/* * Copyright (c) 2016 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "avfilter.h" #include "audio.h" #include "formats.h" typedef struct CrystalizerContext { const AVClass *class; float mult; int clip; AVFrame *prev; int (*filter[2][2])(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } CrystalizerContext; #define OFFSET(x) offsetof(CrystalizerContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption crystalizer_options[] = { { "i", "set intensity", OFFSET(mult), AV_OPT_TYPE_FLOAT, {.dbl=2.0},-10, 10, A }, { "c", "enable clipping", OFFSET(clip), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, A }, { NULL } }; AVFILTER_DEFINE_CLASS(crystalizer); typedef struct ThreadData { void **d; void **p; const void **s; int nb_samples; int channels; float mult; } ThreadData; static av_always_inline int filter_flt(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int inverse, int clip) { ThreadData *td = arg; void **d = td->d; void **p = td->p; const void **s = td->s; const int nb_samples = td->nb_samples; const int channels = td->channels; const float mult = td->mult; const float scale = 1.f / (-mult + 1.f); const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; float *prv = p[0]; int n, c; for (c = start; c < end; c++) { const float *src = s[0]; float *dst = d[0]; for (n = 0; n < nb_samples; n++) { float current = src[c]; if (inverse) { dst[c] = (current - prv[c] * mult) * scale; prv[c] = dst[c]; } else { dst[c] = current + (current - prv[c]) * mult; prv[c] = current; } if (clip) { dst[c] = av_clipf(dst[c], -1.f, 1.f); } dst += channels; src += channels; } } return 0; } static av_always_inline int filter_dbl(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int inverse, int clip) { ThreadData *td = arg; void **d = td->d; void **p = td->p; const void **s = td->s; const int nb_samples = td->nb_samples; const int channels = td->channels; const double mult = td->mult; const double scale = 1.0 / (-mult + 1.0); const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; double *prv = p[0]; int n, c; for (c = start; c < end; c++) { const double *src = s[0]; double *dst = d[0]; for (n = 0; n < nb_samples; n++) { double current = src[c]; if (inverse) { dst[c] = (current - prv[c] * mult) * scale; prv[c] = dst[c]; } else { dst[c] = current + (current - prv[c]) * mult; prv[c] = current; } if (clip) { dst[c] = av_clipd(dst[c], -1., 1.); } dst += channels; src += channels; } } return 0; } static av_always_inline int filter_fltp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int inverse, int clip) { ThreadData *td = arg; void **d = td->d; void **p = td->p; const void **s = td->s; const int nb_samples = td->nb_samples; const int channels = td->channels; const float mult = td->mult; const float scale = 1.f / (-mult + 1.f); const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; int n, c; for (c = start; c < end; c++) { const float *src = s[c]; float *dst = d[c]; float *prv = p[c]; for (n = 0; n < nb_samples; n++) { float current = src[n]; if (inverse) { dst[n] = (current - prv[0] * mult) * scale; prv[0] = dst[n]; } else { dst[n] = current + (current - prv[0]) * mult; prv[0] = current; } if (clip) { dst[n] = av_clipf(dst[n], -1.f, 1.f); } } } return 0; } static av_always_inline int filter_dblp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int inverse, int clip) { ThreadData *td = arg; void **d = td->d; void **p = td->p; const void **s = td->s; const int nb_samples = td->nb_samples; const int channels = td->channels; const double mult = td->mult; const double scale = 1.0 / (-mult + 1.0); const int start = (channels * jobnr) / nb_jobs; const int end = (channels * (jobnr+1)) / nb_jobs; int n, c; for (c = start; c < end; c++) { const double *src = s[c]; double *dst = d[c]; double *prv = p[c]; for (n = 0; n < nb_samples; n++) { double current = src[n]; if (inverse) { dst[n] = (current - prv[0] * mult) * scale; prv[0] = dst[n]; } else { dst[n] = current + (current - prv[0]) * mult; prv[0] = current; } if (clip) { dst[n] = av_clipd(dst[n], -1., 1.); } } } return 0; } #define filters(fmt, inverse, clip, i, c) \ static int filter_## inverse ##_## fmt ##_## clip(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ return filter_## fmt(ctx, arg, jobnr, nb_jobs, i, c); \ } filters(flt, inverse, noclip, 1, 0) filters(flt, inverse, clip, 1, 1) filters(flt, noinverse, noclip, 0, 0) filters(flt, noinverse, clip, 0, 1) filters(fltp, inverse, noclip, 1, 0) filters(fltp, inverse, clip, 1, 1) filters(fltp, noinverse, noclip, 0, 0) filters(fltp, noinverse, clip, 0, 1) filters(dbl, inverse, noclip, 1, 0) filters(dbl, inverse, clip, 1, 1) filters(dbl, noinverse, noclip, 0, 0) filters(dbl, noinverse, clip, 0, 1) filters(dblp, inverse, noclip, 1, 0) filters(dblp, inverse, clip, 1, 1) filters(dblp, noinverse, noclip, 0, 0) filters(dblp, noinverse, clip, 0, 1) static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; CrystalizerContext *s = ctx->priv; switch (inlink->format) { case AV_SAMPLE_FMT_FLT: s->filter[0][0] = filter_inverse_flt_noclip; s->filter[1][0] = filter_noinverse_flt_noclip; s->filter[0][1] = filter_inverse_flt_clip; s->filter[1][1] = filter_noinverse_flt_clip; break; case AV_SAMPLE_FMT_FLTP: s->filter[0][0] = filter_inverse_fltp_noclip; s->filter[1][0] = filter_noinverse_fltp_noclip; s->filter[0][1] = filter_inverse_fltp_clip; s->filter[1][1] = filter_noinverse_fltp_clip; break; case AV_SAMPLE_FMT_DBL: s->filter[0][0] = filter_inverse_dbl_noclip; s->filter[1][0] = filter_noinverse_dbl_noclip; s->filter[0][1] = filter_inverse_dbl_clip; s->filter[1][1] = filter_noinverse_dbl_clip; break; case AV_SAMPLE_FMT_DBLP: s->filter[0][0] = filter_inverse_dblp_noclip; s->filter[1][0] = filter_noinverse_dblp_noclip; s->filter[0][1] = filter_inverse_dblp_clip; s->filter[1][1] = filter_noinverse_dblp_clip; break; default: return AVERROR_BUG; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; CrystalizerContext *s = ctx->priv; AVFrame *out; ThreadData td; if (!s->prev) { s->prev = ff_get_audio_buffer(inlink, 1); if (!s->prev) { av_frame_free(&in); return AVERROR(ENOMEM); } } if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } td.d = (void **)out->extended_data; td.s = (const void **)in->extended_data; td.p = (void **)s->prev->extended_data; td.nb_samples = in->nb_samples; td.channels = in->channels; td.mult = ctx->is_disabled ? 0.f : s->mult; ff_filter_execute(ctx, s->filter[td.mult >= 0.f][s->clip], &td, NULL, FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx))); if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { CrystalizerContext *s = ctx->priv; av_frame_free(&s->prev); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; return config_input(ctx->inputs[0]); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_input, }, }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, }; const AVFilter ff_af_crystalizer = { .name = "crystalizer", .description = NULL_IF_CONFIG_SMALL("Simple audio noise sharpening filter."), .priv_size = sizeof(CrystalizerContext), .priv_class = &crystalizer_class, .uninit = uninit, FILTER_INPUTS(inputs), FILTER_OUTPUTS(outputs), FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP), .process_command = process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, };