/* * Copyright (c) 2020 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DNN native backend implementation. */ #include "libavutil/avassert.h" #include "dnn_backend_native_layer_avgpool.h" int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) { AvgPoolParams *avgpool_params; int dnn_size = 0; avgpool_params = av_malloc(sizeof(*avgpool_params)); if(!avgpool_params) return 0; avgpool_params->strides = (int32_t)avio_rl32(model_file_context); avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); dnn_size += 12; if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ av_freep(&avgpool_params); return 0; } layer->params = avgpool_params; layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); layer->output_operand_index = (int32_t)avio_rl32(model_file_context); dnn_size += 8; if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { return 0; } return dnn_size; } int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const void *parameters, NativeContext *ctx) { float *output; int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; int32_t input_operand_index = input_operand_indexes[0]; int number = operands[input_operand_index].dims[0]; int height = operands[input_operand_index].dims[1]; int width = operands[input_operand_index].dims[2]; int channel = operands[input_operand_index].dims[3]; const float *input = operands[input_operand_index].data; const AvgPoolParams *avgpool_params = parameters; int kernel_strides = avgpool_params->strides; int src_linesize = width * channel; DnnOperand *output_operand = &operands[output_operand_index]; /** * When padding_method = SAME, the tensorflow will only padding the hald number of 0 pixels * except the remainders. * Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 * and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, * and 5 - 2 - 1 = 2 lines after the last line of input image. * and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, * and 7 - 2 - 2 = 3 lines after the last line of input image. */ if (avgpool_params->padding_method == SAME) { height_end = height; width_end = width; height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); height_radius = height_radius < 0 ? 0 : height_radius >> 1; width_radius = width_radius < 0 ? 0 : width_radius >> 1; output_height = ceil(height / (kernel_strides * 1.0)); output_width = ceil(width / (kernel_strides * 1.0)); } else { av_assert0(avgpool_params->padding_method == VALID); height_end = height - avgpool_params->kernel_size + 1; width_end = width - avgpool_params->kernel_size + 1; height_radius = 0; width_radius = 0; output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); } output_operand->dims[0] = number; output_operand->dims[1] = output_height; output_operand->dims[2] = output_width; // not support pooling in channel dimension now output_operand->dims[3] = channel; output_operand->data_type = operands[input_operand_index].data_type; output_operand->length = ff_calculate_operand_data_length(output_operand); if (output_operand->length <= 0) { av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); return AVERROR(EINVAL); } output_operand->data = av_realloc(output_operand->data, output_operand->length); if (!output_operand->data) { av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); return AVERROR(ENOMEM); } output = output_operand->data; for (int y = 0; y < height_end; y += kernel_strides) { for (int x = 0; x < width_end; x += kernel_strides) { for (int n_channel = 0; n_channel < channel; ++n_channel) { output[n_channel] = 0.0; kernel_area = 0; for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { float input_pel; int y_pos = y + (kernel_y - height_radius); int x_pos = x + (kernel_x - width_radius); if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { input_pel = 0.0; } else { kernel_area++; input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; } output[n_channel] += input_pel; } } output[n_channel] /= kernel_area; } output += channel; } } return 0; }