/* * Copyright (c) 2019 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "avfilter.h" #include "audio.h" #include "formats.h" #define MAX_OVERSAMPLE 64 enum ASoftClipTypes { ASC_HARD = -1, ASC_TANH, ASC_ATAN, ASC_CUBIC, ASC_EXP, ASC_ALG, ASC_QUINTIC, ASC_SIN, ASC_ERF, NB_TYPES, }; typedef struct Lowpass { float fb0, fb1, fb2; float fa0, fa1, fa2; double db0, db1, db2; double da0, da1, da2; } Lowpass; typedef struct ASoftClipContext { const AVClass *class; int type; int oversample; int64_t delay; double threshold; double output; double param; Lowpass lowpass[MAX_OVERSAMPLE]; AVFrame *frame[2]; void (*filter)(struct ASoftClipContext *s, void **dst, const void **src, int nb_samples, int channels, int start, int end); } ASoftClipContext; #define OFFSET(x) offsetof(ASoftClipContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption asoftclip_options[] = { { "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT, {.i64=0}, -1, NB_TYPES-1, A, "types" }, { "hard", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_HARD}, 0, 0, A, "types" }, { "tanh", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_TANH}, 0, 0, A, "types" }, { "atan", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ATAN}, 0, 0, A, "types" }, { "cubic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_CUBIC}, 0, 0, A, "types" }, { "exp", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_EXP}, 0, 0, A, "types" }, { "alg", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ALG}, 0, 0, A, "types" }, { "quintic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_QUINTIC},0, 0, A, "types" }, { "sin", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_SIN}, 0, 0, A, "types" }, { "erf", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ERF}, 0, 0, A, "types" }, { "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A }, { "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A }, { "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01, 3, A }, { "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, MAX_OVERSAMPLE, A }, { NULL } }; AVFILTER_DEFINE_CLASS(asoftclip); static void get_lowpass(Lowpass *s, double frequency, double sample_rate) { double w0 = 2 * M_PI * frequency / sample_rate; double alpha = sin(w0) / (2 * 0.8); double factor; s->da0 = 1 + alpha; s->da1 = -2 * cos(w0); s->da2 = 1 - alpha; s->db0 = (1 - cos(w0)) / 2; s->db1 = 1 - cos(w0); s->db2 = (1 - cos(w0)) / 2; s->da1 /= s->da0; s->da2 /= s->da0; s->db0 /= s->da0; s->db1 /= s->da0; s->db2 /= s->da0; s->da0 /= s->da0; factor = (s->da0 + s->da1 + s->da2) / (s->db0 + s->db1 + s->db2); s->db0 *= factor; s->db1 *= factor; s->db2 *= factor; s->fa0 = s->da0; s->fa1 = s->da1; s->fa2 = s->da2; s->fb0 = s->db0; s->fb1 = s->db1; s->fb2 = s->db2; } static inline float run_lowpassf(const Lowpass *const s, float src, float *w) { float dst; dst = src * s->fb0 + w[0]; w[0] = s->fb1 * src + w[1] - s->fa1 * dst; w[1] = s->fb2 * src - s->fa2 * dst; return dst; } static void filter_flt(ASoftClipContext *s, void **dptr, const void **sptr, int nb_samples, int channels, int start, int end) { const int oversample = s->oversample; const int nb_osamples = nb_samples * oversample; const float scale = oversample > 1 ? oversample * 0.5f : 1.f; float threshold = s->threshold; float gain = s->output * threshold; float factor = 1.f / threshold; float param = s->param; for (int c = start; c < end; c++) { float *w = (float *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1); const float *src = sptr[c]; float *dst = dptr[c]; for (int n = 0; n < nb_samples; n++) { dst[oversample * n] = src[n]; for (int m = 1; m < oversample; m++) dst[oversample * n + m] = 0.f; } for (int n = 0; n < nb_osamples && oversample > 1; n++) dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w); switch (s->type) { case ASC_HARD: for (int n = 0; n < nb_osamples; n++) { dst[n] = av_clipf(dst[n] * factor, -1.f, 1.f); dst[n] *= gain; } break; case ASC_TANH: for (int n = 0; n < nb_osamples; n++) { dst[n] = tanhf(dst[n] * factor * param); dst[n] *= gain; } break; case ASC_ATAN: for (int n = 0; n < nb_osamples; n++) { dst[n] = 2.f / M_PI * atanf(dst[n] * factor * param); dst[n] *= gain; } break; case ASC_CUBIC: for (int n = 0; n < nb_osamples; n++) { float sample = dst[n] * factor; if (FFABS(sample) >= 1.5f) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.1481f * powf(sample, 3.f); dst[n] *= gain; } break; case ASC_EXP: for (int n = 0; n < nb_osamples; n++) { dst[n] = 2.f / (1.f + expf(-2.f * dst[n] * factor)) - 1.; dst[n] *= gain; } break; case ASC_ALG: for (int n = 0; n < nb_osamples; n++) { float sample = dst[n] * factor; dst[n] = sample / (sqrtf(param + sample * sample)); dst[n] *= gain; } break; case ASC_QUINTIC: for (int n = 0; n < nb_osamples; n++) { float sample = dst[n] * factor; if (FFABS(sample) >= 1.25) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.08192f * powf(sample, 5.f); dst[n] *= gain; } break; case ASC_SIN: for (int n = 0; n < nb_osamples; n++) { float sample = dst[n] * factor; if (FFABS(sample) >= M_PI_2) dst[n] = FFSIGN(sample); else dst[n] = sinf(sample); dst[n] *= gain; } break; case ASC_ERF: for (int n = 0; n < nb_osamples; n++) { dst[n] = erff(dst[n] * factor); dst[n] *= gain; } break; default: av_assert0(0); } w = (float *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1); for (int n = 0; n < nb_osamples && oversample > 1; n++) dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w); for (int n = 0; n < nb_samples; n++) dst[n] = dst[n * oversample] * scale; } } static inline double run_lowpassd(const Lowpass *const s, double src, double *w) { double dst; dst = src * s->db0 + w[0]; w[0] = s->db1 * src + w[1] - s->da1 * dst; w[1] = s->db2 * src - s->da2 * dst; return dst; } static void filter_dbl(ASoftClipContext *s, void **dptr, const void **sptr, int nb_samples, int channels, int start, int end) { const int oversample = s->oversample; const int nb_osamples = nb_samples * oversample; const double scale = oversample > 1 ? oversample * 0.5 : 1.; double threshold = s->threshold; double gain = s->output * threshold; double factor = 1. / threshold; double param = s->param; for (int c = start; c < end; c++) { double *w = (double *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1); const double *src = sptr[c]; double *dst = dptr[c]; for (int n = 0; n < nb_samples; n++) { dst[oversample * n] = src[n]; for (int m = 1; m < oversample; m++) dst[oversample * n + m] = 0.f; } for (int n = 0; n < nb_osamples && oversample > 1; n++) dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w); switch (s->type) { case ASC_HARD: for (int n = 0; n < nb_osamples; n++) { dst[n] = av_clipd(dst[n] * factor, -1., 1.); dst[n] *= gain; } break; case ASC_TANH: for (int n = 0; n < nb_osamples; n++) { dst[n] = tanh(dst[n] * factor * param); dst[n] *= gain; } break; case ASC_ATAN: for (int n = 0; n < nb_osamples; n++) { dst[n] = 2. / M_PI * atan(dst[n] * factor * param); dst[n] *= gain; } break; case ASC_CUBIC: for (int n = 0; n < nb_osamples; n++) { double sample = dst[n] * factor; if (FFABS(sample) >= 1.5) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.1481 * pow(sample, 3.); dst[n] *= gain; } break; case ASC_EXP: for (int n = 0; n < nb_osamples; n++) { dst[n] = 2. / (1. + exp(-2. * dst[n] * factor)) - 1.; dst[n] *= gain; } break; case ASC_ALG: for (int n = 0; n < nb_osamples; n++) { double sample = dst[n] * factor; dst[n] = sample / (sqrt(param + sample * sample)); dst[n] *= gain; } break; case ASC_QUINTIC: for (int n = 0; n < nb_osamples; n++) { double sample = dst[n] * factor; if (FFABS(sample) >= 1.25) dst[n] = FFSIGN(sample); else dst[n] = sample - 0.08192 * pow(sample, 5.); dst[n] *= gain; } break; case ASC_SIN: for (int n = 0; n < nb_osamples; n++) { double sample = dst[n] * factor; if (FFABS(sample) >= M_PI_2) dst[n] = FFSIGN(sample); else dst[n] = sin(sample); dst[n] *= gain; } break; case ASC_ERF: for (int n = 0; n < nb_osamples; n++) { dst[n] = erf(dst[n] * factor); dst[n] *= gain; } break; default: av_assert0(0); } w = (double *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1); for (int n = 0; n < nb_osamples && oversample > 1; n++) dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w); for (int n = 0; n < nb_samples; n++) dst[n] = dst[n * oversample] * scale; } } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; ASoftClipContext *s = ctx->priv; switch (inlink->format) { case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break; case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break; default: av_assert0(0); } s->frame[0] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE); s->frame[1] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE); if (!s->frame[0] || !s->frame[1]) return AVERROR(ENOMEM); for (int i = 0; i < MAX_OVERSAMPLE; i++) { get_lowpass(&s->lowpass[i], inlink->sample_rate / 2, inlink->sample_rate * (i + 1)); } return 0; } typedef struct ThreadData { AVFrame *in, *out; int nb_samples; int channels; } ThreadData; static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ASoftClipContext *s = ctx->priv; ThreadData *td = arg; AVFrame *out = td->out; AVFrame *in = td->in; const int channels = td->channels; const int nb_samples = td->nb_samples; const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; s->filter(s, (void **)out->extended_data, (const void **)in->extended_data, nb_samples, channels, start, end); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; ASoftClipContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int nb_samples, channels; ThreadData td; AVFrame *out; if (av_frame_is_writable(in) && s->oversample == 1) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } nb_samples = in->nb_samples; channels = in->ch_layout.nb_channels; td.in = in; td.out = out; td.nb_samples = nb_samples; td.channels = channels; ff_filter_execute(ctx, filter_channels, &td, NULL, FFMIN(channels, ff_filter_get_nb_threads(ctx))); if (out != in) av_frame_free(&in); out->nb_samples /= s->oversample; return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { ASoftClipContext *s = ctx->priv; av_frame_free(&s->frame[0]); av_frame_free(&s->frame[1]); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_input, }, }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, }; const AVFilter ff_af_asoftclip = { .name = "asoftclip", .description = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."), .priv_size = sizeof(ASoftClipContext), .priv_class = &asoftclip_class, FILTER_INPUTS(inputs), FILTER_OUTPUTS(outputs), FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP), .uninit = uninit, .process_command = ff_filter_process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };