s->nextlen = i - s->nextiter + 1; nextpos[(s->nextiter + s->nextlen) % buffer_size] = s->pos; nextdelta[(s->nextiter + s->nextlen) % buffer_size] = rdelta; nextpos[(s->nextiter + s->nextlen + 1) % buffer_size] = -1; s->nextlen++; } } } buf = &s->buffer[(s->pos + channels) % buffer_size]; peak = 0; for (c = 0; c < channels; c++) { double sample = buf[c]; peak = FFMAX(peak, fabs(sample)); } if (s->pos == s->asc_pos && !s->asc_changed) s->asc_pos = -1; if (s->auto_release && s->asc_pos == -1 && peak > limit) { s->asc -= peak; s->asc_c--; } s->att += s->delta; for (c = 0; c < channels; c++) dst[c] = buf[c] * s->att; if ((s->pos + channels) % buffer_size == nextpos[s->nextiter]) { if (s->auto_release) { s->delta = get_rdelta(s, release, inlink->sample_rate, peak, limit, s->att, 1); if (s->nextlen > 1) { double ppeak = 0, pdelta; int pnextpos = nextpos[(s->nextiter + 1) % buffer_size]; for (c = 0; c < channels; c++) { ppeak = FFMAX(ppeak, fabs(buffer[pnextpos + c])); } pdelta = (limit / ppeak - s->att) / (((buffer_size + pnextpos - ((s->pos + channels) % buffer_size)) % buffer_size) / channels); if (pdelta < s->delta) s->delta = pdelta; } } else { s->delta = nextdelta[s->nextiter]; s->att = limit / peak; } s->nextlen -= 1; nextpos[s->nextiter] = -1; s->nextiter = (s->nextiter + 1) % buffer_size; } if (s->att > 1.) { s->att = 1.; s->delta = 0.; s->nextiter = 0; s->nextlen = 0; nextpos[0] = -1; } if (s->att <= 0.) { s->att = 0.0000000000001; s->delta = (1.0 - s->att) / (inlink->sample_rate * release); } if (s->att != 1. && (1. - s->att) < 0.0000000000001) s->att = 1.; if (s->delta != 0. && fabs(s->delta) < 0.00000000000001) s->delta = 0.; for (c = 0; c < channels; c++) dst[c] = av_clipd(dst[c], -limit, limit) * level * level_out; s->pos = (s->pos + channels) % buffer_size; src += channels; dst += channels; } in_duration = av_rescale_q(in->nb_samples, inlink->time_base, av_make_q(1, in->sample_rate)); in_pts = in->pts; meta = (MetaItem){ in->pts, in->nb_samples }; av_fifo_write(s->fifo, &meta, 1); if (in != out) av_frame_free(&in); new_out_samples = out->nb_samples; if (s->in_trim > 0) { int trim = FFMIN(new_out_samples, s->in_trim); new_out_samples -= trim; s->in_trim -= trim; } if (new_out_samples <= 0) { av_frame_free(&out); return 0; } else if (new_out_samples < out->nb_samples) { int offset = out->nb_samples - new_out_samples; memmove(out->extended_data[0], out->extended_data[0] + sizeof(double) * offset * out->ch_layout.nb_channels, sizeof(double) * new_out_samples * out->ch_layout.nb_channels); out->nb_samples = new_out_samples; s->in_trim = 0; } av_fifo_read(s->fifo, &meta, 1); out_duration = av_rescale_q(out->nb_samples, inlink->time_base, av_make_q(1, out->sample_rate)); in_duration = av_rescale_q(meta.nb_samples, inlink->time_base, av_make_q(1, out->sample_rate)); in_pts = meta.pts; if (s->next_out_pts != AV_NOPTS_VALUE && out->pts != s->next_out_pts && s->next_in_pts != AV_NOPTS_VALUE && in_pts == s->next_in_pts) { out->pts = s->next_out_pts; } else { out->pts = in_pts; } s->next_in_pts = in_pts + in_duration; s->next_out_pts = out->pts + out_duration; return ff_filter_frame(outlink, out); } static int request_frame(AVFilterLink* outlink) { AVFilterContext *ctx = outlink->src; AudioLimiterContext *s = (AudioLimiterContext*)ctx->priv; int ret; ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && s->out_pad > 0) { AVFrame *frame = ff_get_audio_buffer(outlink, FFMIN(1024, s->out_pad)); if (!frame) return AVERROR(ENOMEM); s->out_pad -= frame->nb_samples; frame->pts = s->next_in_pts; return filter_frame(ctx->inputs[0], frame); } return ret; } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioLimiterContext *s = ctx->priv; int obuffer_size; obuffer_size = inlink->sample_rate * inlink->ch_layout.nb_channels * 100 / 1000. + inlink->ch_layout.nb_channels; if (obuffer_size < inlink->ch_layout.nb_channels) return AVERROR(EINVAL); s->buffer = av_calloc(obuffer_size, sizeof(*s->buffer)); s->nextdelta = av_calloc(obuffer_size, sizeof(*s->nextdelta)); s->nextpos = av_malloc_array(obuffer_size, sizeof(*s->nextpos)); if (!s->buffer || !s->nextdelta || !s->nextpos) return AVERROR(ENOMEM); memset(s->nextpos, -1, obuffer_size * sizeof(*s->nextpos)); s->buffer_size = inlink->sample_rate * s->attack * inlink->ch_layout.nb_channels; s->buffer_size -= s->buffer_size % inlink->ch_layout.nb_channels; if (s->latency) s->in_trim = s->out_pad = s->buffer_size / inlink->ch_layout.nb_channels - 1; s->next_out_pts = AV_NOPTS_VALUE; s->next_in_pts = AV_NOPTS_VALUE; s->fifo = av_fifo_alloc2(8, sizeof(MetaItem), AV_FIFO_FLAG_AUTO_GROW); if (!s->fifo) { return AVERROR(ENOMEM); } if (s->buffer_size <= 0) { av_log(ctx, AV_LOG_ERROR, "Attack is too small.\n"); return AVERROR(EINVAL); } return 0; } static av_cold void uninit(AVFilterContext *ctx) { AudioLimiterContext *s = ctx->priv; av_freep(&s->buffer); av_freep(&s->nextdelta); av_freep(&s->nextpos); av_fifo_freep2(&s->fifo); } static const AVFilterPad alimiter_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_input, }, }; static const AVFilterPad alimiter_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .request_frame = request_frame, }, }; const AVFilter ff_af_alimiter = { .name = "alimiter", .description = NULL_IF_CONFIG_SMALL("Audio lookahead limiter."), .priv_size = sizeof(AudioLimiterContext), .priv_class = &alimiter_class, .init = init, .uninit = uninit, FILTER_INPUTS(alimiter_inputs), FILTER_OUTPUTS(alimiter_outputs), FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_DBL), .process_command = ff_filter_process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, };